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Dehn Surgery and 3-Manifolds

Cameron Gordon

Introduction

These notes are somewhat expanded versions of the six lectures given at the 2006
Park City Mathematics Institute Graduate Summer School. The main focus of the
lectures was exceptional Dehn surgeries on knots, and, more generally, exceptional
Dehn fillings on hyperbolic 3-manifolds.

In Lecture 1 we describe the crude classification of 3-manifolds that comes
from cutting them along essential surfaces of non-negative Euler characteristic, and
say what this means for exteriors of knots. In Lecture 2 we discuss Dehn surgery
on knots, and in particular describe a construction, framed surgery on knots on
surfaces, which is the source of many examples of exceptional Dehn surgeries. Lec-
ture 3 summarizes some facts and conjectures about exceptional Dehn surgeries on
knots. In Lecture 4 we introduce rational tangle fillings on tangles; these induce
Dehn fillings on the double branched cover of the tangle. Tangle fillings have the
advantage that they are easy to visualize, and although they impose a symmetry
on the manifold in question, nevertheless it turns out that many cxamples of excep-
tional Dehn fillings arise in this way. Lecture 5 gives more examples of exceptional
Dehn fillings derived from tangles. In Lecture 6 we discuss some classification re-
sults about exceptional Dehn fillings; many of these take the form that a hyperbolic
3-manifold has a pair of non-hyperbolic Dehn fillings of a particular kind if and only
if it is the double branched cover of one of a certain explicit family of tangles. We
conclude with a sketch of the proof of one of these classification results, describing
in particular how one shows that the fillings under consideration arise from tangle
fillings.
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LECTURE 1

3-manifolds and knots

The main topic of these lectures is Dehn surgery. However, to provide a context
for our discussion of this construction, we will first make some general remarks
about 3-manifolds.

1.1. 3-manifolds

2- and 3-manifolds will always be compact, connected and orientable unless oth-
erwise indicated. Also, we will always be working in the PL or smooth category;
these are equivalent in dimensions < 3.

Every 3-manifold contains lots of surfaces, for example those contained in a
co-ordinate neighborhood. So to get global information about a 3-manifold from
surfaces contained in it, we need some restriction on the surfaces. One of the most
useful of these is the requirement that the surfaces be incompressible. Let M be
a 3-manifold, and let F € M be a surface that is either properly embedded, i.e.
FNOM = 3F, or contained in 8M. F is compressible if there is a disk D ¢ M
such that DN F' = 8D and 8D is essential in F, {.e. does not bound & disk in F.
Otherwise, F' is incompressible. ,

This important concept was introduced by Haken [Ha]. It formed the basis of
his theory of what are now called Haken manifolds, that is, irreducible 3-manifolds
that contain incompressible surfaces.

One of the cornerstones of 3-dimensional topology is the following theorem of
Papakyriakopoulos, which says that the geometric condition of incompressibility
is equivalent to a purely homotopy-theoretic condition. (Historically, this theorem
was & combination of two theorems, the Loop Theorem and Dehn’s Lemma, the
latter being famously announced by Dehn in 1910 [Deh] but with an erroneous
proof. We call it the Disk Theorem because it says that the existence of a (suitably
non-trivial) singular disk is equivalent to the existence of an (analogously non-
trivial) embedded disk. In the same spirit, there are also the Sphere, Torus and
Annulus Theorems.)

Disk Theorem (Papakyriakopoulos [P]). F ¢ M is incompressible if and only if
w1 (F) o 11 (M) i5 injective.

Clearly there are some trivial incompressible surfaces that are not very useful.
Eliminating these leads to the following definition. A properly embedded surface
F C M is essential if either

(1) F = 8% and F does not bound & B8 in M;

(2) F = D? and OF is essential in OM;

(8) F % 82 or D? und is incompressible and not boundary parallel, (FCMis
boundary parallel if there is an embedding #'x I ¢ M such that F’x {0} ¢
OM and F = F' x {1}U8F' x I.)
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26 LECTURE 1. 3-MANIFOLDS AND KNOTS

A 3-manifold M is irreducible if it does not contain an essential S2. The
following result is fundamental.

3-Dimensional Schénflies Theorem (Alexander [A1]). 52 is irreducible.

The 2-dimensional analog is the classical Schonflies Theorem. Alexander first
announced a proof of the 3-dimensional version in complete generality (see [A2])
but soon gave counterexamples, including the famous Alexander horned sphere,
[A2], [A3], while also proving [A1] that the result is true in the smooth category.

The surfaces of non-negative Euler characteristic are the sphere, disk, annulus
and torus (S%, D%, A%, T?). These play a key role in the theory of 3-manifolds; in
particular, every 3-manifold can be decomposed into canonical pieces by cutting it
up along such surfaces.

First, spheres. If S is a disjoint union of 2-spheres in int M, by decomposing
M along S we mean the operation of cutting M along S and then capping off the
resulting 2-spherc boundary components with 3-balls.

Kneser’s Theorem (Kneser [Kn]). Every oriented 3-manifold can be decom-
posed along a finite disjoint union of 2-spheres to give a collection of irreducible
3-manifolds My, My,... ,M,. The M;’s are unique up to orientation-preserving
homeomorphism and insertion or deletion of copies of S3.

The existence part of this theorem is a finitcness statement: you can’t go on
decomposing a 3-manifold along essential spheres forever. To prove it Kneser used
a triangulation of the 3-manifold and introduced the idea of a normal surface; this
idea, later played an important role in Haken’s work.

Kneser’s theorem can be expressed in terms of the connected sum operation. If
M, and M, are oriented 3-manifolds, their connected sum My # M, is defined to be
the manifold obtained by removing the interior of a 3-ball B; C int M;, ¢ = 1,2, and
then gluing the resulting punctured manifolds together by an orientation-reversing
homeomorphism dB; — 3Bs.

Note that M # 5% =~ M. If M = M, # M, implies that M, or M; = $3 then
M is prime. An irreducible 3-manifold is prime, and a prime 3-manifold is either
irreducible or S x S2,

Prime Factorization Theorem (Kneser [Kn|, Milnor [M]). Every oriented 3-
manifold is a connected sum of prime manifolds My # My... # M,, M; % S3. The
summands M; are unique up to order and orientation-preserving homeomorphism,

For disks we have the following; see [Bo]. M is d-irreducible if it does not
contain an essential D? (i.e. OM is incompressible). Let M be an irreducible 3-
manifold. Then M contains a 3-submanifold W, unique up to isotopy, such that
OM C W, M — W is irreducible and J-irreducible, and M — W is obtained by
cutting M along a maximal disjoint union of non-parallel essential disks in M (and
then discarding any B3 components).

For example, if M is a handlebody, then W = M. (In general W is a disjoint
union of what are called compression bodies, onc for each component of M)

A Seifert fiber space (SFS) is a 3-manifold M that is a disjoint union of circles
(fibers), such that each fiber has a fibered solid torus neighborhood, i.e. D? x I with
D? x {0} and D? x {1} identified by a rotation p through -2—’52 (g>1, (p,q) =1).
The fibers are the images of the arc (0,0) x I (the central fiber) and the union of
the arcs z x I, p(z) x I,...,p? (z) x I, = # (0,0). We will say that the fibers
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other than the central fiber are (p, g)-curves in the solid torus. If ¢ > 2 the central
fiber is an exceptional fiber of multiplicity q. The quotient space of M obtained by
identifying each fiber to a point is a surface, the base surface of M.

Finally, for annuli and tori we have the following. A 3-manifold M is simple if
it contains no essential surface of non-negative Euler characteristic.

JSJ-Decomposition Theorem (Jaco-Shalen [JS], Johannson [Jol). In an irre-
ducible, O-irreducible S-manifold M, there is a collection F of disjoint essential
annuli and tori such that each component of M cut along F is either a SFS, an
I-bundle over a surface, or simple. A minimal such collection is unigue up to
isotopy.

If & SFS M has base surface F' and n exceptional fibers, of multiplicities
q1,--+ yGn, we shall say M is of type F(q1,...,¢). A SFS is small if one of the
following holds:

o Fx 8% n<3
e F2D? n<2
e F2 A% n<l1
e F2pP?2 n<1
e F =2 Mobius band, n=20
e F' 2 pair of pants, n =0.

The SFS’s of type S%(g1, g2) are S%, the lens spaces, and S x S2. Those of type
S%(q1,92,q3) with 3 -él; > 1 (i.e. where {q1,q2,q3} is one of the Platonic triples
{2,2,n}, {2,3,3}, {2,3,4}, or {2,3,5}) are the round (elliptic) 3-manifolds other
than $° and the lens spaces. By the Geometrization Conjecture (see below), these
manifolds, together with S2 and the lens spaces, are precisely the closed 3-manifolds
with finite fundamental group.

If a SFS is not small then it contains an essential T2.

Lemma 1.1. Let M be an irreducible 3-manifold whose boundary consists of tori.

If M contains an essential A% then M either contains an essential T? or is a small
SEFS.

For simple 3-manifolds we have the following, which is essentially the Ge-
ometrization Conjecture. .

Theorem 1.2 (Thurston [Th], if 8M # 0; Perelman [Pel], [Pe2], [Pe3], if
OM = 0). M 1is simple if and only if either
(1) My = M—(torus components of OM ) has a complete hyperbolic structure
with My totally geodesic; or
(2) M is a closed small SFS; or
(3) M = B3,

1.2. Knots

Let K be a knot in S3. The exterior of K is My = S° — int N(K), where N(K)
is a regular neighborhood of K. Let us consider the manifold My in light of the
discussion in the previous section.
First, by the 3-Dimensional Schonflies Theorem, My is always irreducible.
Second, M is d-reducible <= My = S! x D? &= K = U, the unknot.
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A torus knot is a non-trivial knot K that lies on a Hecgaard torus 7" in $3. If
K is a (p, g)-curve with respect to the natural co-ordinate system on 7', we write
K =T, 4 (Ip,1g] > 1). The exterior of T, is a SFS of type D*(|p|, |q]).

Let J be a knot in int(S* x D?), that is not isotopic to S x * and does not lie
in a 3-ball. Let Ky be a non-trivial knot in 8%, and let h: §* x D? —» N (Kb) be
a homeomorphism. Then K = h{J) is a satellzte of Kg. See Figure 1.1. Note that
the torus N (Kg) is essential in M.

h
s
ONK o) "
qum 1.1

A special case is when J = Gy 4, a (p, g)-curve in int(S* x D?), where ¢ > 2.
(See Figure 1.2, which shows the case p = 3, ¢ = 4) Then (choosing h to take
Sl x %, %€ 6D2 to a longitude of Ko) K = h(Cp,q) is the (p, q)-cable of Ko.

FIGURE 1.2

The following theorem is an easy consequence of the Disk Theorem and the
3-Dimensional Schénflies Theorem. However, Alexander s proof did not use the

former.
Theorem 1.3 (Alexander [A1]). Every T? C S? bounds a solz'd torus,

An immediate consequence is
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Corollary 1.4. My contaeins an essential T? if and only if K is 4 satellite knot.

By Lemma 1.1, if Mg contains an essential annulus then either Mg contains
an essential torus or Mk is a SFS over D? with two exceptional fibers, i.e. K is a
torus knot.

My is simple if and only if int Mg has a complete hyperbolic structure, in
which case we say K is hyperbolic.

Summarizing, we have

Theorem 1.5. Let K be a knot in S°. Then ezactly one of the following holds.

(1) K is the unknot (Mg contains an essential D?);

(2) K is a torus knot (My contains an essential A% but no essential T2 );
(3) K is a satellite knot (Mg contains an essential T?);

(4) K is hyperbolic (Mg is simple).

1.3. Exercises

1.

2l

10.
11.

120

Let v be a simple closed curve in a surface F. Show that # is null-
homotopic if and only if v bounds a disk in F.
Show that every T2 C $° bounds a solid torus,

(a) using the Disk Theorem;

(b) without using the Disk Theorem.

. For any g > 2, find an example of a closed surface of genus g in S3 that

does not bound a handlebody.

. Let M be an irreducible 3-manifold and T & torus component of SM.

Show that if T' is compressible then M is a solid torus.
Let K be a knot. Show that the following are equivalent:
(a) K is the unknot;

(b) Mg == 8! x D?

(e¢) Mg is O-reducible;

(d) ﬂl(MK) ~ 7.

. Extending the definition of compressibility to not necessarily connected

surfaces, show that F' C M is compressible if and only if some component
of F' is compressible.

. Let My, M3 be 3-manifolds, with F; ¢ OM;, i =1,2. Let h: F; — F; be

& homeomorphism and define M = M; Uy My. Show that
(a) if M; is irreducible and F; is incompressible, 5 = 1,2, then M is
irreducible.
(b) if M; is O-irreducible, F; is incompressible, and no component of F;
is a disk, i = 1,2, then M is d-irreducible.

. Let T be a compressible torus in an irreducible 3-manifold M. Show that

T either bounds a solid torus or lies in a 3-ball.

. Let K be a satellite of a (non-trivial) knot Kj. Show that the torus dM,

is essential in Mx.

Show that the only 3-manifold that is prime but not irreducible is S x S2.
Let M be an irreducible 3-manifold whose boundary consists of tori. Show
that if M contains an essential A% then M cither contains an essential 72
or is a small SF'S.

Let K; and Ky be non-trivial knots. Show that their connected sum
K1 #K; is a satellite of K;, i =1, 2.
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LECTURE 2

Dehn surgery

2.1. Overview

Let K be a knot in $3, with regular neighborhood N(K) = K x D?; p = * x §.D?
is a meridian of K. Then H,(Mgk) 2 Z, generated by [u]. Let A be a longitude
of K, i.e. a simple closed curve on AN (K) having interscction number +1 with u,
and such that [A] = 0 € H;(Mk). Orient g and Asothat uy-A=—-A-p=1on
ON(K). Then [u] and [A] are a basis for H1(0Mk) = Z & Z.

If @, B are unoriented simple closed curves on T2 then o and 3 are isotopic if
and only if [o] = +[B] € H{(T?). A slope on T? is an isotopy class of unoriented
essential simple closed curves on T2. The distance A(a, 3) between two slopes is
their minimal geometric intersection number.

If o is a slope on dMk, then [a] = +(m[u] + £[\]) € H,(0Mk) for some
coprime integers m and £. The correspondence o < m/¢ sets up a bijection
{slopes on OMk} < QU {1/0}. Note that A(m/¢, m'/¢') = |mf' — m'4).

K(a) = K(m/f) = o-(or m/¢-) Dehn surgery on K = My U S* x D?, glued
along their boundaries in such a way that o is identified with * x D2, a meridian
of ' x D?,

We have K (1/0) & S° for all K (the trivial Dehn surgery). Also, Hi(K(m/€))

o

Dehn surgery was introduced by Dehn in 1910 [Deh]. The historical back-
ground to this was Poincaré’s example, the spherical dodecahedral space D, of a
non-simply-connected homology 3-sphere [Po]. Dehn pointed out that one can also
obtain such manifolds by taking m = 1 (and £ # 0) in the above construction. In
fact, it turns out that D can be obtained by 1-surgery on the right-handed trefoil.

Corresponding to the four cases in Theorem 1.5 we have the following. Part (2)
is due to Moser [Mos], part (3) is due to Berge [Bel] and Gabai.[Gal] (we will
say more about this in Lecture 3), and part (4) is due to Thurston [Th].

Theorem 2.1.
(1) U(m/8) = —L(m,¥¢).
(2) Let d = A(m/¢, pq/1) = |m — fpq|. Then
S2(p,q,d) , ifd>1
Tp.q(m/f) = § L(m, £¢%) , fd=1
L(pa Q)#L(‘LP) ’ 3fd =0
(3) Let K be a satellite knot, constructed from J C int(S* x D?), and let

T be the corresponding essential torus in Myx. Then T usually remains
incompressible in K (o). More precisely:

31



a2 LECTURE 2. DEHN SURGERY

(i) If T compresses in K(a) for infinitely many o then J is a (p, q)-
curve.

(ii) The curves J that are not (p,q)-curves such that T' compresses in
K(a) for some a #£ p are completely classified. Moreover, o is in-
tegral, and is unique except for exactly one curve J (up to homeo-
morphism of S* x D2), for which there are two such o, these being
consecutive integers.

(4) Let K be hyperbolic. Then K(c) is hyperbolic for all but finitely many .

We make some comments on parts (2), (3) and (4) of Theorem 2.1.

(2) Let K be the torus knot T, 4. Then K lies on a Heegaard torus T < S8,
which separates S into two solid tori X and X’: 83 = X Uy X’. Note that K is
a (p,g)-curve on X and a (g, p)-curve on X’. Let N(K) be a regular neighborhood
of K in S3 such that N(K)NT is a regular neighborhood of K in 7. Thus A =
T — N(K) is an annulus, and Mg = §% — int N(K) = X U4 X'; see Figure 2.1.

Ficure 2.1

Now X (resp. X') has a Seifert fibering such that the ordinary fibers are (p, g)-
curves (resp. (g, p)-curves), and we may choose these Seifert fiberings to agree on
the annulus A. We thus see that M is a SFS of type D?(|p), |q]).

Let us now compute the framing on K induced from T'. By definition this is
the linking number £k{K’, K), where K’ is a parallel copy of K on T'. Let X+ be
a larger concentric copy of X, with meridian and longitude u* and A*. Then K’
is isotopic in 8% — K to K, a (p, q)-curve on 8X*. Note that K+ is homologous
on 80Xt to put + g\t. Also, Lk(At,K) = 0, since At ~ 0 in §% — K, while
2k(pt, K) = q. Therefore Lk(K', K) = tk(K*, K) = pq.

Thus on 8 My, the Seifert fibers have slope pg. Now consider m/¢-Dehn surgery
on K, K(m/f) = MgUV, V asolid torus. If the fibers on @Mk are not meridians
of V, then the fibering of 9Mk can be cxtended to a Seifert fibering of V, where
the multiplicity of the cential fiber is d = A(m/¢, pg/1). This gives the first two
patrts of (2).

We discuss the third part of (2), ie. the case Tp 4(pg), in Section 2.2, as a
special case of a more general situation.

(8) Let us first look at the case of cable knots. Here we have a solid torus V
and J is a (p, g)-curve C, 4 C int V., Let N be a regular neighbothood of Cp; in V,
and let Y = V' = N. There is an annulus A C Y with one boundary component a
(p, g)-curve on AV, and the other & (pg, 1)-curve on ON. See Figure 2.2. Let y, A
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A

FIGURE 2.2

be a meridian-longitude pair on N. Let ¢ : Y — Y be a Dehn twist along A. Then
t¢(1) = p+£(pgp+ ) = (pg+1)p+ £, a curve of slope (épg+1)/£ on ON. Hence
(épg + 1)/£-Dehn surgery on Cp 4 in V' gives a solid torus again. Thus T = oV
compresses in K (o) for infinitely many slopes c. Conversely, if this happens then
J is a (p, g)-curve by [CGLS, Theorem 2.4.4].

We will discuss part (ii) in Section 3.5 of Lecture 3.

(4) There has been a lot of work done trying to understand the exceptions to
this general principle. We shall say more about this in the subsequent lectures, but
right now let’s look at an example.

Example

Consider the simplest hyperbolic knot, the figure-8 knot K. Then Mk is a punc-
tured T%-bundle over S*. So K(0) is a T%-bundle over S?, and hence toroidal (i.c.
contains an essential torus).

FIGURE 2.3

My contains a once-punctured Klein bottle with boundary slope 4; see Fig-
ure 2.3. Hence K'(4) contains a Klein hottle, and so is non-hyperbolic. (In fact, it
is toroidal,) Since K is amphichciral, K(m/¢) is homeomorphic (by an orientation-
reversing homeomorphism) to K(~m/f). So K(—4) = K(4). We shall see in
Lecture 4 that K(+1), K(+2) and K (+3) are also non-hyperholic, more precisely
that they are SFS’s of type $%(g1, g9, gs).
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2.2. Framed surgery on knots on surfaces

We now describe a systematic way of constructing knots in $% with certain inter-
esting intcgral surgeries.

If X is a 3-manifold and K is a simple closed curve on 8X, let X[K] denote
the 3-manifold obtained by attaching a 2-handle to X along K. Then 8X|[K] is the
surface obtained by surgering 0X along K.

Let F be a closed surface in §3, separating S° into X and X', say. Let K be
a knot that lies on F, and let m € Z be the framing of K induced by F. Then
K(m) = X[K]Us X'[K].

This can be seen as follows; see Figure 2.4. Let Fy = F — int N(K), where
N(K) is chosen so that N(K) N F is a regular neighborhood of K in F; so 0Fp =
a3 U az, two parallel curves on dMy with slope m. Then Mg & X Up, X'. Now
K(m) = MgUV, V asolid torus. Note that ¢; bounds a disk D; CV,i=1,2. a3
and qo cut 8V into two annuli A, A/, and D; and D5 cut V into two 3-balls H, H’,
where A=0VNX COH,and A’ =0V NX' COH.

N() A “ A’
X Fy > |
b'& a,

FIGURE 2.4

Then
K(m) 2 (X Up, X") Us (H Up,up, H')
= (XUs HYUp (X' Uy H')
= X[K]Up X'[K] .

Note that 8X[K] = 8X'[K] = Fy = Fy U D1 UD3, and the core Ky, of V meets
the surface Fj in two points. :

Examples

(1) The torus knot K = Tp 4 lies on a Heegaard torus F in §3. The induced
framing is pg. Here X and X' are solid tori, and K is a (p, g)-curve on (say) X and
a (g, p)-curve on X'. Hence X|[K] = L(g,p) —int B®, X'[K] = L(p, q) — int B3, and
50 Ty,q(pq) = L(p,q) # L(q, p)-

(2) Let K be the (p,g)-cable of a knot Ko, ¢ > 2. If G, 4 is a (p,g)-curve in
the interior of a solid torus V then Cp, ;(pq) = S* x D? # L(g, p), the meridian of
S! x D? having slope p/q with respect to the usual co-ordinates on 0V. Hence

K (pq) = Ko(p/q) # L(g,p) -

If Ky = U then K = T, , and we get example (1) If Ky # U then Ko(p/q) % S,
so K(pq) is reducible.
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This brings us to what is arguably the most important open problem on Dchn
surgery, the Cabling Conjecture, formulated by Gonzélez-Acufia and Short in 1986.

Cabling Conjecture (Gonzalez-Acufia-Short [GS]). If K is a non-trivial knot
such that K (o) is reducible for some o then K is a cable knot.

(It is convenient herc to regard a torus knot as a cable of the unknot.)

The Cabling Conjecture is known to hold for several classes of knots, for exam-
ple: alternating knots [MT], strongly invertible knots [E1], symmetric knots [HS],
arborescent knots [W3], knots of bridge number at most 4 [Ho], and satellite knots
[Sc]. It follows from the last result that it is equivalent to the assertion that if K
is hyperbolic then K(a) is always irreducible.

Finally, it is known that if K(a) is reducible then « is integral [GL1], and
K(a) has a lens space summand [GL2). The latter implies in particular that K (0)
is always irreducible, a fact first proved by Gabai [Ga2).

(3) The example of 4-surgery on the figure-8 knot mentioned earlier can be
interpreted as framed surgery on a knot on a surface. Let S be the once-punctured
Klein bottle with 85 = K shown in Figure 2.3. Let X be a (twisted) I-bundle
neighborhood of S; so X is a handlebody of genus 2. Since S comes from the
black regions of a black/white shading of a planar diagram of K, it is clear that
X" = 83— X is also a handlebody. Hence F = 8X is a genus 2 Heegaard surface
in 5%, and K lies on F' with induced framing 4. Now X [K] is a twisted I-bundle
over the Klein bottle, which can also be described as a SFS of type D2(2,2). By
carefully drawing K as it lies on 8X’, one can see that X’ [K] is homeomorphic to
the exterior of the trefoil. Hence K'(4) is a toroidal graph-manifold, of the form
D?(2,2) Up D?(2,3).

2.3. Exercises

1. Show that A(m/¢, m'/l') = |m& — m’{|.
2. Show that (up to orientation-preserving homeomorphism), M(c) depends
only on the slope a.
3. Show that a SFS of type D?(2,2) is an I-bundle over the Klein bottle.
(Hint: Note that S* x D? is an I-bundlc over the Mdbius band.)
4. Let M be an irreducible 3-manifold that contains a Klein bottle F. Show
that M is either
(a) toroidal;
(b) a twisted I-bundle over F; or
(c) a SFS of type 5%(2,2) or 5%(2,2,n).
Which lens spaces L(m, £) are SFS’s of type $2(2,2)?
Show that the exterior of Cp4 in S x D? is a SFS of type A2(q).
Show that the boundary slope of the surface shown in Figure 2.3 is 4.
Show that for every m € Z there exists a hyperbolic knot K such that
K (4m) is toroidal. What about 2m? m?
Recall that for any £ € Z, (¢pg+ 1)/¢-Dehn surgery on Cp,q in the interior
of a solid torus V' gives a solid torus V. What'’s the slope of the meridian
of V' in terms of the meridian-longitude co-ordinatcs of V7
10. Verify the details of Example (2) in Scction 2.2.

i
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LECTURE 3

Exceptional Dehn surgeries

3.1. Exceptional surgeries

By an ezceptional Dehn surgery we mean a pair (K;«) where K is a hyperbolic
knot in S° and a # p is a slope such that K (a) is not hyperbolic. Such pairs tend
to be quite rare, so it is perhaps not unreasonable to try to classify them. In this
lecture we will describe what is known along these lines.

First we note that if K () is not hyperbolic, then by the Geometrization Con-
jecture it is ejther '

1) s

(2) S* x 5%

(3) non-prime

(4) a lens space

(8) a SFS of type $%(q1,qz,qs3)
(6) toroidal.

(1) and (2) never happen, by [GL2] and [Ga2], respectively; (3) is conjectured
to never happen (this would follow from the Cabling Conjecture); (4), (5) and (6)
all do oceur.

Let us see how we can obtain knots K with (integral) surgeries K(m) of
types (4), (5) and (6) using the construction described in Lecture 2, Section 2.2.
Although this construction only yields integral surgeries, it nevertheless accounts
for many of the known exceptional surgeries on knots. That most exceptional surg-
eries turn out to be integral is a reflection of the fact that if M(c) and M () are
non-hyperbolic Dehn fillings on a hyperbolic 3-manifold M (see Lecture 4), then
the distance A(a, B) tends to be small. Since K(i) & §3 is non-hyperbolic, where
i is the meridian of K, one would thercfore expect that if (K;a) = (K; m/fe) is
exceptional then A(q, p) = £ is small. In fact, for all known examples, £ = 1 or 2,
and the only known examples with £ = 2 are the knots with half-integral toroidal
surgeries constructed by Eudave-Mufioz [E2] that we will say more about later.

3.2. Lens space surgeries

We first describe the knots with lens space surgeries constructed by Berge [Be2].
The following lemma is relevant.

Lemma 3.1. Let X be a handlebody of genus n > 1, and let K be a simple closed
curve in 0X. The following are equivalent:
(i) X[K] is a handlebody of genus n — 1,
(i) There is a disk D C X such that K meets 8D transversely in a single
point.
(iii) [K] belongs to a basis for the free group m (X).
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If these conditions are satisfied we say K is primitive. Now in the construction
described in Section 2.2 take F to be a genus 2 Heegaard surface in §%, so X and
X' are genus 2 handlebodies, and suppose K C F is doubly primitive, i.e. K is
primitive in X and X’. Then K(m) & X[K] Up X'[K] is a union of two solid tori,
and hence a lens space. (Recall that if K # U then K (m) cannot be S3 or 8! x §2.)

The doubly primitive knots have been explicitly determined by Berge (see
[Be2]), and are referred to as the Berge knots.

Berge Conjecture (Berge [Be2]). A hyperbolic knot K has a lens space surgery if
and only if K is a Berge knot, and the surgery is the corresponding integral surgery.

The Cyclic Surgery Theorem [CGLS] implies that at least the surgery must
be integral.

Theorem. 3.2 (Culler-Gordon-Luecke-Shalen [CGLS]). Any lens space surgery on
a hyperbolic knot is integral.

Ozsvith and Szabé [OS], using their Heegaard Floer homology theory, give a
necessary condition on the Alexander polynomial of K for the lens space L(p, g) to
arise as some surgery on K. Using this, they have verified that for p < 1500, the
lens spaces L(p, g) that can be obtained by integral surgery on a knot are precisely
the lens spaces that are listed by Berge [Be2] as arising from his construction.

Bleiler and Litherland [BL] conjectured that no hyperbolic knot has a lens
space surgery L(p,q) with p < 18; this would follow from the Berge Conjecture.
Baker [Ba3] has shown that the Bleiler-Litherland conjecture is true, with the one
possible exception of L(14,11).

3.3. Seifert fiber space surgeries

If X is a handlebody of genus 2, say K C dX is Seifert if X[K] is a SF'S other than
S x D2,

Then a knot K is primitive/Seifert if it lies on a genus 2 Heegaard surface F
in S§% and is primitive in one of the complementary genus 2 handlebodics, say X,
and Seifert in the other, X’. Then K(m) 2 X[K]|Up X’'[K] is obtained by gluing a
solid torus to a SFS, and hence is a SFS. (A priori, K(m) could also be a connected
sum of lens spaces, but according to the Cabling Conjecture this never happens if
K is hyperbolic.)

Primitive/Seifert knots are studied by Dean in [D], and are called Dean knots.
Most known knots with SF'S surgeries are Dean knots; however, there are some that
are not.

If X[K)] is a SFS and not a solid torus, then one can show that it is of the
form D?(qy,q2) or M?(q), where M? denotes the Mdbius band. Hence if K is a
Dean knot, then the corresponding surgery K(m) (if not a lens space) is of the form
5%(q1,42,93) or P?(q1,q2). Note that those of type P%(gi1,qz) are toroidal. Two
infinite families of hyperbolic knots with surgeries of this latter type are given by
Eudave-Muifioz in [E3]; these are Dean knots. We remark that even though there
are hyperbolic knots with SFS surgeries that are not Dean knots, in all known
examples the Secifert fiber spaces obtained are of one of the two above types.

Question. Let M be a Seifert fiber space that arises as Dehn surgery on a hyperbolic
knot, and suppose M is not a lens space. Is M of type S*(q1,q2,43) or P%(q1,g2)?
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The first examples of hyperbolic knots with SFS surgeries that are not Dean
knots were given by Mattman, Miyazaki and Motegi [MMM]. These knots still lie
on a genus 2 Heegaard surface, but as separating curves. It is shown in [MMM]
that they do not have tunnel number 1. Since it is easy to see that any knot
that is primitive on a genus 2 Hecgaard handlebody in §2 has tunnel number 1, it
follows that they are not Dean knots. More recently, examples of hyperbolic knots
with SFS surgeries that do not even lie on a genus 2 Heegaard surface are given in
D ].

The main open problem about SFS surgeries is the generalization of Theo-
rem 3.2.

Conjecture 3.3. Any Seifert fibered surgery on a hyperbolic knot is integral.

For toroidal Seifert fibered surgeries, this has been proved by Boyer and Zhang
(BZ2].

We remark that Motegi and Song have shown that every integer occurs as the
slope of a SFS surgery on a hyperbolic kpot [MS].

3.4. Toroidal surgeries

Again let F' be a genus 2 Heegaard surface in S, and let X be a non-separating
simple closed curve on F, with induced framing m. Then, as before, K(m) =
X[K]ur X'[K], where T = 0X[K] = OX'[K] is a torus. In contrast to cases (1)
and (5) above, here we want T' to be incompressible in X [K] and X’[K], and hence
in K(m). A criterion for this is given by the following result of Jaco [J].

Handle Addition Lemma (Jaco [J]). Let X be a d-reducible $-manifold with
connected boundary and K a simple closed curve on 80X such that X — K is
incompressible in X. Then X[K] is 8-irreducible. |

Hence if ¥ — K s incompressible in X and X’ then K (m) is toroidal. It is clear
that lots of examples can be constructed in this way. (See [Tel] for instance, which
shows that for any integer m there exists a hyperbolic knot K such that K (m) is
toroidal.)

On the other hand there arc hyperbolic knots with integral toroidal surgeries
that do not arisc from this construction: it is not hard to see that any knot K
that lies on a genus 2 Heegaard surface has tunnel number t(K) at most 2, whereas
Eudave-Mufioz and Luecke have shown that there are hyperbolic knots with integral
toroidal surgeries with ¢(K) arbitrarily large [EL].

As we mentioned in Section 3.1, there also exist non-integral toroidal surgeries
on hyperbolic knots. However, these have been completely classified; see Theo-
rem 5.3 in Lecturc 5.

3.5. Knots in solid tori

We return to part (3) of Theorem 2.1, dealing with Dehn surgery on satellite knots.
So let K be a satellite knot, constructed from a non-trivial knot Ky and a curve
J Cint(S* x D?) as described in Section 1.2. Then T = &Mk, is an essential torus
in Mg. Now K(a) = Mg, Ur J(e), where J(a) is the result of a-Dehn surgery on
J € 8 x D?, and hence, since T is incompressible in M Ko, it will be incompressible
in K() unless it compresses in J(a). This leads to the question:

For which knots J in S* x D? is J(cr) 8-reducible for some o # pu?
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(We assume as usual that J is not a core of S! x D? and does not lie in a 3-ball.)

Three remarks: first, Scharlemann has shown [Sc] that, if J is not a (p, ¢)-curve
Cp,q, then J(a) is irreducible, and so J(a) will be d-reducible if and only if it is
a solid torus. Second, we have seen in Section 2.1 that if J is a (p, g)-curve then
J(co) is & solid torus for infinitely many slopes e. Third, it is shown in [CGLS,
Theorem 2.4.4] that if J is not a (p, ¢)-curve, and J(a) and J(B) are d-reducible,
then A(e, 8) < 1. In particular, Ao, ) < 1.

A method for constructing knots J in S' x D? with non-trivial solid torus
surgeries has been given by Berge [Bel]. Here is his construction. Let X be
a genus 2 handlebody, and let o, 8 be simple closed curves on 90X, intersecting
transversely in a single point, such that each is primitive in X. Let N be a regular
neighborhood of «UB in 8X (so N is a once-punctured torus), and let v = ON. Let
Y = X[v]. Then 9Y consists of two tori, one of which, say Ty, contains o and .
Then the Dehn filling Y () & X[a] 2 8 x D?, since « is primitive in X. Similarly
Y (B) = S x D?. Berge also completely classified the knots J ¢ S x D? that arise
from this construction [Bel]. (They fall into six types, I-VI1. Type I consists of the
(p, g)-curves, those of type II are certain cables of (p, g)-curves, while the exteriors
of those of types I1I-VI are simple.) Denote the set of such knots by J.

Now Gabai showed in [Gal] that if J € S* x D? has a non-trivial solid torus
surgery J{a) then J is a 1-bridge braid. Furthermore, one can see that a 1-bridge
braid with a non-trivial solid torus surgery must arise from Berge’s construction.
So putting all this together one gets a complete description of all knots in 8* x D?
with non-trivial solid torus surgeries.

Theorem 3.4 (Berge [Bel], Gabai [Gal]). A knot J in S x D? has a non-trivial
Dehn surgery yielding S* x D? if and only if J € J.

One interesting consequence of Berge’s classification is that there is a unique
knot J in S x D?, that is not a (p,q)-curve, having more than one, and hence

Figure 3.1
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exactly two, non-trivial solid torus surgeries. The exterior of this knot in St x D2
is the exterior of the 2-component link shown in Figure 3.1. (This manifold is called
the Berge manifold in [MP].)

There is a connection here with the Berge knots discussed in Section 3.2. Sup-
pose J € I, so that J(a) is a solid torus for some o # p. Then, for any unknotted
embedding b : §* x D? — S3, h(J) is a knot K in S® and the surgery on X cor-
responding to « is a lens space. Since h may be precomposed with any power of
a Dehn twist along the meridian disk of S* x D?, J gives rise to infinitely many
knots in S® with lens space surgeries. In this way the knots in J of types [-VI give
rise to Berge knots of types I-VI. (The Berge knots of types I and II are the torus
knots and certain cables of torus knots, respectively.) However, these do not ac-
count for all knots with lens space surgeries. Berge describes six additional families
of such knots, of types VII-XII. Those of types VII and VIII lie on a fiber of the
trefoll or figure-8 knot, respectively, while the remaining types IX~XII Betge calls
“sporadic”.

3.6. Exercises

1. Let X be a handlebody of genus n, and let K be a simple closed curve on
AX such that there is a disk in X whose boundary meets K transversely
in a single point. Show that X[K] is a handlebody of genus n — 1.

2. Show that the simple closed curve on the boundary of a genus 2 handle-
body illustrated in Figure 3.2 is primitive.

FIGURE 3.2

3. Show that the simple closed curve on the boundary of & genus 2 handle-
body illustrated in Figure 3.3 is Seifert.

FIGURE 3.3

4. Show that a knot that lies on a genus g Heegaard surface in 8 has tunnel
number at most g.
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. Let K be a simple closed curve on the boundary of a genus 2 handlebody
X. Show that if X|K] is a Seifert fiber space, then it is either a solid
torus, or of the form D?(qy, g2) or M?(g), where M? is a Mbbius band.



LECTURE 4
Rational tangle filling

4.1. Dehn filling

It is natural to extend the notion of Dehn surgery on a knot to that of Dehn filling
on & 3-manifold along some torus boundary component. So let M be a 3-manifold
with a torus boundary component T, and suppose that « is a slope on Tp. Define
the a-Dehn filling on M, M(c), to be the manifold obtained by gluing a solid torus
V to M so that the boundary of a meridional disc of V is glued to a:

M(a)=MUr,-sv V.

If M is hyperbolic in the sense of Theorem 1.2(1) (equivalently M is simple, i.e.
contains no cssential %, D?, A%, or T?), then M(a) will usually be hyperbolic.
We call the fillings for which this is not true ezceptional.! The following theorem
shows that it is unreasonable to try to describe all exceptional Dehn fillings.

Theorem 4.1 (Myers [My]). Any 3-manifold N is of the form M (o) for some
simple 3-manifold M and some slope c.

However, experience shows that it is rare for a simple 3-manifold to have more
than one exceptional filling, so if we define an exceptional pair (M;c, ) to be a
simple 3-manifold M with non-hyperbolic fillings M () and M (8), a # B, then
maybe we can classify all exceptional pairs. For example, when M (8), say, is S3,
then we have the case of hyperbolic knots in S% discussed earlier.

In Lectures 2 and 3 we described one way to see certain integral Dehn surgeries
on knots, by having the knot lie on s surface. Another way of constructing interest-
ing Dehn surgeries, and more generally Dehn fillings, is by means of rational tangle
surgery. In this construction, which is due to Montesinos [Mon], the relation with
Dehn surgery comes about by passing to double branched covers. The advantage
of rational tangle surgery is that tangles, and knots or links, are easy to visualize
and properties of their double branched covers can often be explicitly read off from
a diagram. The apparent drawback is that the manifolds you get (i.e. the double
branched covers) always have a Z,-symmetry; in particular the knots in S3 you get
are always strongly invertible. (A link L is strongly invertible if there is an involu-
tion T of %, with fixed-point set Fix(r) an unknotted circle, such that (L) =1L
and each component of L meets Fix(r) in two points.) Nevertheless, it turns out
that (as we shall see in Lecture 6) many exceptional Dpairs arise in this way.

4.2. Tangles

A tangle is a pair (B, A), where B is S minus the interiors of a finite number
of disjoint 3-balls, and A is a properly embedded 1-manifold in B which meets

lWith this terminology, Mk (1/0) = S is an exceptional Dehn filling for any hyperbolic knot K.
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each component of @B in four points, Note that our definition of tangle includes
the case of a knot or link in §3. A marked tangle is a tangle (B, A) with an
identification of each pair (S, 9N A), where S is a component of 8B, with (5%,Q =
{NE,NW, SW,SE}). Marked tangles (B, A) and (B, A’) are equal if there is an
isotopy of B, fixed on @B, taking A to A’
The trivial tangle is the tangle in B® homeomorphic to (D?, 2 points) x I.
Consider the following three operations on marked tangles in B3:

h = horizontal 3-twist Q et Q\/

v = vertical 3-twist O e 9
S

r = reflection in the Y
(NW/SE)-plane : ;

Note that rhr = v.

Let a1,a2,...,a; be a sequence of integers, a; # 0, 2 < 7 < k. Define the
rational tangle R(a1,ag, ... ,ax) to be (h*r)(h2r) - - (h*7)R(1/0), where R(1/0)
is the tangle ® Note that a rational tangle is trivial (as an unmarked tangle).
Conversely, it can be shown that any such marked tangle is rational.

1
Let p/q = a1 + W’ where (p, q) = 1.
2 EXRY B

+%

Theorem 4.2 (Conway [C]). R(a; ,.82, oo sag)=R(a],ah,...,a%) if and only if
ple=r'/q.

We write R(ey,82,... ,6r) = R(p/q).
Note that, since rhr = v,

h1y%2 .. ho%-19*%R(1/0), k even

Rip/q) =
h*1y% .. .p%-2 2% R(0/1), k odd

where R(0/1) = ).

Some examples of rational tangles are shown in Figure 4.1, corresponding to
the rational numbers 1/4, —3/2, 2/3, 5/14 and 2/3 respectively.

Let T = (B, A) be a tangle. Since H; (B~ A) is the free abelian group generated
by the meridians of the components of A, there is a unique homomorphism 7 (B —
A) — Zg sending each meridian to the non-trivial element of Zy. The corresponding
double covering of B — A can be completed to a branched covering of B with branch
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DD
B @

FIGURE 4.1

set A. We will denote this double branched covering by 7. In pa.rtlcular, ifRis a
rational tangle then R is a solid torus. See Figure 4.2.

FIGURE 4.2

A slope on (52, Q) is the isotopy class (rel ) of an embedded arc 7 in S? with
Ot C Q. Let p: T? — S be the double covering branched over Q. Then 7 = p~Y7)
Is an essential simple closed curve in T2, Let p, X be the slopes on (82,Q):

Orient g a.nd X so that on T2 with its usual positive orientation fi - A = -1,
Then [}, [\] is a basis for H;(T?) and we have bijections {slopes on ($%,Q)} «
{slopes on T2} — QU {1/0}.
Theorem 4.3. Under the above comspondence, the slope on the boundary of
R(p/q) that lifts to a meridian of the solid torus R(p/q) is p/q.

PROOF. Note that this is true for R(1/0).

Let A,7 : T2 — T2 be lifts of h|S?, r|S2. Then, with respect to the basis
[@i], [], e and 7, : H(T?) — Hy(T?) are given by the matrices [51] and [93]

respectively. The meridian of the solid torus R(p/q) is (h®'7)... (ho 7)(f), which
(see Exercise 4.5 (2)) has co-ordinates

oL ol ] - -6
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Corollary 4.4. If T is a marked tangle then T (p/q) = T (~p/q).

Remark. The minus sign in Corollary 4.4 is because of the usual convention for
parametrizing Dehn surgery slopes. One could argue that this should be reversed,
thereby getting rid of the minus signs in both Corollary 4.4 and Theorem 2.1(1).
Alternatively, the first minus sign could be eliminated by adopting the opposite
sign convention for rational tangles, as indeed some authors do. We decided on the
third option, which is to leave things as they are and move on.

Let M be a Seifert fiber space with orientable base surface F' and exceptional
fibers of multiplicities ¢1,... ,¢, (n > 1). Let V; be a regular neighborhood of the
ith exceptional fiber. Then Mo =M —int J[; ,V; X Fy x S, where o =F —n
open disks. Note that H;(8V;) has basis c;,t, represented by the corresponding
boundary component of Fy and * x S?, respectively. The meridian of V; is g;c; + p;t
for some p; such that (p;,q;) = 1. We write M = F(p1/q1,.-- ,Pn/qn)-

A Montesinos tangle M(p1/q1, p2/92), 41,92 = 2, is the union of the two ra-
tional tangles R(p1/q1) and R(pa/q2) as illustrated in Figure 4.3. The double

FIGURE 4.3

branched cover H(pl /q1, p2/q2) is the Seifert fiber space D?(p;/q1, p2/qa). For
example, M (1/2, 1/3) is homeomorphic to the exterior of the trefoil.

Similarly we can consider M(p1/g1,...,0n/0n), ¢ = 2, for n > 3; see Fig-
ure 4.4. Its double branched cover is the Seifert fiber space D*(p1/q1,... s Pn/an).

Capping off the tangle as shown in Figure 4.4 we get the Montesinos knot or link
Klpi/q1,... 1Pn/qn), with double branched cover S%(p1/q1,-.. ,Pn/qn)-

C—X
(OB ED

FIGURE 4.4
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4.3. Tangles with non-simple double branched covers

Let 7 = (B, A) be a tangle, and let F = (F, P) C (B, A), where F is a properly
embedded surface in B meeting A transversely in a finite number of points P. Let
F ¢ T be the double branched cover of F. Then F will be an essential surface
of non-negative Euler characteristic in 7 if and only if certain conditions on F are
satisfied. Here are the definitions.
(1) (F,P) = (S?, 2 points) is essential if it is not the boundary of a (3-ball,
unknotted arc) C (B, A). Then F is an essential sphere in 7.
(2) (F,P) = (D? 1 point) is essential if F does not bound a disk D coB
such that DN A is a single point. Then F is an essential disk in 7.
(8) F is a Conway sphere if (F, P) = (52, 4 points), F — P is incompressible in
B~ A, and (F, P) is not parallel to (S, ANS) for any boundary component
S of B. Then F is an cssential torus in 7.
(4) F is a Conway disk if (F, P) 2 (D?, 2 points), F — P is incompressible in
B — A, and (F, P) is not parallel to (D, AN D) where D is a disk C 9B.
Then F is an essential annulus in 7.

This is summarized in Table 4.1.

o~

F F

essential (52, 2 points) essential §%

essential (D?, 1 point) essential D?

Conway sphere (52, { points) | essential T2

Conway disk (D?, 2 points) | essential A2

TABLE 4.1

For example, in the Montesinos tangle M shown in Figure 4.3 we can see a
Conway disk separating M into two rational tangles. This disk lifts to an essential
annulus in the double branched cover M, separating M into two solid tori. Sim-
ilarly, in a Montesinos knot or link K as in Figure 4.4 with n > 4, the boundary
of (for example) the Montesinos tangle M (p1/q1,p2/¢2) is a Conway .sphere, which
lifts to an essential torus in the double branched cover of K.

4.4. Example: the Whitehead link

To illustrate the theory of rational tangle fillings we consider the simplest hyperbolic
link, namely the Whitehead link I = K, U K;; see Figure 4.5. The link L is
strongly invertible; the involution 7 is rotation through 7 about the axis ' shown
in Figure 4.5. Let Ny, N} be disjoint 7-invariant regular neighborhoods of Kj, K
respectively; then N;/T = B, is a 3-ball, i = 0,1. The axis C maps to an unknotted
circle C in the quotient §%/7 2 §%, and C'N (S% — int(By U By)) is & tangle 7 in
S% —int(BoUB;) & S2% x I , whose double branched cover 7 is the exterior of L,
My, = 5% — int(Np U Ny).

The unknotted circle C and the 3-balls By and B; are shown in Figure 4.6.
By an isotopy this may be transformed to Figure 4.7, and thence to Figure 4.8.
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FIiGURE 4.5 FIGURE 4.6

Ficure 4.7 FiGURE 4.8

In getting from Figure 4.7 to Figure 4.8 the 3-ball By acquires four horizontal
right-handed half-twists, so if 97 is the boundary component of the tangle 7
corresponding to By, then a slope a € QU{1/0} with respect to the marking of 9,7
determined by Figure 4.7 corresponds to the slope a—4 with respect to the marking
in Figure 4.8. Note that the former marking corresponds to the standard meridian-
longitude coordinates on ONg. Hence, if T(«) denotes a-tangle filling on 7 along
o7 with respect to the marking determined by Figure 4.8, and Mwu(a) denotes
a-Dehn filling on the boundary component dNg of Mwn, then by Corollary 4.4 we
have o '
T(Oz) = Mw},(—a —4) .
Note that since there is an isotopy of $® interchanging the components of L, it
doesn’t matter which boundary component of Mwy we do the filling on.
The tangles 7 () for & = 0,—1,—2 and —3 are shown in Figures 4.9, 4.10, 4.11

and 4.12. Thus

T(0) contains a Conway sphere

T(-1) = M(1/3,1/3)

T(—2) = M(1/2,1/4)

T(-3) = M(1/2,1/3).
Moreover, since Ko bounds a once-punctured torus in the complement of Ky, it
follows easily that Mwn(0) contains an incompressible non-separating torus. We
therefore have the following non-hyperbolic fillings on the Whitehead link exterior:

Mwn(—4) : toroidal
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(0=

FIGURE 4.9 FiGURE 4.10

‘BaONE:

Ficurre 4.11 FIGURE 4.12

Mwn(—3) : SFS D?(3,3)
Mwn(=2) : SFS D?%(2,4)
MWh(—-l) : SFS D2(2,3)
Mwn(0) : toroidal.
Also Mwy(1/0) is the exterior of K, which is a solid torus.
It is shown in [NR] that these are the only non-hyperbolic Dehn fillings on one
boundary component of Mwy,.
The exceptional fillings on the Whitehead link exterior induce exceptional surg-
eries on the twist knots. These are the knots K, n € Z, illustrated in Figure 4.13,
where there are 2n left-handed half-twists. (Note that one can get the correspond-

FIGURE 4.13

ing knots with an odd number of half-twists by reflecting the K, ’s.) Clearly the
exterior of K, is obtained by 1/n-filling on one boundary component of M.
Hence Ky, n # 0,—1, is an infinite family of hyperbolic knots, each with six ex-
ceptional surgery slopes 1/0, 0, —1, —2, —3 and ~4. By [BW], these are the only
exceptional slopes for K, unless n = 1. On the other hand, Ky = the figure-8 knot
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is amphicheiral, so it has ten exceptional slopes 1/0, 0, &1, 2, £3 and +4. No
other hyperbolic 3-manifold is known with more than eight exceptional slopes.

4.5, Exercises

1.

2.

Verify that the rational tangles in Figure 4.1 correspond to the rational
numbers stated.

Let [a1,az,... ,ar] denote the continued fraction
1
ay + T (ak % 0)
a2 + T
e
Define the Fuler brackel function e(ai,...,ax) inductively as follows.
Abbreviate e(as,... ,a;) by e;;, with the convention that e; g = 1 and
e1,-1 =0. Then
€1,k = Qke1 k-1 T €1,k-2 -
Show that e1
(a) la1,a2,...,ax) = —=
€2k
k
0 1 €2,k-1 €2k
b — 3 (LA
(b) E {1 ai} Ll,k—-l el,k]
b a; 1 e e
i _ |e1k erk-1
© g {1 0] Lz,!c ez,k—l]
. Show that the result of rotating the rational tangle R(p/q) through = /2

about the axis perpendicular to the plane containing the four points Q is
R(~4/p).

Show that the double branched cover of K[p/q, a/b] is the lens space
L(ga + pb, —(sa + b)), where ps — gr = 1.

. Let 7 be the tangle shown in Figure 4.8. Verify that 7(0), 7(-1), 7(-2)

and 7 (—3) are as shown in Figures 4.9, 4.10, 4.11 and 4.12.

. Using Figure 4.8, identify the non-hyperbolic manifolds K, (a), where K,

is a twist knot and a = 0, ~1, -2, —3 or —4. In particular, show that for
the figure-8 knot Kj: :

K;(£1) is a SFS of type 5%(2,3,7);

K;(+£2) is a SFS of type 5%(2,4,5); and

K (+3) is a SFS of type 5%(3,3,4).



LECTURE 5

Examples of exceptional Dehn fillings

5.1. Some examples

In this lecture we’ll see some more examples of exceptional Dehn fillings constructed
by means of rational tangle surgery.

We start with the tangle Q in the 4-punctured sphere illustrated in Figure 5.1.
(As unmarked tangles, this is the same as the tangle Q in [GL3].)

FIGURE 5.1

First recall that in Lecture 4 we showed that the Whitehead link exterior Mwn
is the double branched cover of the tangle illustrated in Figure 4.8. If we use the
marking of @ determined by Figure 5.1 and order its boundary components as in
the discussion immediately below, this is the tangle Q(1/2, 1/2, *, ¥). We will see in
this lecture and the next that Q is the source of many other examples of manifolds
with exceptional Dehn fillings.

Let B = B(a,6,7) = Q(a,B,7,%), a tangle in B (see Figure 5.2); these are
the tangles considered by Eudave-Mufioz in [E2]. Note that 88 is a single torus.
It can be shown that, except for some small values of o,  and v, B is simple (see
[E2] for details).

We will now see that B has several rational tangle fillings such that the corre-
sponding Dehn fillings on B are non-hyperbolic. For example,

B(1/0) = M(~1/e, —1/B) Up M(~1/2,7),
a union of two Montesinos tangles; see Figure 5.3. 5
Hence, if 1/, 1/ and «y are non-integral then B(1/0) is the union of two Seifert
fiber spaces over the disk with two exceptional fibers:
‘g(l/o) = D2(q1aQ2) Ua D2(2,Q3) H

a1
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FIGURE 5.2 FIGURE 5.3

where ¢1, g2, g3 are the denominators of 1/«, 1/8 and # respectively. In particular,
B(1/0) is toroidal.
Now consider B(0); see Figure 5.4. This is the Montesinos knot

['—1/(& - 1)7 "1/(6 - 1)’ "1/7]

Its double branched cover B(0) is therefore a Seifert fiber space over S? with at
most three exceptional fibers.

FIGURE 5.4

Similarly, B(—1) is the Montesinos knot
K[-1/(e+1), =1/(B+1), ~1/(v=1)] ;

see Figure 5.5. So its double branched cover B(l) is again a Seifert fiber space over
S? with at most three exceptional fibers.

Now consider B(—1/2); see Figure 5.6. This is a union of two Montesinos
tangles. For certain values of @, 3, these will degenerate to rational tangles, so
that B(1/2) will be the union of two solid tori.

Furthermore, in some cases these sohid tori will be glued so as to give §3. It
is a matter of arithmetic to work out when this happens (see [EZ] for detai}s) We
then get

Theorem 5.1 (Eudave-Mufioz [Eg]). There are infinitely many triples (a, 8,7)
such that B(a, B,7) s simple and Bla, B,7)(1/2) is S3.
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FIGURE 5.5

FIGURE 5.6

So for each such triple (e, 3,7), the double branched cover g(a, B,7) is the
exterior of a hyperbolic knot E(q, 8,7) in S3; we call these Eudave-Musioz knots,
and the corresponding tangles B(e, (3,4) Eudave-Musioz tangles.

Recalling that B(a, 4,7)(1/0) is toroidal, and that A(1/2, 1/0) = 2, we get

Corollary 5.2 (Eudave-Mufioz [E2]). There are infinitely many hyperbolic knots
K in S® such that K(m/2) is toroidal for some m.

It turns out that the Eudave-Muifioz knots are the only hyperbolic knots in S
with non-integral toroidal surgeries.

Theorem 5.8 (Gordon-Luecke [GL3)). If K is a hyperbolic knot in S® with a
non-integral toroidal surgery then K is an Eudave-Musioz knot and the surgery is
the corresponding half-integral surgery. |

The triples (o, 8,7) as in Theorem 5.1 actually fall into two infinite families,
each parametrized by three integers. The corresponding tangles B(a, §,7) are the
tangles B(¢,m,n,0) and B(¢, m,0,p) respectively of [E2)].

Example

A particularly interesting special case is the Eudave-Mufioz knot E(2,—3, 2/3),
whose exterior is the double branched cover of the tangle B(2, 3,2/ 3) = A, say,
shown in Figure 5.7. As well as the exceptional tangle fillings A(~1/2), A(1/0),
A(0) and A(~1) noted above, there are three others: A(—1/3) is a Montesinos
tangle of length 3, while A(—2/3) and A(~2/5) have Conway spheres.

The knot E(2,~3,2/3) is actually the reflection of the (~2,3,7) pretzel knot
K, and the correspondence between the tangle slopes listed above and the slopes
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=0

C.\/

B(2,-3,2/3)
FiGUre 5.7

on K with respect to the usual meridian-longitude coordinates is
(-1/2,1/0,0, -1, —1/3, —2/3, —2/5) — (1/0, 37/2, 18, 19, 17, 20, 16) .
The corresponding surgeries on K are
K(1/0): S°®
K(16) : toroidal
K(17) : SFS $2(2,3,5)
K(18) : L(18,5)
K(37/2) : toroidal
K(19) : L(19,7)
K (20) : toroidal.

The knot K thus represents what are conjecturally all the possible types of
exceptional surgeries: a lens space, a SFS of the form $%(q1,g2,q3), an integral
toroidal surgery, and a half-integral toroidal surgery. Indeed it has two lens space
surgeries, the maximum possible by the Cyclic Surgery Theorem [CGLS].

Here are some additional facts about exceptional surgeries on knots.

(1) The figure-8 knot and the (—2,3,7) pretzel knot are the only hyperbolic
knots known with more than six exceptional surgeries, having ten and seven re-
spectively (here we include K (1/0) = 83 as exceptional).

(2) There are infinitely many hyperbolic knots with six exceptional surgeries,
for example the twist knots K, (n # 0, +1) (see Section 4.4). Infinitely many
Eudave-Mufioz knots also have six exceptional surgeries; see [E2)].

(3) There are infinitely many Eudave-Muifioz knots with two lens space surg-
eries, for instance the family k(2,2,n,0) in [E2].

(4) The figure-8 and (—2,3,7) pretzel knots have three toroidal surgeries,
{~4,0,4} and {16, 37/2, 20} respectively. It can be shown, using [GW3], that
these are the only hyperbolic knots with two distinct pairs of toroidal surgeries at
distance > 4.

Teragaito [Te2] has constructed infinitely many hyperbolic knots with three
toroidal surgeries of the form m, m+ 1, m+2 (m € Z).

No hyperbolic knot is known with more than three toroidal surgeries.

5.2. Chain links

Q belongs to a very interesting hierarchy of tangles, that are derived from the chain
links. Here we will start with the 4-chain link, which is illustrated in Figure 5.8
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and which we shall denote by 4CL. It can also be described as the (2,2,2,-2)

R

Figure 5.8

pretzel link, or the Montesinos link K[1/2, 1/2, 1/2, —1/2]. This link is strongly
invertible; the involution 7 is indicated in Figure 5.8, with Fix(7) an unknotted
circle. The quotient of the exterior My, is the tangle shown in Figures 5.9 and
5.10; it turns out that this is the tangle Q.

FiGURre 5.9

T — iy

Fi1GuRre 5.10

Let 3C'L be the 8-chain link shown in F igure 5.11. The quotient of the strong
inversion on 3CL is the tangle N shown in Figure 5.12. Clearly (—1)-surgery on the
rightmost component of 4CL gives 3CL, and so there is a corresponding rational
tangle filling on Q giving V. :

Many of the hyperbolic manifolds with exceptional fillings that arc obtained by
filling on My factor through Msc . The large number of such manifolds coming
from Mscp, led to its being called the magic manifold in [GW2]. A complete
analysis of the fillings on Msc/, has been given by Martelli and Petronio MP].

Also in this hierarchy of chain links is the minimally twisted 5-chain link 5CL,
which is illustrated in Figure 5.13 and which we shall have occasion to refer to
in Section 6.3. The quotient of the strong inversion on 5CL is the pentangle P
shown in Figure 5.14 (terminology due to John Conway). P is the 1-skeleton of a
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&

Ficure 5.11 FIGURE 5.12
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FIGURE 5.13

FIGURE 5.14

tetrahedron in S® with neighborhoods of the vertices removed. Again (~1)-surgery
on the component of 5CL that’s third from the left gives 4CL, and so there is a
corresponding filling on P giving O.

Baker has shown that the Berge knots other than those of types VII and VIII
(see Section 3.5) can all be obtained by suitable Dehn surgery on four components
of 5CL [Ba2]. On the other hand, the knots of types VII and VII (those that
Lie on the fiber of the trefoil or figure-8 knot) have unbounded volume, so their
exteriors cannot come from Dehn filling on any fixed manifold [Bal).

5.3. Simplicity of the double branched cover

If we use tangles to construct examples of hyperbolic 3-manifolds M with excep-
tional fillings as double branched covers, the question arises as to how to show that
M is hyperbolic. This is usually quite straightforward.

Recall that M is hyperbolic if and only if it is simple. So if M is not hyperbolic
then it either contains an essential sphere or torus F, or is a SFS. Now such an
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F will remain essential in “most” Dehn fillings M (v) on M, while if M is a SFS
then M(vy) is either a SFS or reducible. In the situation we're interested in we
will have already constructed M so that it has two non-hyperbolic fillings M (@)
and M(f). By examining these, possibly together with one or two additional non-
hyperbolic fillings, and using the observation above about a generic filling M(~y),
one can usually argue that M can neither contain an essential sphere or torus nor
be a SFS,

5.4. Exercises

1. Let A= B(2, -3, 2/3). Verify that
(a) A(—1/2) is the unknot;
(b) LA(—1/3) is a Montcsinos tangle of length 3;
(¢) A(—2/3) and A(~2/5) contain Conway spheres.
2, Show that the tangle shown in Figure 5.10 is the tangle Q.
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LECTURE 6

Classification of some exceptional fillings

6.1. Some classification theorems

It is natural to divide the problem of classifying all exceptional pairs (M;ay, o)
into several cases, where we consider particular classes C; and Cy of non-hyperbolic
3-manifolds (for example, reducible manifolds, lens spaces, and so on) and assume
that M(c;) € C;, i = 1,2. Each case can then be approached in three stages:

(A) find the smallest constant Ay = Ag(C1,Cz) such that if (M; oy, o) is

exceptional, with M(a;) € C;, i =1, 2, then Az, ap) < Ag;

(B) determine all such (M; e, ;) with Aoy, o) = Ag;

(C) determine all such (M; a1, ag) with Aay, az) < Ag.

(A) has been solved in many cases, and even (B) is known for several pairs
of classes C1,Cs. As A(ay, o) gets smaller for a given pair Cy, Co, more examples
tend to occur and the classification problem becomes harder, so it is probably too
optimistic to expect a complete solution to (C) in general.

Table 6.1 shows the values of Ag(Cy,Cz) for pairs of the following classes
of 3-manifolds: those that contain an essential S%, D?, A2 or T2, {S3}, and
{lens spaces}. (The entries marked % obviously do not occur.) In particular, in
all cases except (S,5%) and (T, L), Ao has been determined. Regarding the un-
known cases, note that (3, S%) probably never happens (as mentioned in Lecture 2,
this is equivalent to the Cabling Conjecture), while it is known that Do(T, L) is
either 3 or 4 [G3], [L3]. For references for the entries in Table 6.1, see [G3].

‘Table 6.2 shows the status of (B) for the same classes.

S| D | A | T |8 |L
S 11 0 2|3 ? 1
D 1 2 2 * *
A 5 5 * *
T 8 2 ?
S3 0 1
L 1

TABLE 6.1

59
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S| D A T | 831 L
St1?7 |V v v ? 7
D ? ? v * ®
A v v * *
T v v ?
3 v ?
L ?

TABLE 6.2

Let us describe the entries in Table 6.2 in more detail.
For (T, %) we have Theorem 5.3 in Lecture 5: the manifolds M are precisely

the exteriors of the Eudave-Mutioz knots.
For (S, T), where Ay = 3, we have the following examples of Eudave-Muiioz

and Wu [EW], again coming from the tangles B(a, §8,v). Specifically, let B, =
B(2, —n — 2, —1/n), n > 2, as shown in Figure 6.1. Then B,(1/0) is toroidal; the

By Bp(1/0)
FIGURE 6.1 | FIGURE 6.2

corresponding Conway sphere in B,,(1/0) is shown in Figure 6.2. (Of course this is
just a special case of Figure 5.3.)

Also, Figure 6.3 shows that B,(—1/3) is the connected sum of a trefoil and
the Hopf link, hence B,(1/3) = L(3,1) # RP3. Finally, it can be shown that B,, is
simple if n > 2. The following theorem of Kang [K]| says that these are the only
examples of a reducible filling and a toroidal filling on a hyperbolic 3-manifold at
distance 3.

Theorem 6.1 (Kang [K]). M is a simple 3-manifold with M(a.) reducible, M ()
toroidal and Aoy, as) = 3 if and only if (M;0q,00) = (B,; 1/3, 1/0) for some
n = 2.

We now describe some fillings that contain essential disks and essential annuli;
here we need manifolds with at least two boundary components. Let A(«, 8) be the
tangle in S” x I shown in Figure 6.4. Note that A(c, f) is obtained by removing
the y-tangle from B(w, 8,7). Also the boundary of A(«, ) consists of two tori.
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Byu(-1/3)

IR

FIGURE 6.3

A(a,p)

FIGURE 6.4
Let A(e, B)(p) denote p-filling on the inner boundary component of A(e, B), with
respect to the obvious marking. Then A(q, )(—1/2) contains a Conway sphere

and a Conway disk (provided neither o nor 8 is integral), as shown in Figure 6.5.
It follows that A(c, 8)(1/2) is toroidal and annular.

(%) Ch
(2) <

IR
)|

A(asB) ~1/2)

FIGURE 6.5

For a second interesting filling, we specialize to A, = A(l/n, -1 /n). Then
Arn(1/0) is as shown in Figure 6.6. Taking double branched covers gives A,,(1/0) &
RP3# 81 x D?. Hence A,(1/0) is reducible and 8-reducible.
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O

é g
Ay (1/0)
FIGURE 6.6

The following theorem of Lee [L1] says that these examples account for all
reducible and annular fillings at distance 2.

Theorem 6.2 (Lee [L1]). M is a simple 3-manifold with M(c) reducible, M (o)
annular and Aoy, o) = 2 if and only if (M;01,00) = (A} 1/0, 1/2) for some
n > 3.

As noted above, A,(1/0) is d-reducible and 4,(1/2) is toroidal. However,
there are other examples of J-reducible and toroidal fillings at distance 2, closely
related to the Eudave-Muiioz knots. Recall that the exteriors of these knots are the
double branched covers of the tangles B(c, 3, ) for two infinite families of (e, 3, v).
Removing the y-tangle from the first family and the S-tangle from the second family
gives two families of tangles in S? x I, of the form A(e, 8) and A’(c,7), say. Call
the union of the two families E. If 7 € E, denote by 7(p) the p-filling on the
boundary component of 7 that corresponds to the boundary of B, 8,). Then it

turns out that 7°(1/2) & S x D? and 7(1/0) is toroidal.

Theorem 6.3 (Gordon-Luecke [GL3]). M is a simple 3-manifold with M(c1)
a solid torus, M(as) toroidal and A(ai,az) = 2 if and only if (Mjon,a2) =
(T; 1/2, 1/0) for some T € E.

Regarding the more general situation of d-reducible and toroidal fillings at
distance 2, Lee [L2] has shown the following.

Theorem 6.4 (Lee [L2]). M is a simple §-manifold with M(c1) 8-reducible,
M(az) toroidal and Ao, a2) = 2 if and only if (M; a1, ) = either (A,; 1/0, 1/2)
for some n >3, or (T;1/2,1/0) for some T € E.

Let’s move on to the (7,T) entry in Table 6.2. Recall that Ao(7,T) = 8.
This is realized by the figure-8 knot K: we saw in Lecture 3 that K(4) = K(—4) is
toroidal. It turns out that there is another, closely related simple manifold with two
toroidal fillings at distance 8, with slopes 81, f2, say, the figure-8 sister manifold
M{ig g

Theorem 6.5 (Gordon [G1]). M is a simple 3-manifold with M(a1) and M(a2)
toroidal and Aoy, a2) = 8, if and only if (M; a1, 0) = either (Mggs;4,—4) or
(Mf{ig 8; ﬂl’ 62)'
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Here, and in the sequel, to avoid overburdening the notation we write
(M;a1,a2) = (N;cf,0b) o mean that there is a homeomorphism from M to
N taking (@1, a2) to either (¢, ob) or (o, ).

We remark that both the figure-8 exterior and the figure-8 sister manifold are
fillings on one component of the Whitehead link: Mgg g3 & Mwn(1) and M’,;’ig g =
My (—5).

Regarding the cascs (4, A) and (4, T'), the relevant example here is the (—2, 3, 8)
pretzel link L, also known as the Whitehead sister link. It turns out that there are
two fillings on the exterior Mywngis of L, with slopes 71, 72, say, at distance 5, each
of which is both annular and toroidal. (Since there is an involution of Myypsis inter-
changing its boundary components, it doesn’t matter which boundary component
we do the fillings on. With respect to the usual meridian-longitude coordinates on
the trefoil component of L, {71,v2} = {9, 13/2}; see [GW3].)

There is a nice tangle surgery description of this. N amely, Mywhsis is the double
branched cover of the tangle A(~3,2), and the two annular and toroidal fillings
correspond to A(-3,2)(1/0) and A(-3,2)(—2/5). See [GW1] for more details.

Theorem 6.6 (Gordon-Wu [GW1], [GW2|). M is a simple 3-manifold with
M(ou) annular, M(a) either annular or toroidal, and A(cy, o) = 5, if and only
if (M; 01, 02) 2 (Mynsis; 71, 72).-

We now make some remarks on the unknown entries in Table 6.2.

(S,5): Several examples of pairs of reducible fillings at distance 1 on simple
3-manifolds are known [GLi], [EW], [HM], but it is not clear what the gencral
picture should be. The examples of Eudave-Mufioz and Wu [EW] actually have
two torus boundary components; maybe one could at least show that these are the
only examples with more than one boundary component. Hoffman and Matignon
[HM] raise the interesting question as to whether one (or both) reducible fillings
always has an L(2,1), L(3,1) or L(4,1) summand.

(8% L): This is the Berge Conjecture (see Lecture 3).

(S, L): Some examples are known, but again, as in the (S, S) case, the general
picture is not clear.

(L, L): There is an obvious analog of the Berge Conjecture here, but this does
not appear to have been investigated.

(D, D): If M(c1) and M(cy) are &-reducible, oy # a3, then by [W4] 6M —
Tp bas exactly one component. When this component is a torus, then M (aq)
and M(ay) are solid tori (by [Sc]) and the corresponding manifolds M have been
classified, as discussed in Section 3.5. The general case is still not completely

understood; see [W1], [W2].

(D,A): If a 3-manifold whose boundary consists of at least two tori is &-
reducible then it is also reducible. So Theorem 6.2 also gives all simple manifolds
whose boundary consists of tori with a 8-reducible and annular filling at distance 2.
However, Frigerio, Martelli and Petronio [FMP] have constructed, for any g > 2,
simple 3-manifolds M with d-reducible and annular fillings at distance 2 where M
consists of a torus and a surface of genus g.

As noted earlier, the case (5, 5%) probably never occurs, and for (7, L), we
don’t even know what A, is.
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Finally we come to (C). The only cases where the classification has been carried
out for any values of A = A(ay, o) strictly less than Ag(Cy,Ca) are (4, A), (A, T)
and (T, T).

The first two have been done for A = 4. The relevant examples here are
the exteriors Mwy and Miq/3 of the Whitehead link and the rational link K[10/3]
respectively. (We observe that the Whitehead link is the rational link K[8/3].) Each
of these has two fillings at distance 4, both of which are annular and toroidal. With
respect to the usual meridian-longitude coordinates, the filling slopes are 0, —4 (see
Section 4.4) and —2,2 (see [GW3]), respectively. (Since in each case there is an
involution of $° interchanging the components of the link, it doesn’t matter which
boundary component we do the filling on.)

Theorem 6.7 (Gordon-Wu [GW1], [GW2]). M is a simple 3-manifold with
M (1) annular, M(a3) either annular or toroidal, and A(oy, @) = 4, if and only
if (M; a1, 0) = either (Mwn; 0, —4) or (Myg/s; —2,2).

The (T,T) case, where Ag = 8, has been done for all A > 4. For A > 6 this
was done in [G1]. It turns out that for A = 7 or 6, in each case there is exactly
one example. Like the two examples realizing A = 8 (Theorem 6.5), these are also
fillings on one boundary component of Mwy, namely Mwn(—5/2) and Mwn(2)
respectively. Let the corresponding toroidal filling slopes be d1,d5 and €3, 3.

Theorem 6.8 (Gordon [G1]). M is a simple 3-manifold with M{cq) and M(az)
toroidal, where A(ay, o) =7 or 6, if and only if (M; o1, o) = either (Mwn(—5/2);
01,02) or (Mwn(2);€1,€2), respectively.

When A =5 a new phenomenon occurs. The four manifolds in Theorems 6.5
and 6.8 all have boundary a single torus. However, as mentioned above in the
discussion preceding Theorem 6.6, Mwnsis has two toroidal fillings Mwheis(71) and
Mwhsis(7y2) at distance 5. Then, for infinitely many slopes « on the other boundary
component of Mywhsis, Mwhsis(Y) will be simple and Mwhsis(7) (Vi) = Mwhsis(7:) ()
will be toroidal, ¢ = 1,2. So the strict finiteness in Theorems 6.5 and 6.8 no longer
holds. It is shown in [GW3] that the examples Mwneis and Myynsis(7y) together
with six other manifolds with a single torus boundary component, are the only
simple 3-manifolds with two toroidal fillings at distance 5. Similarly, there are
three manifolds with two torus boundary components and four with a single torus
boundary component that account for all toroidal fillings on simple 3-manifolds at
distance 4.

Theorem 6.9 (Gordon-Wu [GW3]).

(1) There ezist (My; 8, al?), 1< <7, where
(i) M; is a simple S-manifold;

(ii) OM; consists of a single torus Ty, 2 < i < 7, and two tori, Ty and
Tl: Zf t = 1}

(iii) a1 ,ag‘) are slopes on Ty with A(af), a7 )) =5,

(iv) Mz(al ) and M,;(ag)) are toroidal;

(v) if M is a simple 3-manifold with M(cy), M(as2) toroidal and
Alan,a3) = 5, then (M; a1, az) & either (M,,,ozg’),az)) for some
i,1<i<7, or (Ml(fy),agl),az )) for some slope v on T1.

(2) There exist (Nz,ﬂgi), S ), 1<4 <7, where
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(i) N; is a simple 3-manifold;

(ii) ON; consists of a single torus Ty; 4 < i < 7, and two tori, Tp and T,
1<i<3;

(iii) ﬁf&), éi) are slopes on Ty with A(ﬂgi) , éi)) =4;

(iv) Ni(ﬁgi)) and N,r(ﬁg) ) are toroidal;

(v) if M is a simple 8-manifold with M (1), M(c2) toroidal and
A(or,02) = 4, then (M; oy, ap) = either (N,-;ﬁgi), éz)) for some
$,1<i<7, or (Ni('y);ﬂgi),ﬁg)) for some i, 1 <i < 3, and for some
slope v on T3.

As mentioned above, the manifold M; in part (1) of Theorem 6.9 is Mwsis-
The manifolds Ny and N, in part (2) are My, and Mio3. (V3 is not the exterior
of a link in §%.)

Theorems 6.5, 6.6, 6.7, 6.8 and 6.9, together with the other S, D, A, T entries
in Table 6.1, show that these four manifolds My, N;, 1 <4 < 3, are the only simple
manifolds with more than one boundary component having a pair of non-simple
fillings at distance > 3.

Corollary 6.10 (Gordon-Wu [GW3]). Let M be a simple 3-manifold with a
torus boundary component Ty and at least one other boundary component, and
let a1, ap be slopes on Ty such that M (c1) and M(as) are not simple. Then either

Afar, 02) <3 or (M a1, 0) 2 (Ml;a§1),a9)) or (Ni;ﬂgi), g)), 1<i<3.

6.2. Seifert fiber spaces

The one class of non-hyperbolic manifolds that is noticeably missing from Tables 6.1
and 6.2 is the class S of Seifert fiber spaces of type 5%(g1,92,93). These have
proved to be the hardest to analyze in this context, and in particular the best
possible bounds Ag(S,C), where C = 8,5, T, {53} or {lens spaces}, have not yet
been established. (See [BCSZ1] and [BCSZ2] for results on Ag (8,8).)

If we restrict to those manifolds in S with finite fundamental group, i.e. where
{91,920, a8} = {2,2,n}, {2,3, 3}, {2,3,4} or {2,3,5}, then considerably more is
known. For example, using F to denote this class, we have the following extension
to Table 6.1:

S|\ T | 8 L | F
Fli11?2} 7?2 |23

TABLE 6.3

The bounds in cases (F,L) and (F, F) were established in [BZ1] and [BZ3]
respectively. In [BCSZ2] the bound of 1 for Ag(F, S) was obtained except in
a special case, which was done in [BGZ]. Finally, regarding Conjecture 3.3, it
is known that Ag(F,8%) < 2, i.c. a surgery on a hyperbolic knot that yields a
manifold with finite fundamental group is either integral or half-integral [BZ1].

6.3. Methods of proof; non-integral toroidal surgeries

We conclude these lectures with a brief description of how the classification the-
orems discussed above are proved, focusing on Theorem 5.3, which describes the
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hyperbolic knots with non-integral toroidal surgeries. In particular this will show
how the theory of tangle fillings enters into the picture.

The method we will describe starts with a hyperbolic 3-manifold M, with
two Dehn fillings M (c1) and M(ay) containing “interesting” surfaces $; and S»
respectively. In practice, “interesting” means that the surface is either essential or a
Heegaard surface (i.e. it splits the manifold into two handlebodies). For example, if
M () is non-simple then by definition it contains an essential sphere, disk, annulus
or torus, while M itself contains no such surface. Moreover, recall from Section 1.1
that if M(c) is non-hyperbolic then it is either non-simple or a closed small SFS.
(Incidentally, one of the reasons that relatively little is known about the SFS’s of
type S%(qg1, g2, g3) is that the smallest interesting surface they contain is a genus 2
Heegaard surface, while manifolds in the classes listed in Table 6.1 all contain
essential or Heegaard surfaces of genus at most 1.)

We have M(«;) = M UV;, where V; is a solid torus whose meridian has slope
a; on the torus boundary component Ty of M, ¢ = 1,2. We may assume that
the surface S; meets V; in n; meridian disks, giving rise to a punctured surface
F; = S; N M in M such that F; NTy consists of n; curves of slope o, i = 1,2. We
may also isotop F; and F5 so that they intersect in a disjoint union of arcs and
simple closed curves, and so that each component of F; NTy meets each component
of F;NTy in A = A(ei, ) points.

To get useful information from this set-up we need some non-triviality condition
on Fj and F», and it turns out that it is enough to have first, that n; > 0,1 =1, 2,
and second, that no arc component of F; N F5 is boundary parallel in F; or .
These conditions in turn are guaranteed by our assumptions on S7 and Ss: if both
S1 and S are essential and cannot be moved into M, then standard topological
arguments enable us to choose F; and F; suitably, while if one or both of the S;’s
is a Heegaard surface, the conditions can be achieved by putting the core of V; in
thin position [Ga2] with respect to S;.

One regards Fy NF; as defining graphs I'; in S, ¢ = 1, 2, where the “fat” vertices
of I'; are the meridian disks S; N V;, and the edges of I'; are the arc components
of F; N F;. Thus there is a natural bijection between the edges of I'; and the
edges of I';. Note that each vertex of I'; has valency An; ({i,7} = {1,2}). The
idea now is to study the combinatorics of such pairs of intersection graphs, using
the faces of I'; to get topological information about the pair (M(ay), S;). This
technique for studying Dehn surgery was introduced by Litherland [Li], and has
been considerably developed over the last 25 years.

The first thing one shows is that, for a pair of surfaces (S1, S2) of a given type,
there is an upper bound on A. (It’s not hard to see that this should be the case:
as A gets larger, so does the valency of the vertices of I';, and so for S; of a fixed
topological type, I'; will have to accumulate more and more topologically paral-
lel edges. For A large enough one can piece together the bigon faces associated
with families of parallel edges in both graphs to construct an essential annulus in
M, contradicting our hypothesis.) One hopes to sufficiently refine the combina-~
torial/topological analysis of the pair of intersection graphs (I';, I'2) to eventually
get the best possible upper bound Ay on A for the given type of pair of surfaces
(S1,S2). Many of the entries in Table 6.1 are obtained in this way.

Once Ay has been established, one then analyzes the situation at the critical
value A = Ay. What tends to happen here is that one of the numbers of punctures
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(vertices) nq or ny has to be small. One then tries to understand the possible pairs
of intersection graphs in enough detail that the possible triples (M; Fy, ;) can be
explicitly determined. This is how the entries in Table 6.2 are obtained. In some
cases the analysis can be extended to determine all possible triples (M; Fy, F,) for
values of A strictly less than Ag.

We illustrate this general approach with a slightly more detailed discussion of
the proof of Theorem 5.3. Let K be a hyperbolic knot in $3, with exterior M.
Let u be the slope on OM of the meridian of X, and suppose v is a slope such
that M(v) is toroidal and A = A(y,u) > 2. So here o; = p, @y = v, and we
take S; to be a Heegaard sphere S C S° = M(u), and S, to be an incompressible
torus T C M(v) = MUV, say. We put K in thin position with respect to S, and
assume that the number of components of 7NV is minimal over all incompressible
tori in M(v). We then get a punctured sphere P = § N M and a punctured torus
F =TNM in M, whose intersection defines graphs I's C S, I'r C T as above.
Write ¢ for nz, the number of boundary components of F.

The first step is to use the main combinatorial result of [GL2], which says that
because the graph I'r does not represent all types, the graph I'g contains a special
kind of subgraph A (a great web in the terminology of [GL3]). One of the important
features of A is that its vertices correspond to points of intersection of X with S of
the same sign. An analysis of the faces of A of order 2 and 3, and their topological
implications for the pair (M (v),T), lead to the conclusion that A = 2 and ¢ = 2
or 4 [GL3]. The case t = 4 is ruled out in [GL4] by a detailed examination of the
faces of A of order < 4.

So now I'r is a graph in the torus T with two vertices, and A = 2. The proof
of Theorem 5.3 is completed as follows; for details see [GL5]. Since the vertices of
A all have same sign, an edge of A corresponds to an edge of I'r that joins the two
vertices. The latter edges belong to at most four parallelism classes on T' , and we
label each edge of A with the class of the corresponding edge of I'r. We say that a
(disk) face f of A is good if the edges of 8f have exactly two labels, and one of these
labels has the property that no two consecutive edges in Jf have that label. Let
M(v) = X1 Ur Xa; thus the faces of I'g lie alternately in X; or X». A topological
argument shows that the existence of a good face that is contained in X; implies
that X; is a SFS of type D?(g1,¢2). On the other hand it is shown that A contains
a good face f; in X; for i = 1 and 2. This is proved by index arguments on the
dual graph A* of A with various edge orientations determined by the labeling of
the edges of A. We conclude that M (v) = X1 Up X, is the union of two SFS’s of
type D?(g1,¢z) along their boundary. (See Figure 6.7 for a schematic depiction.)
Moreover, it turns out that the Seifert fibers of X1 and X, intersect once on 7.

abRaD

(e exceptional fibers)

FIGURE 6.7

It follows that if we remove from M (v) regular neighborhoods of the exceptional
fibers in X; and X, we get the exterior of the “doubled” Hopf link Ly shown in
Figure 6.8.
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Let Ko C M(v) be the core of the filling solid torus V. A detailed analysis
of the situation, using the good faces f; and f;, shows that in the complement of
the four exceptional fibers, Ky appears as in Figure 6.9. Let L be the 5-component

FIGURE 6.8 FIGURE 6.9

link Ly U Ky. Then M can be obtained by Delin filling on My, the exterior of
L, along the four boundary components corresponding to the 4-component sublink
Lg. It turns out that M, is homeomorphic to the exterior Ms¢, of the minimally
twisted 5-chain link discussed in Lecture 5. Recall that the quotient of Msc, under
the strong inversion on 5CL is the pentangle P; see Figure 5.14. Hence M is the
double branched cover of some tangle 7 of the form P(a, 8,7, 6, %), where «, 3,7, d
correspond to the four exceptional fibers.

We now note that (i) some filling on 7 is the unknot, namely that corre-
sponding to the filling M(u) = 83, and (ii) for x € {o,B,7,0}, Alx,A) > 2
where A is the longitude of the corresponding component of Lg, since A(x,A)
is the multiplicity of the corresponding exceptional fiber. Using these observa-
tions, together with known facts about the distances between various exceptional
Deln fillings, we show that 1/2 € {¢,8,7,6}. By symmetry, we may assume
& = 1/2. Since P(*,*,%,1/2,%) = Q (as unmarked tangles), we conclude that
T = 9o, 3,v,x) = B(c/,B',7), where o etc. are the slopes corresponding to
o ete. under the change of marking. Finally, one identifies the filling slopes on
B(c!, 5,4’ that give the unknot (corresponding to M(u) 2 S3) and the union
of two Montesinos tangles (corresponding to M(v) = X; Ur X3): with respect to
the marking in Figure 5.2 they turn out to be —1/2 and 1/0 respectively. Thus
B/, B',v)(~1/2) is the unknot, and so B(¢/,5’,7') is an Eudave-Mufioz tangle,
K is an Eudave-Mufioz knot F(c/,,v'), and the toroidal surgery on K is the
half-integral surgery described in Section 5.1.
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