Tutorial 7

March 16, 2017

1. (a) Find the Fourier sine series of ¢(z) = x on the interval [0, ].
(b) Find the Fourier cosine series of ¢(x) = x on the interval [0, ].
(c) Find the full Fourier series of ¢(z) = = on the interval [—[,].

Solution: (a)The Fourier sine series of ¢(z) = x is
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(b)The Fourier cosine series of ¢(z) = x is
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(c) The full Fourier series of ¢(x) = x is
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where the coeflicients are
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Remark: The full Fourier series and Fourier sine series of x are same, since x is odd.
. Solve the following problem
Ut = CQUmc
u(0,t) = u(l,t) =0
u(z,0) =z, u(x,0) =0

Solution: By separation of variables, we know that u(z,t) has an expansion
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Differentiating with respect to time yields
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Setting t = 0, we have

so that all the B,, = 0. Setting ¢ = 0 in the expansion of u(x,t), we have

> nTT
T = E A, sin e
n=1

n+1 20

By the sine Fourier series of = on the interval [0,1], we know that A, = (—1)""" =,

Thus
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. The complex form of the full Fourier series (on P112).

The full Fourier series of ¢(x) is
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Note that Euler’s formula e = cos 6 + i sin @ which implies sin § = ewgf%g and cosf = M, then

we should therefore be able to write the full Fourier series in the complex form
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Multiplying both sides of (2) by e~ ™™/l and integrating with respect to z yield
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where in the second equality we use the following simple fact:
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Remark: you can check that (1) and (2) are same series written in a different form by using Euler’s
formula.



