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Background of the course

1 L2 Theory

Consider the Dirichlet problem on the 2nd order linear inhomogeneous elliptic PDE

−Dj(a
ijDiu) + biDiu+ cu = f +Dif

i in Ω (1)

u = g on ∂Ω, (2)

with all coefficient functions in L∞(Ω). L2 theory is to study

• Existence of weak solutions in H1(Ω). The proof is based on the Lax-Milgram
Theorem in the functional analysis. The result roughly says that there exists a
weak solution u ∈ H1(Ω) if

f +Dif
i ∈ H−1(Ω), g ∈ H1(Ω). (3)

• L∞ estimate on weak solutions. It can be based on the DeGiorgi or Moser iteration.
For instance, one may show

sup
Ω
|u| ≤ sup

∂Ω
u+ + C(‖f‖

L
np
n+p (Ω)

+ ‖f i‖Lp(Ω))|Ω|
1
n
− 1
p . (4)

• Regularity. This is to show that, if data are more regular, for instance, aij ∈ W 1,∞,
g ∈ H2, then solutions are more regular correspondingly, e.g. u ∈ H2(Ω). The proof
usually includes two steps:

– Interior regularity: Estimate u over any compact subset of Ω.

– Boundary regularity: Estimate u near any boundary point.

Combining both gives the global regularity estimate in H2(Ω).

2 Schauder Theory

The topic is concerned with the existence and regularity of classical solutions for either
linear or nonlinear (for instance, quasilinear) elliptic PDEs.



• The technique of Schauder Theory can be understood in terms of the a priori C2,α

estimate for the Poisson equation

−∆u = f in Ω = Rn. (5)

That is to estimate norms

sup
Ω
|u|, sup

Ω
|Du|, sup

Ω
|D2u|, [D2u]α,Ω, (6)

in terms of given data source term f ∈ C∞, with compact support, for instance,
step by step. The key step is Hölder estimate on D2u. Extensions of the Poisson
equation can be made to

– Consider the a little general form

−aijDiju = f. (7)

– Consider the half space domain

Ω = Rn
+. (8)

• In case Ω is a bounded domain in Rn, consider

−aijDiju+ biDiu+ cu = f in Ω (9)

u = ϕ on ∂Ω, (10)

where all data are regular, for instance, at least Cα. The Schauder estimates still
can be carried out in the way that

– Interior estimate: It is to bound ‖u‖2,α;Ω′ for any compact subset Ω′.

– Global estimate: It is to combine the interior estimate with the boundary
estimate to obtain

‖u‖2,α;Ω ≤ C(‖f‖α;Ω + ‖ϕ‖2,α;Ω + ‖u‖0;Ω). (11)

Note that ‖u‖0;Ω = supΩ |u| can be estimated by maximum principle of classical
solutions.

• Existence of classical solutions follows by the following steps:

– Approximate data smoothly.

– Show the existence of weak solutions basing on L2 theory.

– Show the existence of classical solutions basing on the compactness argument
Ascoli-Arzela Theorem for approximate solutions with uniform C2,α bounds.
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3 Lp Theory

For instance, consider

−aijDiju+ biDiu+ cu = f in Ω (12)

u = 0 on ∂Ω. (13)

The theory is to find strong solutions (exists uniquely) in W 2,p(Ω) for 1 < p < ∞. In
order for such Lp theory to be applicable, besides the standard assumptions on ellipticity
as well as boundedness of coefficients aij, bi and c (c ≥ 0), an essential condition is

aij ∈ C(Ω), (14)

i.e. the coefficients of second order terms must be uniformly continuous on Ω. The a priori
estimate is to obtain

‖u‖W 1,p(Ω) ≤
C

λ
‖f‖Lp(Ω), (15)

where λ > 0 is the lower bound of (aij), and C particularly depends on the continuity
norms of aij. An understanding of the necessity of the condition aij ∈ C(Ω) for the whole
theory working well is that one may compare the equation to the Poisson equation in the
way

−aij(x0)Diju = f, (16)

for an arbitrarily fixed point x0 in Ω. Therefore, Lp estimates on the Poisson equation is
a key. For that, analytical tools include Marcinkiewicz’s Interpolation Theorem as well as
Decomposition Lemma associated with a nonnegative L1 function on Rn due to Calderón
and Zygmund. Note that the procedures for W 2,p estimates are quite similar to those for
the Schauder estimates.

4 How DeGiorge-Nash-Moser meet Hölder

In both Schauder Theory and Lp Theory discussed before, it is required that aij are
continuous on Ω. Otherwise, two theories do not work. This makes the linear theory of
elliptic equations not directly applicable for the nonlinear equations. The breakthrough
has been made by

• De Giorgi (1957): He obtained the Höder estimates for

Lu = f in Ω (17)

for a divergence-form elliptic operator, with

aij ∈ L∞(Ω). (18)
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• Nash (1958): He obtained the similar Höder estimates for the parabolic equation

ut + Lu = f (19)

with aij ∈ L∞(Ω) only.

• Moser (1960): He gave a new proof of Höder estimates by DeGiorgi-Nash, and
developed the Harnack inequalities in the same framework.

This becomes a classical approach by DeGiorgi-Nash-Moser for regularity of weak solu-
tions to elliptic PDEs with L∞ coefficients, and makes it possible to apply the linear
theory to the quasilinear theory.

The main goal of DeGiorgi-Nash-Moser estimates on the elliptic equation with L∞ co-
efficients is to derive Cα estimates from L∞ bounds. For instance, the procedure includes

• Interior estimates:

sup
BθR

u ≤ C(
1

|BR|

ˆ
BR

(u+)p dx)
1
p (20)

for any 1 < p < 1, 0 < θ < 1. It is a place where DeGiorgi-Nash iteration or Moser
iteration is useful.

• Combine the interior estimate with the boundary estimates to show u ∈ Cα(Ω).

5 Second Order Quasilinear Elliptic PDEs

Consider

−aij(x, u,Du)Diju+ b(x, u,Du) = f in Ω (21)

u = 0 on ∂Ω, (22)

where Ω is a bounded domain, and all data aij, b, ϕ are regular. Note that the linear
theory cannot be directly applied due to the nonlinearities in the equation. The new
theory for the above quasilinear elliptic PDE was pioneered by Leray and Schauder in
the 1930s. The key part of the Leray-Schauder Existence Theory is the combination
of the argument by Leray-Schauder Fixed Point Theorem and the a priori estimates.
The technique of DeGiorgi-Nash-Moser indeed makes it possible to obtain the necessary
estimates on solutions in the nonlinear as in the linear case such as the maximum principle,
so the fixed point argument can be adopted to lead to a solution.

Formally, the existence theory due to Leray-Schauder can be carried out in the follow-
ing way. To study the original Dirichlet problem, we consider a family of related problems
of the same type in terms of a parameter t ∈ [0, 1]

Pt(u) = f in Ω (23)

u = 0 on ∂Ω. (24)
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Here t = 1 reduces to the original equation P1(u) = 0 and the problem in case t = 0 is
usually a solvable linear elliptic PDE, for instance, we may take P0(u) = ∆u and thus

Pt(u) = tP1(u) + (1− t)∆u, 0 ≤ t ≤ 1. (25)

Define

S = {0 ≤ t ≤ 1 : the problem above is solvable}. (26)

It is clear to see S 6= ∅. The a priori C2,α estimates (Schauder estimates) can be used to
show that S is both open and closed, and then S = [0, 1], meaning that the original prob-
lem is solvable. The existence theorem works obviously for the inhomogeneous boundary
data u|∂Ω = ϕ ∈ C2,α(∂Ω) and further for ϕ ∈ C0(∂Ω) by the approximation argument.
In sum, the Leray-Schauder Existence Theorem says that the problem P1(u) = f in Ω,
u = ϕ on ∂Ω, where f ∈ Cα and ϕ ∈ C0, has a unique solution u ∈ C2,α(Ω).

As mentioned, one of key parts in the Leray-Schauder Theory is C2,α estimate, par-
ticularly C1,α estimate due to the quasilinear form. We include the following general
strategy for obtaining C1,α bounds:

• Estimate supΩ |u| in terms of all data f and/or ϕ.

• Estimate supΩ |Du| in terms of sup∂Ω |Du|.

• Estimate sup∂Ω |Du| in terms of supΩ |u|. The estimate is based on a barrier con-
struction, and thus geometric properties of the boundary ∂Ω are necessarily made
more precise.

• Estimate [Du]α,Ω in terms of obtained bounds. It is a place how DeGiorge-Nash-
Moser meet Hölder.

We note that the above procedure can be made in the relatively easier way when it is
of the divergence form than in the non-divergence form. In the non-divergence form, the
proof is due to

• Krylov-Safonov (1980): a first proof.

• Trudinger (later): a simplified proof.

Here in both proofs, the Alexandroff Maximum Principle is a key.

6 Fully Nonlinear Elliptic PDEs

They take the form of

F (x, u,Du,D2u) = 0. (27)

Here are a few examples.
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• Monge-Ampère equation:
det (D2u) = f(x) > 0. (28)

• Gauss curvature equation:

det(D2u) = K(x)(1 + |Du|2)
n+2
2 . (29)

• Bellman equation arising from control theory:

sup
k

(Lku− fk) = 0, (30)

where Lk are linear elliptic operators.

The study of the fully nonlinear elliptic PDEs needs to use the technique in nonlinear
analysis, for instance, Implicit Existence Theorem. Here, we may refer to the monograph
by Caffarelli and Cabré.
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