
Chapter 7

Fubini’s Theorem

The product measure of two outer measures which is again an outer measure is defined
in Section 1. In Section 2 Fubini’s theorem which relates the integral with respect to the
product measure to the iterated integrals with respect to its factor measures. Section
3, 4 and 5 contain applications of Fubini’s theorem to three different topics, namely,
Rademarcher’s theorem on the differentiability of Lipschitz continuous functions, layer
cake representation and the convolution of functions.

7.1 The Product Measure

Let µ and ν be outer measures on the non-empty sets X and Y respectively. We define
the product measure of µ and ν on the product set X × Y as, for E ⊂ X × Y ,

(µ× ν)(E)

= inf

{
∞∑
j=1

µ(Aj)ν(Bj) : E ⊂
∞⋃
j=1

Aj ×Bj, Aj µ-measurable, Bj ν-measurable.

}
.

It is understood that φ×φ = φ so that (µ× ν)(φ) = 0. It is also straightforward to check

(µ× ν)

(
∞⋃
j=1

Ej

)
≤

∞∑
j=1

(µ× ν)(Ej), ∀Ej ⊂ X × Y, j ≥ 1.

Hence µ× ν is an outer measure on X × Y .

In the following we study how to evaluate µ × ν in terms of µ and ν. Introduce the
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following notations:

P0 =
{
A×B : A µ-measurable and B ν-measurable

}
,

P1 =
{
R : R =

n⋃
j=1

Aj ×Bj, 1 ≤ n ≤ ∞, Aj ×Bj ∈ P0

}
, and

P2 =
{
R : R =

n⋂
j=1

Rj, 1 ≤ n ≤ ∞, Rj ∈ P1

}
.

Elements in P0 are called measurable rectangles. Clearly P0 ⊂ P1 ⊂ P2. We also set

F =

{
R : For ν-a.e. y, x 7→ χR(x, y) is µ-measurable and

y 7→
∫
χR(x, y) dµ(x) is ν-measurable.

}
Note that the map

y 7→
∫
χR(x, y) dµ(x)

is defined almost everywhere in Y . Since ν is a complete measure and so every null set is
measurable, it can be extended to be a measurable function in Y . Moreover, the integral∫

Y

∫
X

χR(x, y)dµ(x)ν(y)

is independent of the extension.

For R ∈ F , we can define

ρ(R) =

∫
Y

(∫
X

χR(x, y) dµ(x)

)
dν(y).

We will show in a series of lemmas that P0,P1, and P2 ⊂ F and they are µ×ν-measurable.
Moreover,

(µ× ν)(R) = ρ(R),

for R ∈ P1 or R ∈ P2 provided in the latter R satisfies ρ(R) <∞.

Lemma 7.1. P0 ⊂ F and

ρ(A×B) = µ(A)ν(B), A×B ∈ P0.

Proof. The key observation is

χA×B(x, y) = χA(x)χB(y), ∀(x, y) ∈ X × Y.
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For y ∈ B,
x 7→ χA×B(x, y) = χA(x) is µ-measurable.

For y /∈ B,
x 7→ χA×B(x, y) ≡ 0 is µ-measurable.

Next,

y 7→
∫
X

χA×B(x, y) dµ(x) = µ(A)χB(y) is ν-measurable.

We have shown that P0 ⊂ F . We also have

ρ(A×B) =

∫
Y

(∫
X

χA×B dµ

)
dν

=

∫
Y

(∫
X

χA(x)χB(y) dµ(x)

)
dν(y)

= µ(A)ν(B).

Lemma 7.2. P1 ⊂ F and

ρ(R) =
∞∑
1

µ(Aj)ν(Bj), whenever R =
◦⋃
Aj ×Bj, Aj ×Bj ∈ P0.

We have put a circle on top of the union sign to indicate that this is a union of pairwise
disjoint sets.

The following fact will be used several times in the subsequent development: Each
R ∈ P1 can be expressed as a countable disjoint union of measurable rectangles. Indeed,
it follows from the observation

A2 ×B2 \ A1 ×B1 = A2 × (B2 \B1)
◦⋃

(A2 \ A1)× (B2 ∩B1).

Proof. Let R ∈ P1. Then

R =
◦⋃
j=1

Aj ×Bj, Aj ×Bj ∈ P0.

Then

χR =
∞∑
j=1

χAj×Bj .

Let

ϕn =
n∑
j=1

χAj×Bj .
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From Lemma 7.1, each ϕn ∈ F . As χR(x, y) = lim
n→∞

ϕn(x, y). For ν a.e. y, x 7→ χR(x, y)

is µ-measurable. By monotone convergence theorem,∫
X

χR(x, y) dµ = lim
n→∞

∫
X

ϕn(x, y) dµ.

As y 7→
∫
ϕn(x, y) dµ(x) is ν-measurable, y 7→

∫
χR(x, y) dµ(x) is also ν-measurable. We

have shown that R ∈ F .

Moreover,

ρ(R) =

∫
Y

(∫
X

χR(x, y) dµ(x)

)
dν(y)

=

∫
Y

(∫
X

lim
n→∞

ϕn dµ(x)

)
dν(y)

=

∫
Y

(
lim
n→∞

∫
X

ϕn dµ(x)

)
dν(y) (Monotone convergence theorem)

=

∫
Y

(
∞∑
j=1

µ(Aj)χBj(y)

)
dν(y)

=
∞∑
j=1

∫
Y

µ(Aj)χBj(y) dν(y) (Monotone convergence theorem)

=
∞∑
j=1

µ(Aj)ν(Bj).

Lemma 7.3. For E ⊂ X × Y ,

(µ× ν)(E) = inf {ρ(R) : E ⊂ R, R ∈ P1} .

In particular, for A×B ∈ P0,

(µ× ν)(A×B) = µ(A)ν(B) = ρ(A×B).

Proof. Let R ∈ P1, E ⊂ R and express R =
◦⋃
Aj × Bj where Aj × Bj ∈ P0. Using the

definition of µ× ν,

(µ× ν)(E) ≤
∞∑
j=1

µ(Aj)ν(Bj)

= ρ(R). (Lemma 7.2)
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Taking infimum over all these R gives

(µ× ν)(E) ≤ inf {ρ(R) : E ⊂ R, R ∈ P1} .

On the other hand, for each n, there is some Rn ∈ P1, E ⊂ Rn, such that Rn =
◦⋃
Anj×Bn

j ,

and

(µ× ν)(E) +
1

n
≥

∞∑
j=1

µ(Anj )ν(Bn
j )

= ρ(Rn)

≥ inf {ρ(R) : E ⊂ R, R ∈ P1} ,

and the inequality
(µ× ν)(E) ≥ inf {ρ(R) : E ⊂ R, R ∈ P1}

follows after letting n→∞.

Now, for A×B ∈ P0 and any R ∈ P1, A×B ⊂ R,

(µ× ν)(A×B) ≤ µ(A)ν(B)

= ρ(A×B)(Lemma 7.1)

≤ ρ(R), (since χA×B ≤ χR)

so ρ(A×B) realizes the infimum of ρ over all R ∈ P1, A×B ⊂ R.

Lemma 7.4. P1 and P2 consist of µ× ν-measurable sets. For R ∈ P1,

(µ× ν)(R) =
∑
j

µ(Aj)ν(Bj) = ρ(R).

Proof. We claim that A × B ∈ P0 is µ × ν-measurable. According to the definition, we
need to prove

(µ× ν)(T ) ≥ (µ× ν)(T ∩ A×B) + (µ× ν)(T \ A×B), ∀T ⊂ X × Y.

To see this, for every R ∈ P1 with T ⊂ R, we have

(µ× ν)(T ∩ A×B) + (µ× ν)(T \ A×B)

≤ (µ× ν)(R ∩ A×B) + (µ× ν)(R \ A×B)

≤ ρ(R ∩ A×B) + ρ(R \ A×B) (By Lemma 7.3 and R ∩ A×B, R \ A×B ∈ P1)

= ρ(R) (Since χR∩A×B + χR\A×B = χR)

Taking infimum over all these R yields the desired result.

As all µ×ν-measurable sets form a σ-algebra, P0, P1 and P2 consist of µ×ν-measurable
sets.
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Write R =
◦⋃
Aj ×Bj, Aj ×Bj ∈ P0. We have

(µ× ν)(R)

=
∑
j

(µ× ν)(Aj ×Bj) (R is µ× ν-measurable)

=
∑
j

ρ(Aj ×Bj) (Lemma 7.3)

= ρ(R). (Lemma 7.2)

Lemma 7.5. Let R ∈ P2. Suppose that R =
∞⋂
j=1

Rj, Rj ∈ P1, and ρ(R1) < ∞. Then

R ∈ F and
(µ× ν)(R) = ρ(R).

Proof. For each n ≥ 1, let Rn =
n⋂
j=1

Rj ∈ P1 (check!), so Rn ∈ F . That means, ν-a.e. y,

x 7→ χRn(x, y) is µ-measurable. Using

χR(x, y) = lim
n→∞

χRn(x, y), ∀(x, y),

x 7→ χR(x, y) is µ-measurable, for ν-a.e. y.

Next, χR1−χRn ↑ χR1−χR as n→∞. By Lebsegue’s monotone convergence theorem,
for each fixed y, ∫

(χR1 − χRn) dµ→
∫

(χR1 − χR) dµ as n→∞.

So,

y 7→
∫
X

(χR1 − χR) dµ(x) is ν-measurable.

Using ∫
χR dµ =

∫
χR1dµ−

∫
(χR1 − χR) dµ,

y 7→
∫
χR(x, y) dµ(x) is ν-measurable.

Note that we have used the fact that ρ(R1) <∞ and hence
∫
χR1dµ is finite and measur-

able for ν-a.e.y. We have shown that P2 ⊂ F .

By repeatedly using Lebsegue’s monotone convergence theorem,∫ (∫
(χR1 − χRn) dµ

)
dν →

∫ (∫
(χR1 − χR) dµ

)
dν,
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that is,
ρ(R1)− ρ(Rn)→ ρ(R1)− ρ(R),

or
ρ(Rn)→ ρ(R) as n→∞.

On the other hand, by applying monotone convergence theorem to µ× ν,∫
X×Y

(χR1 − χRn) d(µ× ν)→
∫
X×Y

(χR1 − χR) d(µ× ν),

that is,
(µ× ν)(R1)− (µ× ν)(Rn)→ (µ× ν)(R1)− (µ× ν)(R),

or
(µ× ν)(Rn)→ (µ× ν)(R). (Use (µ× ν)(R1) ≤ ρ(R1) <∞).

From ρ(Rn) = (µ× ν)(Rn), we get ρ(R) = (µ× ν)(R).

Our last lemma is concerned with a regularity property of the product measure. It
shows every set can be approximated from outside by a measurable set in any product
measure.

Lemma 7.6. For E ⊂ X × Y , ∃R ∈ P2, E ⊂ R such that

(µ× ν)(E) = (µ× ν)(R).

Proof. If (µ × ν)(E) = ∞, take R = X × Y . If (µ × ν)(E) < ∞, for each n ≥ 1, there
exists an Rn ∈ P1 such that

(µ× ν)(E) +
1

n
≥ ρ(Rn) (Lemma 7.3)

≥ ρ(R)

if we take R =
∞⋂
n=1

Rn ∈ P2. Letting n→∞, µ× ν(E) ≥ ρ(R) = µ× ν(R), done.

We point out some properties of the product measure.

• The product space (X × Y ) × Z can be identified with X × (Y × Z) and written
as X × Y × Z. For measure µ, ν and λ on X, Y and Z respectively, the product
measures (µ×ν)×λ and µ× (ν×λ) are well-defined on X×Y ×Z. It is an exercise
to show that these two measures coincides and thus we can write it as µ × ν × λ.
This is the distributional law for the measure product. The same property extends
to the product of finitely many product as well.

• The product measure of Borel measures is again Borel. The product measure of
Radon measures is again Radon.
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• We have Ln−m × Lm = Ln for 0 < m < n. In [EG] the n-dimensional Lebsegue
measure is defined to be the nth times product L1×· · ·×L1. It is again an exercise
to show that this definition coincides with our definition in Chapter 3.

7.2 Fubini’s Theorem

Theorem 7.7 (Fubini’s Theorem). Let µ and ν be σ-finite outer measures on X and
Y respectively.

(a) For any non-negative µ× ν-measurable function f ,

x 7→ f(x, y) is µ-measurable for ν-a.e.y, and

y 7→
∫
X

f(x, y) dµ(x) is ν-measurable.

Moreover, ∫
X×Y

f(x, y) d(µ× ν)(x, y) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).

(b) (a) holds for f ∈ L1(µ× ν).

Part (b) was first formulated by Tonelli and is also called Tonelli’s theorem.

Before the proof of this theorem, it is worth to look at how close we are from this goal.
Taking f = χR where R is measurable, the integral formula in Fubini’s theorem becomes

(µ× ν)(R) = ρ(R).

We have shown that this formula is valid for R ∈ P2 assuming (µ × ν)(X × Y ) is finite.
We have inches to go, namely, to improve it to all measurable R. In this regard we need
Lemma 7.6. In the following we take µ and ν to be finite.

Proof of Fubini’s Theorem. (a) Let R be µ × ν-measurable. We claim that R ∈ F first.
Indeed, by Lemma 7.6, there exists an R1 ∈ P2, R ⊂ R1, such that (µ × ν)(R) =
(µ× ν)(R1). As R is measurable,

(µ× ν)(R1 \R) = (µ× ν)(R1)− (µ× ν)(R) = 0.

Fix R2 ∈ P2, R1 \R ⊂ R2, such that (µ× ν)(R2) = (µ× ν)(R1 \R) = 0. By Lemma 7.5,

0 = (µ× ν)(R2)

= ρ(R2)

=

∫ (∫
χR2 dµ

)
dν.
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Thus, for ν-a.e. y, ∫
χR2 dµ = 0,

so ∫
χR1\R dµ = 0,

too. It means the set {x : (x, y) ∈ R1 \R} is of µ-measure zero for ν-a.e. y. As every set
of measure zero is measurable here, χR1\R is µ-measurable for ν-a.e. y. So

χR = χR1 − χR1\R

is µ-measurable for all ν-a.e. y. Next,∫
χR dµ =

∫
χR1 dµ−

∫
χR1\R dµ

=

∫
χR1 dµ.

R1 ∈ P2 ⊂ F means

y 7→
∫
χR1 dµ

is ν-measurable, so is

y 7→
∫
χR dµ.

We shown that R ∈ F for every µ× ν-measurable R.

Next, ∫
χR d(µ× ν) = (µ× ν)(R)

= (µ× ν)(R1) (Lemma 7.6)

= ρ(R1) (Lemma 7.5)

=

∫ (∫
χR1 dµ

)
dν

=

∫ (∫
χR dµ

)
dν,

or, if you like,

(µ× ν)(R) = ρ(R) , R measurable .

Starting from this formula, we can pass f for simple functions and then non-negative
measurable to obtain the integral formula in (a).

(b) When f ∈ L1(µ×ν), apply (a) to f+ and f− separately to get the desired result.
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The theorem is usually used in this way. Given a µ × ν-measurable function f , we
apply (a) to |f | and see if∫

X×Y
|f | d(µ× ν) =

∫
Y

(∫
X

|f | dµ
)
dν.

If the right hand side is finite, then |f | ∈ L1(µ× ν) and we can now use (b) to conclude
that ∫

X×Y
f d(µ× ν) =

∫
Y

(∫
X

f dµ

)
dν,

so the double integral can be evaluated by using an iterated integral.

We discuss an example to illustrate the role of σ-finiteness in Fubini’s theorem.

Example 7.1. Let L1 and c, the counting measure, be defined on R and consider the
product measure L1 × c on R2 = R1 × R1. Consider f = χD where D = {(x, y) : x = y}.
We claim that f is L1 × c-measurable, or, D is L1 × c-measurable. For k ≥ 1, the sets

Ak =
⋃
j∈Z

[
j/k, (j+1)/k

]
×
[
j/k, (j+1)/k

]
, are countable unions of measurable rectangles

so are L1 × c-measurable. As D =
∞⋂
k=1

Ak, D is also L1 × c-measurable.

Suppose Fubini’s theorem holds for f . We have∫
R

(∫
R
f(x, y) dL1(x)

)
dc(y) =

∫
R2

f d(L1 × c)

=

∫
R

(∫
R
f(x, y) dc(y)

)
dL1(x).

For a fixed y, x 7→ f(x, y) = χ{y}(x) is L1-measurable and∫
R
f(x, y) dL1(x) =

∫
R
χ{y}(x) dL1(x) = 0.

Thus ∫
R

(∫
R
f(x, y) dL1(x)

)
dc(y) = 0.

On the other hand, for any fixed x,

y 7→ f(x, y) = χ{x}(y)

is c-measurable and ∫
R
f(x, y) dc(y) =

∫
R
χ{x}(y) dc(y)

= c {x} (definition of integral)

= 1,
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which implies ∫
R

(∫
R
f(x, y) dc(y)

)
dL1(x) =∞,

contradiction holds!

In this example, all assumptions Theorem 7.7(a) are satisfied except c is not σ-finite.

7.3 Rademacher’s Theorem

Recall that a function f defined on a set E ⊂ Rn is Lipschitz continuous in E if there
exists some M > 0 such that

|f(x)− f(y)| ≤M |x− y| , ∀x, y ∈ E.

A function f defined in an open set G ⊂ Rn is called differentiable at x ∈ G if there exists
a linear map L : Rn → R such that

lim
|h|→0

|f(x+ h)− f(x)− Lh|
|h|

= 0.

It is well-known that when f is differentiable at x, the partial derivatives
∂f

∂xj
(x), j =

1, . . . , n, must exist and Lh =
n∑
j=1

hj
∂f

∂xj
(x).

Theorem 7.8 (Rademacher’s Theorem). Every locally Lipschitz continuous function
in Rn must be differentiable almost everywhere.

A function is locally Lipschitz continuous in some E if it is Lipschitz continuous in
every compact subset of E. Since differentiability is a local property, in the following
proof we may assume that f is Lipschitz continuous, that is,

|f(x)− f(y)| ≤M |x− y| , ∀x, y ∈ Rn.

Proof. We claim: For each direction v, there exists a set Sv ⊂ Rn, Ln(Sv) = 0, such that

Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
, ∀x ∈ Rn \ Sv.

Indeed, let

Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
, and

Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
.
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Then Dvf and Dvf are measurable and bounded by M . Let Sv =
{
x ∈ Rn : Dvf < Dvf

}
.

For any line L parallel to v, we claim that Sv ∩ L has L1-measure zero for each such L.
WLOG, let v = e1 = (1, 0, . . . , 0) and ϕ(t) = f(x+ te1) = f(x1 + t, x′). For fixed (x1, x

′),
t 7→ (x1 + t, x′) is the line L, ϕ is Lipschitz continuous and hence absolutely continuous
on R, hence is differentiable a.e. t, that is,

Dvf(x+ te1) = Dvf(x+ te1), a.e. t.

We conclude that for a.e. x on L, Dvf(x) = Dvf(x) = Dvf(x). Using Fubini’s theorem

Ln(Sv) =

∫
Rn−1

(∫
R
χSv(x, x

′) dL1(x)

)
dLn−1(x′) = 0.

Next, we introduce notations Djf = Dejf, j = 1, . . . , n. Let

Tv =

{
x ∈ Rn : Dvf(x), Djf(x), j = 1, . . . , n, exist and Dvf(x) =

n∑
j=1

vjDjf(x).

}

Claim: Ln(Rn \ Tv) = 0. Indeed, let ϕ ∈ C1
c (Rn). We have∫

f(x+ tv)− f(x)

t
ϕ(x) dLn(x) = −

∫
f(x)

ϕ(x− tv)− ϕ(x)

t
dLn(x).

By Lebsegue’s dominated convergence theorem,∫
Dvf(x)ϕ(x) dLn(x) = −

∫
f(x)Dvϕ(x) dLn(x), ∀v, |v| = 1.

Taking v = ej,∫
Djf(x)ϕ(x) dLn(x) = −

∫
f(x)

∂ϕ

∂xj
(x) dLn(x), j = 1, . . . , n.

We have, for given v = (v1, . . . , vn),∫
Dvf(x)ϕ(x) dLn(x) = −

∫
f(x)Dvϕ(x) dLn(x)

= −
∫
f(x)

∑
j

vj
∂ϕ

∂xj
dLn(x)

= −
∑
j

vj

∫
f(x)

∂ϕ

∂xj
dLn(x)

=
∑
j

vj

∫
Djf(x)ϕ(x) dLn(x)

=

∫ (∑
j

vjDjf(x)

)
ϕ(x) dLn(x), ∀ϕ ∈ C1

c (Rn),
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which implies that Dvf(x) =
n∑
j=1

vjDjf(x) almost everywhere in the set Rn \ (Sv ∪ Se1 ∪

· · · ∪ Sen). Hence Ln(Rn \ Tv) = 0 for every direction v.

For v, |v| = 1, x ∈ Rn, t 6= 0 ∈ R, set

Q(x, v, t) =
f(x+ tv)− f(x)

t
−

n∑
j=1

vjDjf(x).

We are going to show that for every ε > 0, there corresponds some δ > 0, such that

|Q(x, v, t)| < ε, a.e. x, ∀v, |v| = 1, |t| < δ. (7.1)

We first fix a countable, dense set {vk}∞1 in Sn−1. Let

T =
∞⋂
k=1

Tvk .

Then Ln(Rn \ T ) ≤
∞∑
k=1

Ln(Rn \ Tvk) = 0. We claim (7.1) holds for all x ∈ T .

Given ε > 0, we can find finitely many points v1, . . . , vm on Sn−1 such that for each
v, there exists one of these points, say, vk, satisfying

∣∣v − vk∣∣ < ε/2M(1 +
√
n). We have∣∣Q(x, v, t)−Q(x, vk, t)

∣∣
=

∣∣∣∣∣f(x+ tv)− f(x+ tvk)

t
−

n∑
j=1

(vj − vkj )Djf(x)

∣∣∣∣∣
≤M

∣∣v − vk∣∣+
√
nM

∣∣v − vk∣∣
= M(1 +

√
n)
∣∣v − vk∣∣

<
ε

2
.

(7.2)

For x ∈ T , since Q(x, vk, t)→ 0 as t→ 0 for k = 1, . . . ,m, we can find a δ such that∣∣Q(x, vk, t)
∣∣ < ε

2
, ∀t, |t| < δ. (7.3)

Putting (7.2) and (7.3) together, for every x ∈ T and ε > 0, there is a δ such that

|Q(x, v, t)| ≤
∣∣Q(x, v, t)−Q(x, vk, t)

∣∣+
∣∣Q(x, vk, t)

∣∣
<
ε

2
+
ε

2
= ε, ∀t, |t| < δ, and ∀v, |v| = 1.
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Finally, for x ∈ T , we set v = (y − x)/|y − x| for y 6= x, and t = |y − x|. By (8.1), for
every ε, there is a δ such that

ε >
∣∣∣f(y)− f(x)

|y − x|
−

n∑
j=1

(yj − xj)
|y − x|

Djf(x)
∣∣∣

=
1

|y − x|

∣∣∣f(u)− f(x)−
n∑
j=1

(yj − xj)Djf(x)
∣∣∣,

for all y, |y − x| < δ. The proof of Rademarcher’s theorem is completed.

7.4 The Layer Cake Representation

We begin with a lemma.

Lemma 7.9. Let f be a non-negative, Lebsegue measurable function in Rn. The set

A = {(x, t) ∈ Rn × [0,∞) : f(x) ≥ t ≥ 0} ,

is Ln+1-measurable.

Proof. When f = χE for some measurable E,

A = E × [0, 1] ∪ (Rn \ E)× {0}

is measurable. Next, when f =
∑

j αjχEj where Ej’s are disjoint and measurable, and
αj > 0,

A =
⋃
j

Ej × [0, αj] ∪ (Rn \
⋃
j

Ej)× {0}

is measurable. In general, the lemma follows from using simple functions to approximate
f .

It is easy to deduce that the set

B = {(x, t) ∈ Rn × [0,∞) : f(x) > t > 0}

is also measurable.

Let f be a non-negative measurable function in some measure space (X,M, µ). We
use {f > t} to denote the set {x ∈ X : f(x) > t}. We are going to establish a general
formula, which includes ∫

X

fdµ =

∫ ∞
0

µ{f > t}dL1(t),
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as a special case. Imagining the set {(x, t) : 0 ≤ t ≤ f(x)} as a cake, the set {f > t}
is its layer at height t. This formula asserts that the integral of f can be computed by
an integration over its layers. (Incidentally, since µ{f > t} is an increasing real-valued
function provided it is finite and this is true, for instance, when f is integrable. As every
increasing function is Riemann integrable, the integral on the right hand side of this
formula is in fact an improper Riemann integral. Interestingly it shows that the abstract
integral of f with respect to some µ can be defined by an Riemann integral in terms of
its cake layers.)

To formulate a more general result, let ϕ be an increasing function in [0,∞] satisfying

(i) ϕ(t)→ ϕ(∞) ≤ ∞ as t→∞,

(ii) ϕ(0) = 0,

(iii) ϕ is absolutely continuous on [0, a], ∀a ∈ (0,∞).

Proposition 7.10. Let µ be an outer measure on X and ϕ be given as above. For any
non-negative µ-measurable function f in X,∫

X

ϕ ◦ f dµ =

∫ ∞
0

µ {f > t}ϕ′(t) dL1(t).

Note that ϕ ◦ f is µ-measurable and µ{f > t}ϕ′(t) is increasing and hence Lebsegue
measurable. As a result, both integrals are well-defined.

Proof. Letting

A = {(x, t) ∈ X × [0,∞) : f(x) > t}

be measurable by Lemma 7.9, observe that

µ {f > t} =

∫
X

χA(x, t) dµ(x) .

We have ∫
X

ϕ(f(x)) dµ =

∫
X

∫ f(x)

0

ϕ′(t) dL1(t)dµ(x).

=

∫
X

∫ ∞
0

χA(x, t)ϕ′(t) dL1(t)dµ(x)

=

∫ ∞
0

∫
X

χA(x, t) dµ(x)ϕ′(t)dL1(t) (Fubini’s theorem)

=

∫
X

µ{f > t}ϕ′(t) dL1(t).
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Note that in the first step, when f(x) <∞,∫ f(x)

0

ϕ′(t) dL1(t) = ϕ(f(x))− ϕ(0) = ϕ(f(x)) ,

by the fundamental theorem of calculus. If f(x) =∞,∫ ∞
0

ϕ′(t) dL1(t) = lim
a→∞

∫ a

0

ϕ′(t) dL1(t) (monotone convergence theorem)

= ϕ(∞) ( by (i) )

= ϕ(f(x)).

Clearly, the proposition follows.

Taking ϕ(z) = z, then ϕ′(z) = 1 and we cover the layer cake representation before.

We give an application of this formula to maximal functions.

Recall that for an Ln-measurable f , its maximal function is defined to be

(Mf)(x) = sup
B∈Bx

1

Ln(B)

∫
B

|f | dLn,

where Bx is the collection of all closed balls containing x. (In fact, since the Lebesgue
measure of ∂B is 0, you may take B to be an open ball.) We know that

• Mf = M |f |.

• Mf is Ln-measurable.

• The weak L1-estimate

µ {Mf > t} ≤ C

t
‖f‖L1 , ∀t > 0

where C is a dimensional constant, holds for f ∈ L1(Rn).

Proposition 7.11. Let f ∈ Lp(Rn), p > 1. We have

‖Mf‖Lp ≤ C ‖f‖Lp , ∀f ∈ Lp(Rn),

where C depends only on n and p.

Proof. We apply the formula in Proposition 7.10 by taking ϕ(z) = zp, p ∈ (1,∞),∫
Rn
fp dLn =

∫ ∞
0

µ {f > t} ptp−1 dL1(t)
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where f ≥ 0. We replace f by an L1-function g as follows. First, for fixed α ∈ (0, 1) and
t > 0, set

g(x) =

{
f(x), f(x) > αt
0, f(x) ≤ αt,

and h = f − g. Then g ∈ L1(Rn) and∫
g dLn ≤

∫
{f>αt}

f dLn

=

∫
{f>αt}

fp

fp−1
dLn

≤ 1

(αt)p−1

∫
fp dLn

<∞.

Moreover, from f = g + h,

Mf ≤Mg +Mh

≤Mg + αt

implies that if Mf > t then Mg > (1− α)t, so

{Mf > t} ⊂ {Mg > (1− α)t} .

Using the weak L1-estimate for g ∈ L1(Rn)

Ln {Mf > t} ≤ Ln {Mg > (1− α)t}

≤ C

(1− α)t
‖g‖L1

=
C

(1− α)t

∫
Aαt

fLn,

where At = {f > αt}. By Proposition 7.10,

∫
(Mf)p dLn =

∫ ∞
0

Ln {Mf > t} ptp−1 dL1(t)

≤
∫ ∞
0

{Mg > (1− α)t} ptp−1 dL1(t)

≤
∫ ∞
0

Cp

(1− α)t

∫
Aαt

f dLn tp−1 dL1(t).
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Letting A = {(x, t) : f(x) > αt},∫
(Mf)p dLn ≤ Cp

1− α

∫ ∞
0

∫
Aαt

f(x) dLn(x) tp−2 dL1(t)

=
Cp

1− α

∫ ∞
0

∫
χA(x, t)f(x) dLn(x) tp−2 dL1(t)

=
Cp

1− α

∫ ∫ ∞
0

χA(x, t)tp−2 dL1(t) f(x) dLn(x)

=
Cp

1− α

∫ ∫ f(x)
α

0

tp−2 dL1(t) f(x) dLn

=
Cp

(1− α)(p− 1)αp−1

∫
fp(x) dLn.

We conclude that

‖Mf‖Lp ≤
[

Cp

(1− α)(p− 1)αp−1

] 1
p

‖f‖Lp , ∀α ∈ (0, 1).

In fact, by minimizing α, we get an explicit constant

C = min
α∈(0,1)

[
Cp

(1− α)(p− 1)αp−1

] 1
p

= (Cepq)
1
p ,

where q is conjugate to p, see [R1] for details.

7.5 Convolution

Convolution is a product between two functions. It appears in two contexts. First, it is
well-known that the Fourier transform of the pointwise product of two functions equals to
the pointwise product of the Fourier transform of these functions. It plays a fundamental
role in harmonic analysis. Second, as it will be explained shortly, convolution can be used
to construct various approximation of identity, so it is quite useful in approximation.

The definition of convolution involves an integration of the product of two integrable
functions. It is not clear at all why this product makes sense. Fubini’s theorem is in an
essential use to justify the well-definiteness of the convolution.

Proposition 7.12. Let f, g ∈ L1(Rn). Then for a.e. x,∫
Rn
|f(x− y)g(y)| dLn(y) <∞.
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For those x, define the convolution of f and g by

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dLn(y).

Then f ∗ g ∈ L1(Rn) and
‖f ∗ g‖L1 ≤ ‖f‖L1 ‖g‖L1 .

It will be understood that the integral is over Rn when the domain of integration is
not specified in this section.

Proof. First, we claim that (x, y) 7→ f(x, y)g(y) is measurable in R2n. Recall that every
measurable function is equal a.e. to a Borel function. We replace f and g by such Borel
functions f̃ and g̃. Consider

(x, y) 7→ f̃(x− y)g̃(y).

Let ϕ(x, y) = x − y. The map (x, y) 7→ f̃(x − y) = f̃ ◦ ϕ(x, y). As f̃ is Borel and ϕ is

continuous (hence measurable), f̃(x−y) is measurable. So is f̃(x−y)g̃(y). As f(x−y)g(y)

differs from f̃(x− y)g̃(y) on a set a of measure zero, it is also measurable.

Next, applying the first part of Fubini’s theorem to the measurable function |f(x− y)g(y)|,
we have∫

R2n

|f(x− y)g(y)| dLn(x)dLn(y) =

∫
Rn

(∫
Rn
|f(x− y)| |g(y)| dLn(x)

)
dLn(y)

= ‖f‖L1 ‖g‖L1

<∞.

We conclude that f(x−y)g(y) ∈ L1(R2n). Moreover, exchanging the order of integration,
we have ∫ (∫

|f(x− y)| |g(y)| dLn(y)

)
dLn(x) = ‖f‖L1 ‖g‖L1 <∞,∫

|f(x− y)| |g(y)| dLn(y) <∞

for a.e. x. Therefore, for a.e. x, the convolution f ∗g is well-defined and finite. Moreover,∫
|f ∗ g(x)| dLn(x) =

∫ ∣∣∣∣∫ f(x− y)g(y) dLn(y)

∣∣∣∣ dLn(x)

≤
∫ (∫

|f(x− y)| |g(y)| dLn(y)

)
dLn(x)

=

∫ (∫
|f(x− y)| |g(y)| dLn(x)

)
dLn(y)

= ‖f‖L1 ‖g‖L1 .
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By the same reason, g ∗ f exists and

(g ∗ f)(x) =

∫
g(x− y)f(y) dLn(y)

=

∫
g(y)f(x− y) dLn(y) (change of variables)

= (f ∗ g)(x),

whenever f ∗ g or g ∗ f is well-defined at x.

For f, g and h in L1(Rn), one can verify that

(f ∗ g) ∗ h(x) = f ∗ (g ∗ h)(x), for a.e. x.

There are several Young’s inequality. The following one is concerned with convolution
of functions.

Proposition 7.13 (Young’s Inequality). Let f ∈ L1(Rn) and g ∈ Lp(Rn), p ∈ (1,∞).
Then a.e. x, ∫

|f(x− y)g(y)| dLn(y) <∞,

and f ∗ g ∈ Lp(Rn) with
‖f ∗ g‖Lp ≤ ‖f‖L1 ‖g‖Lp .

Proof. Assume g ∈ L1(Rn) ∩ Lp(Rn) first. For ϕ ∈ Cc(Rn),∣∣∣∣∫ ϕ(x)

(∫
|f(x− y)g(y)| dLn(y)

)
dLn(x)

∣∣∣∣ =

∣∣∣∣∫ ϕ(x)

(∫
|f(y)g(x− y)| dLn(y)

)
dLn(x)

∣∣∣∣
=

∣∣∣∣∫ (∫ ϕ(x) |f(y)| |g(x− y)| dLn(x)

)
dLn(y)

∣∣∣∣
≤
∫
|f(y)| ‖ϕ‖Lq ‖g‖Lp dL

n(y) (
1

p
+

1

q
= 1)

= ‖f‖L1 ‖g‖Lp ‖ϕ‖Lq .

Using the density of Cc-functions in Lq(Rn) and Lp-Lq duality,

‖f ∗ g‖Lp = sup

{∣∣∣∣∫ ϕ(x)(f ∗ g)(x) dLn(x)

∣∣∣∣ : ‖ϕ‖Lq ≤ 1

}
≤ ‖f‖L1 ‖g‖Lp .

We have proved the proposition for g ∈ L1(Rn) ∩ Lp(Rn). For g ∈ Lp(Rn), letting
gk = χBk(0) |g|, then gk ∈ L1(Rn), gk ↑ |g|. By Lebsegue’s monotone convergence theorem,∫ (∫

|f(x− y)| |g(y)| dLn(y)

)p
dLn(x) =

∫ (
lim
k→∞

∫
|f(x− y)| |gk(y)| dLn(y)

)p
dLn(x)

≤ ‖f‖pL1 ‖g‖pLp
and the conclusion follows.
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Convolution can be used to construct approximation kernel. As an illustration we
prove

Theorem 7.14 (Weierstrass Approximation Theorem). Let f ∈ Cc(Rn). For every
ε > 0, there exists a polynomial p such that

|f(x)− p(x)| < ε,

for all x in the support of f .

Proof. WLOG assume f ∈ Cc(B1(0)). Let

Qk(x) = ck(1− |x|2)k, k ≥ 1.

where the constant ck is chosen so that∫
B1(0)

Qk(x) dLn(x) = 1,

and set Qk = 0 outside B1(0). Define

pk(x) =

∫
f(y)Qk(x− y) dLn(y).

Note that

pk(x) =

∫
B1(0)

f(y)Qk(x− y) dLn(y)

= ck

∫
B1(0)

f(y)(1− |x− y)|2)k dLn(y)

is a polynomial of degree 2k. To show that pk well-approximates f we need the following
estimate on ck,

ck ≤ Ck
n
2 , ∀k ≥ 1.

Indeed,

1

ck
=

∫
B1(0)

(1− |x|2)k dLn(x)

=

∫
Sn−1

∫ 1

0

(1− r2)krn−1 drdθ

= Hn−1(Sn−1)

∫ 1

0

(1− r2)krn−1 dr.

By the elementary inequality

(1− r2)k ≥ 1− kr2, r ∈ (0, 1),
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we have

1

ck
≥ Hn−1(Sn−1)

∫ 1√
k

0

(1− kr2)rn−1 dr

= Hn−1(Sn−1)
2

n(n+ 2)

(
1√
k

)n
,

which implies the desired estimate. Using this, for x ∈ B1(0) \Bδ(0), δ ∈ (0, 1),

Qk(x) ≤ ck(1− δ2)k

≤ Ck
n
2 (1− δ2)k → 0 as k →∞.

Now,

pk(x) =

∫
f(y)Qk(x− y) dLn(y)

=

∫
f(x− y)Qk(y) dLn(y)

=

∫
B1(0)

f(x− y)Qk(y) dLn(y).

We have

|pk(x)− f(x)| =

∣∣∣∣∫
B1(0)

(f(x− y)− f(x))Qk(y) dLn(y)

∣∣∣∣
≤

∫
Bδ(0)

|f(x− y)− f(x)|Qk(y) dLn(y)

+

∫
B1(0)\Bδ(0)

|f(x− y)− f(x)|Qk(y) dLn(y).

As f is uniformly continuous in Rn, for ε > 0, we can find some δ such that

|f(x+ h)− f(x)| < ε, ∀x ∈ Rn, and h, |h| < δ.

Therefore, ∫
Bδ(0)

|f(x− y)− f(x)|Qk(y) dLn(y) ≤ ε.

On the other hand,∫
B1(0)\Bδ(0)

|f(x− y)− f(x)|Qk(y) dLn(y) ≤ 2 sup |f | |B1(0) \Bδ(0)|Ck
n
2 (1− δ2)k

< ε,

for all sufficiently large k, k ≥ k0, say. Putting things together,

|pk(x)− f(x)| ≤ ε+ ε = 2ε,

done.
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Corollary 7.15. Let f be a continuous function on a compact set K in Rn. For ε > 0,
there exists a polynomial p such that f(x)− p(x) < ε, ∀x ∈ K.

Proof. Extend f to be a function in Cc(BR(0)) where R is large such that K ⊂⊂ BR(0).
Surely there are many ways to do this. By Theorem 7.14, we can find a polynomial p
such that |f(x)− p(x)| < ε, ∀x ∈ BR(0), and this p does the job.

Comments on Chapter 7. Our discussion on the product measure and Fubini’s
theorem is taken from [EG]. A treatment on the construction of the product measure from
two measure spaces rather than two outer measures can be found in [R1]. Rademarcher’s
theorem (1919) whose proof depends crucially on Fubini’s theorem is the foundation for
geometric measure theory. The layer cake representation and convolution of functions are
taken from [R1], except the treatment on Weierstrass approximation theorem is modified
from “Principles of Mathematical Analysis” of the same author. By the way, Weierstrass
approximation theorem should have been covered in some undergraduate analysis course.
Indeed, it is in my lecture notes for MATH3060. However, in the past it was never taught
due to some mysterious reason. In view of this, I include it here as an application of
convolution. Another standard application of Fubini’s theorem is the inversion formula
for Fourier transform.


