"HOMEWORK"

The following facts will be needed for the exam.

(1) Let U and V be open subsets of \mathbb{R}^m and \mathbb{R}^k , respectively. Let $\varphi: U \to V$ be a smooth map. Let α and β be two differential forms defined on V. Show that

$$\varphi^*(\alpha \wedge \beta) = (\varphi^*\alpha) \wedge (\varphi^*\beta).$$

(2) Let M be a manifold in U. If α_1 , α_2 , β_1 , and β_2 are differential forms such that

$$\alpha_1\Big|_{(T_xM)^k} = \alpha_2\Big|_{(T_xM)^k}$$
 and $\beta_1\Big|_{(T_xM)^m} = \beta_2\Big|_{(T_xM)^m}$

for all x in M. Show that $\alpha_1 \wedge \beta_1 \Big|_{(T_x M)^{k+m}} = \alpha_2 \wedge \beta_2 \Big|_{(T_x M)^{k+m}}$ for all x in M.

- (3) Let α and β be a k-form and m-form, respectively, on a manifold M. Show that $\alpha \wedge \beta = (-1)^{km} \beta \wedge \alpha$ and $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge d\beta$.
- (4) Let α , β , and γ be differential forms on M. Show that $(\alpha \land \beta) \land \gamma = \alpha \land (\beta \land \gamma)$.
- (5) Let $f: M \to N$ be a smooth map. Show that $d(f^*\alpha) = f^*d\alpha$ and $f^*(\alpha \land \beta) = f^*\alpha \land f^*\beta$.
- (6) Definition of integral on manifolds and Stokes' theorem.