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1. Introduction

Let π(x) be the number of primes ≤ x. The famous prime number theorem asserts the following:

Theorem 1 (Prime number theorem).

(1) π(x) ∼ x

log x

as x→ +∞. (This means limx→+∞(π(x) log x)/x = 1).

It has been known since Euclid that there are infinitely many primes. Euler gave an alternative
proof of the infinitude of primes based on the divergence of

∑
1/p. But it seems that Gauss and

Legendre were the first to consider distributions of primes. By studying large tables of primes
(primes up to millions!), Gauss noted that the density of primes is approximately 1/ log x. Cheby-
shev made some important progress in the 1850’s. The landmark paper of Riemann [10] (and his
only one on this subject) made clear the connection of the asymptotics of π(x) to the ζ function
that now bears his name. Subsequently, in 1896, the first complete proof of the prime number
theorem was given independently by Hadamard [5] and de la Vallée Poussin [2]. About 50 years
later, elementary approaches to the prime number theorem were also discovered, most notably by
Erdös [3] and Selberg [8].

Our goal in this article is to elucidate a complex analytic proof of the prime number theorem,
given in Chapter 7 of [9]. We will also give a variant of that proof based on the work of D. J.
Newman [6] (but proceeds via Chebyshev’s ψ function instead of ϕ; see also the exposition in [12]
for another account of Newman’s proof.)

Before we begin, we note here that

Li(x) =

∫ x

2

1

log t
dt

also satisfies Li(x) ∼ x/ log x. So the prime number theorem can also be written as

π(x) ∼ Li(x)

as x→ +∞. Indeed, Li(x) satisfies the following asymptotics: for any N > 0, one has

Li(x) =
x

log x
+

x

(log x)2
+ 2!

x

(log x)3
+ · · ·+ (N − 1)!

x

(log x)N
+O

(
x

(log x)N+1

)
.

Li(x) turns out to be a better approximation of π(x) than x/ log x.
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2. Chebyshev’s ψ function

The proofs of the prime number theorem we will give proceeds via Chebyshev’s ψ function:

ψ(x) :=
∑
p≤x

[
log x

log p

]
log p, x > 0.

The following proposition is well known:1

Proposition 2. The prime number theorem is equivalent to the assertion that

(2) ψ(x) ∼ x.

Proof. Indeed, assume for the moment that (2) holds. Then since

ψ(x) ≤
∑
p≤x

log x = π(x) log x,

dividing both sides by x and letting x→ +∞, we get

1 ≤ lim inf
x→∞

π(x) log(x)

x
.

Also, for any α ∈ (0, 1), we have

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα<p≤x
log p ≥ (π(x)− π(xα)) log(xα) ≥ α(π(x)− xα) log x.

Hence if (2) holds, then dividing the above inequality by x, and letting x→∞, we get that

1 ≥ α lim sup
x→+∞

(π(x)− xα) log x

x
= α lim sup

x→+∞

π(x) log x

x
.

Letting α→ 1−, we get

1 ≥ lim sup
x→+∞

π(x) log x

x
.

Together we obtain (1), and the prime number theorem holds.

The converse implication, namely that (1) implies (2), is not much harder. Since we do not need
this direction of the implication, we leave this verification to the interested reader. �

Note that ψ can be rewritten as

ψ(x) =
∑
p

∑
m∈N : pm≤x

log p =
∑
n≤x

Λ(n)

where Λ is the von Mangoldt function, defined for n ∈ N by

Λ(n) =

{
log p, if n = pm for some prime p and some positive integer m

0, otherwise
.

We are interested in the asymptotics of ψ(x) as x → +∞. We will see, in the next section, that
one can study this by considering the Dirichlet series corresponding to {Λ(n)}∞n=1, namely

∞∑
n=1

Λ(n)

ns
.

1See also Proposition 2.1 of Chapter 7 of [9].
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This is in turn basically the logarithmic derivative of the Riemann zeta function, and it is ultimately
why the Riemann zeta function makes its appearance in this approach towards the prime number
theorem.

3. The Mellin transform

We digress a little to discuss three important integral transforms: the Mellin transform, the
Laplace transform and the Fourier transform.

Suppose f : (0,∞) → C is a measurable function that vanishes on (0, 1). Suppose further that
there exists some a ∈ R, A > 0 such that

|f(x)| ≤ Axa

for all x ∈ [1,∞). Let a0 be the infimum of all a ∈ R, for which there exists A > 0 such that the
above estimate holds. Then the Mellin transform of f is defined by

Mf(s) =

∫ ∞
0

f(x)x−s
dx

x

for all s ∈ C with Re s > a0; indeed the integral defining Mf(s) converges absolutely there, and
defines a holomorphic function of s in that half plane.

The Mellin transform is really the Laplace transform in disguise. Indeed, suppose F : R→ C is
a measurable function that vanishes on (−∞, 0). Suppose further that there exists some a ∈ R,
A > 0 such that

|F (t)| ≤ Aeat

for all t ∈ [0,∞). Let a0 be the infimum of all a ∈ R, for which there exists A > 0 such that the
above estimate holds. Then the Laplace transform of F is defined by

LF (s) =

∫ ∞
−∞

F (t)e−stdt

for all s ∈ C with Re s > a0; indeed the integral defining LF (s) converges absolutely there, and
defines a holomorphic function of s in that half plane.

If F (t) := f(et) where f is as in the above definition of the Mellin transform, thenMf(s) = LF (s)
whenever they are defined.

Recall also the Fourier transform on R. If G ∈ L1(R), then its Fourier transform is defined by

Ĝ(τ) =

∫ ∞
−∞

G(t)e−itτdt

for all τ ∈ R. If F is as in the above definition of the Laplace transform, then for all c > a0 and all

τ ∈ R, we have LF (c+ iτ) = F̂c(τ) where Fc(t) := F (t)e−ct.

Our goal was to understand asymptotics of ψ(x) =
∑

n≤x Λ(n) as x → +∞. The strategy we
will follow is indeed fairly general, and the initial steps works perfectly well when the sequence
{Λ(n)}∞n=1 is replaced by any sequence of complex numbers {an}∞n=1, as long as |an| = no(1) as
n→∞. We phrase it in the following proposition:
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Proposition 3. Suppose {an}∞n=1 is a sequence of complex numbers satisfying |an| = no(1) as
n → ∞. Let f : (0,∞) → C be defined by f(x) =

∑
n≤x an. Then the Mellin transform of f is

defined for all s ∈ C with Re s > 1, and is given by

Mf(s) =
1

s
Da(s)

for all such s, where

Da(s) :=
∞∑
n=1

an
ns

is the Dirichlet series corresponding to the sequence {an}∞n=1 (also defined for Re s > 1). In partic-
ular, the Mellin transform of ψ is defined for all s ∈ C with Re s > 1, and is given for all such s
by

Mψ(s) =
1

s

∞∑
n=1

Λ(n)

ns
.

Proof. Suppose |an| = no(1) as n → ∞, and f(x) =
∑

n≤x an. Then for any a > 1, there exists

A > 0 such that f(x) ≤ Axa. Furthermore, we can rewrite f(x), as

f(x) =

∞∑
n=1

anχ[n,∞)(x)

where χ[n,∞) is the characteristic function of the interval [n,∞). Hence the Mellin transform of f
is defined for all s ∈ C with Re s > 1, and is given by

Mf(s) =
∞∑
n=1

an

∫ ∞
n

x−s
dx

x
=

1

s

∞∑
n=1

an
ns

=
1

s
Da(s)

for all such s. (The interchange of the sum with the integral can be justified using Fubini’s theorem.)

Since Λ(n) = no(1) as n → ∞, applying the result to an = Λ(n) yields the desired conclusion for
Mψ(s). �

The proposition suggests that in order to understand ψ(x) =
∑

n≤x Λ(n) (or more generally

f(x) =
∑

n≤x an where {an} is as in the proposition), it may be helpful to study the corresponding

Dirichlet series DΛ(s) (or Da(s)); indeed, if we can invert the Mellin transform, then we can hope
to convert information about the Dirichlet series DΛ(s) (or Da(s)) into information about ψ(x) (or
f(x)). The success of this approach ultimately lies with our ability to invert the Mellin transform;
we study the latter, by studying how one could invert the Fourier and the Laplace transforms.

First, recall that the Fourier transform can be inverted by the following formula under suitable

hypothesis on G. For instance, if both G and Ĝ are in L1(R), then

G(t) =
1

2π

∫ ∞
−∞

Ĝ(τ)eitτdτ

for all t ∈ R.

We will need a slightly different form of the Fourier inversion formula, when Ĝ is not necessarily
integrable:

4



Proposition 4. Suppose G ∈ L1(R), and t0 ∈ R is a point where the following limits all exist:

G(t+0 ) := lim
t→t+0

G(t), G(t−0 ) := lim
t→t−0

G(t),

G′(t+0 ) := lim
t→t+0

G(t)−G(t+0 )

t− t0
, G′(t−0 ) := lim

t→t−0

G(t)−G(t−0 )

t− t0
.

Then

lim
T→+∞

1

2π

∫ T

−T
Ĝ(τ)eit0τdτ exists, and equals

G(t+0 ) +G(t−0 )

2
.

In particular, if G ∈ L1(R) is piecewise C1 (meaning that there exists a strictly increasing sequence
{tn}∞n=−∞ such that for all n ∈ Z, G is differentiable on (tn, tn+1), and both G(t) and G′(t) has a

limit as t→ t+n and t→ t−n+1), then

lim
T→+∞

1

2π

∫ T

−T
Ĝ(τ)eitτdτ =

G(t+) +G(t−)

2

for all t ∈ R.

The proof uses the famous lemma of Riemann-Lebesgue:

Lemma 5 (Riemann-Lebesgue). If H ∈ L1(R), then Ĥ(τ)→ 0 as τ → ±∞.

In particular, if H ∈ L1(R), then

(3)

∫
R
H(t) sin(tT )dt =

Ĥ(−T )− Ĥ(T )

2i
→ 0

as T → +∞.

Proof of Lemma 5. If h is a smooth function with compact support on R, then ĥ is rapidly decreas-
ing at infinity; indeed

ĥ(τ) =

∫
R
h(t)e−itτdt =

1

(iτ)N

∫
R
h(t)

(
− d

dt

)N
e−itτdt =

1

(iτ)N

∫
R

dNh

dtN
e−itτdt

for all N ∈ N, so

|ĥ(τ)| ≤ CN |τ |−N

for all N ∈ N, where CN :=
∥∥∥dNhdtN

∥∥∥
L1(R)

. In particular then ĥ(τ) → 0 as τ → ±∞. Now if

H ∈ L1(R), then we approximate H by a smooth function with compact support; indeed for any
ε > 0, there exists a smooth function h with compact support on R, such that

‖H − h‖L1(R) ≤ ε.
It follows that

|Ĥ(τ)| ≤ |Ĥ − h(τ)|+ |ĥ(τ)| ≤ ‖H − h‖L1(R) + |ĥ(τ)| ≤ ε+ |ĥ(τ)|.

Since ĥ(τ)→ 0 as τ → ±∞, we conclude that

lim sup
τ→±∞

|Ĥ(τ)| ≤ ε.

Since this is true for all ε > 0, we conclude that Ĥ(τ)→ 0 as τ → ±∞, as desired. �
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Proof of Proposition 4. Suppose t0 is as in the proposition. For any T > 0, we have

1

2π

∫ T

−T
Ĝ(τ)eit0τdτ =

1

2π

∫ T

−T

(∫
R
G(t)e−itτdt

)
eit0τdτ

=
1

2π

∫
R
G(t)

∫ T

−T
ei(t0−t)τdτdt

=
1

π

∫
R
G(t)

sin((t0 − t)T )

t0 − t
dt

=
1

π

∫
R
G (t0 − t)

sin(tT )

t
dt

(The interchange of the integrals in the second equality is justified by Fubini’s theorem since
G ∈ L1(R).) We also recall the well-known fact that

(4)

∫ ∞
0

sin t

t
dt =

π

2
.

(This can be proved, for instance, using contour integrals.) Thus

G(t+0 ) =
1

π

∫ 0

−∞
G(t+0 )

sin(tT )

t
dt,

and

G(t−0 ) =
1

π

∫ ∞
0

G(t−0 )
sin(tT )

t
dt.

It follows that

1

2π

∫ T

−T
Ĝ(τ)eit0τdτ − G(t+0 ) +G(t−0 )

2

=
1

π

∫ 0

−∞

G (t0 − t)−G(t+0 )

t
sin(tT )dt+

1

π

∫ ∞
0

G (t0 − t)−G(t−0 )

t
sin(tT )dt.

Now since G′(t+0 ) and G′(t−0 ) both exist, there exists some δ > 0 such that [G(t0 − t)−G(t+0 )]/t is
bounded for t ∈ (−δ, 0), and [G(t0 − t)−G(t−0 )]/t is bounded for t ∈ (0, δ). We define

H(t) :=


[G (t0 − t)−G(t+0 )]/t if t ∈ (−δ, 0)

[G (t0 − t)−G(t−0 )]/t if t ∈ (0, δ)

G(t0 − t)/t if |t| ≥ δ
.

Then H ∈ L1(R) (because H(t) is bounded when 0 < |t| < δ, and |H(t)| ≤ δ−1|G(t0 − t)| when
|t| ≥ δ), and

1

2π

∫ T

−T
Ĝ(τ)eit0τdτ − G(t+0 ) +G(t−0 )

2

=
1

π

∫
R
H(t) sin(tT )dt+

G(t+0 )

π

∫ −δ
−∞

sin(tT )

t
dt+

G(t−0 )

π

∫ ∞
δ

sin(tT )

t
dt.

As T → +∞, the first term on the right hand side tends to zero by the lemma of Riemann-Lebesgue
(see (3)). The second and the third terms tend to zero as well, since∫ −δ

−∞

sin(tT )

t
dt =

∫ ∞
δ

sin(tT )

t
dt =

∫ ∞
δT

sin(t)

t
dt→ 0

as T → +∞ (see (4)). This concludes the proof of Proposition 4. �
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In view of the connection of the Laplace transform to the Fourier transform, we obtain the
following corollary of Proposition 4:

Proposition 6. Suppose F : R→ C is a piecewise C1 function that vanishes on (−∞, 0). Suppose
further that there exists some a ∈ R, A > 0 such that

|F (t)| ≤ Aeat

for all t ∈ [0,∞). Let a0 be the infimum of all a ∈ R, for which there exists A > 0 such that the
above estimate holds. Then for all c > a0, and all t ∈ R, we have

(5)
1

2πi

∫ c+i∞

c−i∞
LF (s)estds =

F (t+) + F (t−)

2
,

in the sense that if γc,T is the vertical contour joining c− iT to c+ iT , then

lim
T→+∞

1

2πi

∫
γc,T

LF (s)estds

exists, and is equal to (F (t+) + F (t−))/2.

The integral on the left-hand side of (5) is called the Bromwich integral. The proposition gives
a precise set of conditions under which the Bromwich integral inverts the Laplace transform of a
function.

Proof of Proposition 6. Suppose F and c are as above. Then Fc(t) := F (t)e−ct is piecewise C1,

and is in L1(R) since there exists A > 0 such that |Fc(t)| ≤ Ae−(c−a0)t/2 for all t ∈ [0,∞). Now

LF (c+ iτ) = F̂c(τ) for all τ ∈ R. Thus Proposition 4 applied to Fc shows that

1

2πi

∫ c+i∞

c−i∞
LF (s)estds =

1

2πi
lim

T→+∞

∫ T

−T
LF (c+ iτ)e(c+iτ)tidτ

=
ect

2π
lim

T→+∞

∫ T

−T
F̂c(τ)eitτdτ

= ect
Fc(t

+) + Fc(t
−)

2

=
F (t+) + F (t−)

2
.

�

By a change of variable x = et, we obtain the following corollary for the inverse of the Mellin
transform as well.

Proposition 7. Suppose f : (0,∞)→ C is a piecewise C1 function that vanishes on (0, 1). Suppose
further that there exists some a ∈ R, A > 0 such that

|f(x)| ≤ Axa

for all x ∈ [1,∞). Let a0 be the infimum of all a ∈ R, for which there exists A > 0 such that the
above estimate holds. Then for all c > a0, and all x > 0, we have

1

2πi

∫ c+i∞

c−i∞
Mf(s)xsds =

f(x+) + f(x−)

2
,
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in the sense that if γc,T is the vertical contour joining c− iT to c+ iT , then

lim
T→+∞

1

2πi

∫
γc,T

Mf(s)xsds

exists, and is equal to (f(x+) + f(x−))/2.

Proof. Apply Proposition 6 to F (t) := f(et), noting that Mf(s) = LF (s). �

The following proposition then follows:2

Proposition 8. Suppose {an}∞n=1 and Da(s) are as in Proposition 3. Then for all c > 1, and all
x > 0, we have

(6)
1

2πi

∫ c+i∞

c−i∞
Da(s)

xs

s
ds =

{∑
n<x an if x /∈ N

ax
2 +

∑
n<x an if x ∈ N.

In particular, for all c > 1, and all x > 0, we have

(7)
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

Λ(n)

ns
xs

s
ds =

{
ψ(x) if x /∈ N
(ψ(x+) + ψ(x−))/2 if x ∈ N.

Equation (6) is sometimes known as Perron’s formula.

Proof of Proposition 8. To prove (6), it suffices to apply Proposition 7 to f(x) :=
∑

n≤x an, since

f(x) is piecewise constant, and Proposition 3 shows that Mf(s) = Da(s)/s whenever Re s > 1.
Equation (7) then follows from (6) by setting an = Λ(n). �

4. Relation to the Riemann ζ function

We now continue to prove the prime number theorem. Our strategy was to prove the asymptotics
(2) where ψ(x) :=

∑
n≤x Λ(n). In the previous section, we have expressed ψ in terms of the Dirichlet

series of {Λ(n)}∞n=1, namely
∞∑
n=1

Λ(n)

ns
.

This is intimately connected to the Riemann ζ function, which we will see as follows.

Recall that the Riemann ζ function is defined by

ζ(s) =

∞∑
n=1

1

ns
, valid for Re s > 1.

2We note here that Proposition 7 also provides an alternative proof of Lemma 2.4 in Chapter 7 of [9]. Indeed, if
we take f to be such that f(x) = 1 − (1/x) for x ≥ 1, and f(x) = 0 for x ∈ (0, 1), then f is bounded, continuous,
piecewise C1, and the Mellin transform of f is Mf(s) = 1/s(s+ 1) for all s ∈ C with Re s > 0. Thus Proposition 7
implies Lemma 2.4 of Chapter 7 of [9]. Similarly, instead of doing a contour integration, one can work out Exercise
6 of Chapter 7 of [9] by interpreting it as an appropriate instance of Proposition 7. We leave the details to the
interested readers.
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We will assume known the following product factorization of ζ over all primes:

ζ(s) =
∏
p

1

1− p−s
, valid for Re s > 1.

Taking logarithmic derivative, we get

ζ ′(s)

ζ(s)
= −

∑
p

p−s log p

1− p−s
= −

∑
p

∑
m

log p

pms
,

valid for Re s > 1, so in view of the definition of Λ(n), we see that

(8)
ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
, valid for Re s > 1.

Thus (7) can now be rewritten as

(9) − 1

2πi

∫ c+i∞

c−i∞

ζ ′(s)

ζ(s)

xs

s
ds =

{
ψ(x) if x /∈ N
(ψ(x+) + ψ(x−))/2 if x ∈ N.

We may thus hope to obtain asymptotics of ψ(x), by studying bounds for ζ ′ and ζ. Observe that
|xs| = xc if s is on the contour of integration in the integral in (7) or (9). Thus to show that ψ(x)
remains small as x→ +∞, we should shift the contour of integration {Re s = c} to the left as far as

possible. A technical point arises here: the integrand in (7) or (9), namely
∑∞

n=1
Λ(n)
ns

xs

s , is O(1/|s|)
only on the contour of integration. So the integrals in (7) or (9) may not converge absolutely, and
this is inconvenient when we shift the contour integrals. As a result, in the next section, we show
that instead of studying asympotics of ψ(x), it suffices to study the asymptotics of a smoothed out
version of ψ(x), that we denote by ψ1(x). This ψ1(x) has a Mellin transform that decays more
rapidly at infinity, and the analog of (7) or (9) for ψ1 would converge absolutely, making it easier
to deal with.

5. A technical point

Continuing from the last section, let ψ1 : (0,∞)→ R be defined by

ψ1(x) =

∫ x

0
ψ(y)dy

for all x > 0.

Proposition 9. ψ(x) ∼ x if and only if ψ1(x) ∼ x2/2.

Thus in view of Proposition 2, to prove the prime number theorem, it suffices to prove that

(10) ψ1(x) ∼ x2

2
.

Proof of Proposition 9. Indeed, suppose (10) holds. Then for any α ∈ (0, 1), we have

ψ1(x)− ψ1(αx) =

∫ x

αx
ψ(y)dy ≤ (1− α)xψ(x),

so

ψ(x)

x
≤ ψ1(x)− ψ1(αx)

(1− α)x2
=

ψ1(x)
x2
− ψ1(αx)

(αx)2
α2

1− α
.
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Letting x→ +∞, we see that

lim sup
x→+∞

ψ(x)

x
≤ 1

2
· 1− α2

1− α
=

1 + α

2
.

Letting α→ 1−, we see that

lim sup
x→+∞

ψ(x)

x
≤ 1.

Similarly, for any β ∈ (1,∞),

ψ1(βx)− ψ1(x) =

∫ βx

x
ψ(y)dy ≥ (β − 1)xψ(x),

so

ψ(x)

x
≥ ψ1(βx)− ψ1(x)

(β − 1)x2
=

ψ1(βx)
(βx)2

β2 − ψ1(x)
x2

β − 1
.

Letting x→ +∞, we see that

lim inf
x→+∞

ψ(x)

x
≥ 1

2
· β

2 − 1

β − 1
=
β + 1

2
.

Letting β → 1+, we see that

lim inf
x→+∞

ψ(x)

x
≥ 1.

Together we see that ψ(x) ∼ x, as desired.

The converse implication is similar. Since we do not need this direction of the implication, we
leave this verification to the interested reader. �

So from now on, we concentrate on proving asymptotics (10) for ψ1(x). Note that for any a > 1,
there exists a constant A > 0 such that ψ1(x)/x ≤ Axa. Thus the Mellin transform of ψ1(x)/x is
defined for all s ∈ C with Re s > 1, and is given for all such s by∫ ∞

0

ψ1(x)

x
x−s

dx

x
= − 1

s+ 1

∫ ∞
0

ψ1(x)
d

dx
x−(s+1)dx

=
1

s+ 1
Mψ(s)

=
1

s(s+ 1)

∞∑
n=1

Λ(n)

ns

= − 1

s(s+ 1)

ζ ′(s)

ζ(s)
.

Now since ψ(x) =
∑

n≤x Λ(n) is piecewise constant on (0,∞), ψ1(x) =
∫ x

0 ψ(y)dy is continuous

and piecewise linear there. Hence ψ1(x)/x is continuous and piecewise C1 on (0,∞). Proposition 7
then shows that for all c > 1 and all x > 0, we have3

ψ1(x)

x
= − 1

2πi

∫ c+i∞

c−i∞

1

s(s+ 1)

ζ ′(s)

ζ(s)
xsds.

i.e.

(11) ψ1(x) = − 1

2πi

∫ c+i∞

c−i∞

1

s(s+ 1)

ζ ′(s)

ζ(s)
xs+1ds.

3This is precisely Proposition 2.3 of Chapter 7 of [9].
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We note that the integrand above, namely 1
s(s+1)

ζ′(s)
ζ(s) x

s+1, is O(1/|s|2) on the contour of integration,

thanks to the appearance of the quadratic factor s(s + 1) in the denominator (contrary to the
linear factor s in the integrand of (7) or (9)). This makes it easier for us to shift the contour
of integration {Re s = c} in a moment. To accomplish the latter, we will need to know that ζ
continues meromorphically past the line {Re s = 1}. We summarize in the next section the facts
we will need about the continuation of ζ.

6. Analytic continuation of ζ

We will assume known that ζ has a meromorphic continuation to the half-space

Sη := {s ∈ C : Re s > η}

for some η < 1, so that the only singularity of ζ in this strip is a simple pole at s = 1. In other
words, there exists η < 1, and a holomorphic function h(s) on Sη, such that

(12) ζ(s) =
h(s)

s− 1
on Sη.

We will also assume known the following upper bound for ζ ′: for any ε > 0, there exists A > 0,
such that

(13) |ζ ′(s)| ≤ A|Im s|ε/2

whenever s ∈ C with Re s ≥ 1 and |Im s| ≥ 1. All these can be proved, for instance, by comparing
ζ(s) =

∑∞
n=1 n

−s to the corresponding integral
∫∞

1 x−sdx = 1/(s−1) (and using Cauchy’s estimate

for the bound on ζ ′)4. Indeed, with more work (for instance by establishing the functional equation

of ξ(s) := π−s/2Γ(s/2)ζ(s)), one can take η all the way to −∞ in the above claims.

7. Non-vanishing of ζ on Re s = 1

Recall that our strategy towards proving the prime number theorem is to establish asymptotics
(10) for ψ1(x). We have represented ψ1(x) as a contour integral in (11). With the analytic continu-
ation of ζ in the above section in mind, we would like to shift the contour of integration to the left
as far as possible (just like what is typically done when one computes the Bromwich integral, in
inverting the Laplace transform). This relies on knowing where the zeroes of ζ(s) are, since every
zero of ζ contributes a pole in s of the integrand in (11). We now prove the following theorem.

Theorem 10. ζ has no zeroes on the vertical line where Re s = 1.

Proof. We need three observations.

First, note that ζ is real-valued on {s ∈ R : s > 1}. Hence

ζ(s) = ζ(s) for all s ∈ C.

This shows that the (non-real) zeroes of ζ comes in conjugate pairs: if s is a zero of ζ, then so is
s, and ζ vanishes to the same order at both s and s.

4See Proposition 2.5, Corollary 2.6, Proposition 2.7 in Chapter 6 of [9].
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Next, recall that if f is a meromorphic function near a point z0, then the order of of f at z0

(which is positive if f vanishes there, negative if f has a pole there) can be computed via the residue
of the logarithmic derivative of f at z0. In particular, for any t ∈ R, the order of ζ at 1 + it is

(14) ord1+itζ = lim
ε→0

ε ζ ′(1 + it+ ε)

ζ(1 + it+ ε)
.

Finally, recall the logarithmic derivative of ζ, given by (8). What will be important for us is that
Λ(n) is real and non-negative for all positive integers n.

Now we are ready to put all these together. First, since ζ has a pole at s = 1, it cannot have a
zero at s = 1. Next, suppose ζ is zero at s = 1 + it for some t ∈ R. We show that this is impossible
by considering the orders of ζ at 1± 2it, 1± it and 1: Combining (14) and (8), we see that

ord1+2itζ = − lim
ε→0+

ε
∞∑
n=1

Λ(n)

n1+ε
n−2it

ord1+itζ = − lim
ε→0+

ε

∞∑
n=1

Λ(n)

n1+ε
n−it

ord1ζ = − lim
ε→0+

ε
∞∑
n=1

Λ(n)

n1+ε

ord1−itζ = − lim
ε→0+

ε

∞∑
n=1

Λ(n)

n1+ε
nit

ord1−2itζ = − lim
ε→0+

ε
∞∑
n=1

Λ(n)

n1+ε
n2it

We now multiply these five equations by 1, 4, 6, 4, 1 respectively, and add them all up. Observe
that

(15) n−2it + 4n−it + 6 + 4nit + n2it = (nit/2 + n−it/2)4 = (2 cos(t log n/2))4 ≥ 0.

Since Λ(n) ≥ 0 for all n, we then see that

ord1+2itζ + 4 ord1+itζ + 6 ord1ζ + 4 ord1−itζ + ord1−2itζ ≤ 0.

But

ord1ζ = −1,

ord1+itζ = ord1−itζ,

and

ord1+2itζ = ord1−2itζ ≥ 0.

Hence

8 ord1+itζ − 6 ≤ 0,

which contradicts our assumption that ζ(1 + it) = 0.5 �

5We remark that (15) is really Lemma 1.4 of Chapter 7 of [9] in disguise. Also, by rewriting ζ′/ζ as the derivative
of log ζ, and undoing the derivative, the above argument essentially gives Corollary 1.5 of Chapter 7 of [9].
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By making the above argument more quantitative, we can establish6 the following lower bound
of ζ: for any ε > 0, there exists a constant B > 0, such that

(16) |ζ(s)| ≥ B|Im s|−ε/2

whenever s ∈ C with Re s ≥ 1 and |Im s| ≥ 1. In particular, combining with our earlier bound (13)
for ζ ′, we see that for any ε > 0, there exists a constant C > 0, such that

(17)

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ C|Im s|ε

whenever s ∈ C with Re s ≥ 1 and |Im s| ≥ 1.

8. The Proof of the prime number theorem in [9]

We can now finish the proof of the prime number theorem as in Chapter 7 of [9]. Fix some c > 1.
Then (11) says that

ψ1(x) = − 1

2πi

∫ c+i∞

c−i∞

1

s(s+ 1)

ζ ′(s)

ζ(s)
xs+1ds,

where the integration is along the vertical contour {c+ iτ : τ ∈ R}. The integrand is a holomorphic
function of s on an open half-space {Re s > η} for some η < 1. In view of estimate (17) for |ζ ′/ζ|,
and that ∣∣∣∣ xs+1

s(s+ 1)

∣∣∣∣ ≤ |x|Re s+1

|Im s|2
,

we can shift the contour of integration, and obtain, for any T > 0, that

ψ1(x) = − 1

2πi

∫
γ(T )

1

s(s+ 1)

ζ ′(s)

ζ(s)
xs+1ds,

where γ(T ) is the contour consisting of 5 straight line segments, joining the following points in
order: 1− i∞, 1− iT , c− iT , c+ iT , 1 + iT , and 1 + i∞. (See p. 195 of [9] for a picture of γ(T ).)

Suppose now ε > 0 is given. In view of estimate (17) for |ζ ′/ζ| again, we may choose T > 0 large
enough, so that

1

2π

(∫ 1−iT

1−i∞
+

∫ 1+i∞

1+iT

) ∣∣∣∣ 1

s(s+ 1)

ζ ′(s)

ζ(s)

∣∣∣∣ |ds| < ε.

Then since |xs+1| = x2 on the contours of integration in the above two integrals, we get∣∣∣∣− 1

2πi

(∫ 1−iT

1−i∞
+

∫ 1+i∞

1+iT

)
1

s(s+ 1)

ζ ′(s)

ζ(s)
xs+1ds

∣∣∣∣ < εx2.

Hence for this choice of T , we have

(18) ψ1(x) = − 1

2πi

(∫ c−iT

1−iT
+

∫ c+iT

c−iT
+

∫ 1+iT

c+iT

)
1

s(s+ 1)

ζ ′(s)

ζ(s)
xs+1ds+O(εx2)

for all x > 0, where O(εx2) is a term bounded in absolute value by εx2. Having chosen T , let
δ ∈ (0,min{1−η, 1}) be sufficiently small, where η is as in the above, so that ζ has no zeroes in the
closed rectangle {1 − δ ≤ Re s ≤ 1, |Im s| ≤ T}. Such δ exists because ζ extends meromorphically
on Sη as in the description just before (12) (so the zeroes of ζ has no accumulation points in Sη),
and because ζ has no zeroes on the line segment {Re s = 1, |Im s| ≤ T}. Let γ(T, δ) be the contour
consisting of 5 straight line segments, joining the following points in order: 1−i∞, 1−iT , 1−δ−iT ,

6See Proposition 1.6 in Chapter 7 of [9].
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1− δ + iT , 1 + iT , and 1 + i∞. (See p. 195 of [9] for a picture of γ(T, δ).) Then γ(T )− γ(T, δ) is
a rectangular contour with vertices 1− δ − iT , c− iT , c+ iT , and 1− δ + iT . On and inside this
rectangular contour, ζ has a pole at s = 1, and no zeroes anywhere. Thus ζ ′/ζ is meromorphic on
and inside this rectangular contour, and has a residue −1 at s = 1. It follows that for each x > 0,

the function s 7→ − 1
s(s+1)

ζ′(s)
ζ(s) x

s+1 has a simple pole at s = 1, and nowhere else inside the rectangle

whose vertices are 1− δ − iT , c− iT , c+ iT , and 1− δ + iT . The residue of this function at s = 1
is just

1

1(1 + 1)
x1+1 =

1

2
x2.

Thus from (18), we see that

(19) ψ1(x) =
1

2
x2 − 1

2πi

(∫ 1−δ−iT

1−iT
+

∫ 1−δ+iT

1−δ−iT
+

∫ 1+iT

1−δ+iT

)
1

s(s+ 1)

ζ ′(s)

ζ(s)
xs+1ds+O(εx2).

Now the function s 7→ 1
2π

1
s(s+1)

ζ′(s)
ζ(s) is continuous on the above 3 contours of integration. Hence its

modulus is bounded above by some constant CT,δ there. Also,∫ 1−δ−iT

1−iT
|xs+1||ds| =

∫ 1

1−δ
xσ+1dσ ≤ x2

log x
;

similarly ∫ 1+iT

1−δ+iT
|xs+1||ds| ≤ x2

log x
.

Furthermore, ∫ 1−δ+iT

1−δ−iT
|xs+1|ds = 2Tx2−δ.

All in all, we see that ∣∣∣∣ψ1(x)− 1

2
x2

∣∣∣∣ ≤ 2CT,δ
x2

log x
+ 2Tx2−δ + εx2.

Dividing by x2/2, we see that∣∣∣∣ψ1(x)

x2/2
− 1

∣∣∣∣ ≤ 4CT,δ
1

log x
+ 4Tx−δ + 2ε.

Now T and δ are fixed once we fix ε. If we pick x sufficiently large, the right hand side can be
made smaller than 3ε. This proves that ψ1(x) ∼ x2/2, as desired in (10), and completes the proof
of the prime number theorem in Chapter 7 of [9].

9. A variant of Newman’s proof

The above proof of the prime number theorem is based on analysis of the Chebychev’s ψ function:

ψ(x) =
∑
p

∑
m∈N : pm≤x

log p.

Some work was needed in obtaining quantitative estimates of ζ near the line Re s = 1 (more
precisely, an upper bound for |ζ ′(s)/ζ(s)|). On the other hand, in [6], Newman gave another
complex analytic proof of the prime number theorem, using only the vanishing of ζ on the line
Re s = 1 (and no asymptotics of ζ there), by considering the ϕ function:

ϕ(x) =
∑
p≤x

log p.
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Below we try to combine the two approaches, and adapt Newman’s argument so that it works
through Chebychev’s ψ function (rather than the ϕ function).

Recall that by Proposition 2, to prove the prime number theorem, it suffices to verify asymptotics
(2) for ψ. It may help to first verify a weaker statement, namely that ψ(x)/x remains bounded as
x→ +∞. This is what we are going to do next, via an essentially elementary argument.

Proposition 11.
ψ(x)

x
remains bounded as x→ +∞.

Proof. First, we claim that there exists a constant C, such that for any positive integer n, we have

(20) ψ(2n)− ψ(n) ≤ Cn.

To prove this claim, note that

(21) ψ(2n)− ψ(n) =
∑
p

∑
{m : n<pm≤2n}

log p = log

 ∞∏
m=1

∏
{p : n<pm≤2n}

p

 .

In the product inside the logarithm, consider first the term corresponding to m = 1. We have

(22)
∏

{p : n<p≤2n}

p ≤
(

2n

n

)
.

Indeed (
2n

n

)
=

(2n)(2n− 1) . . . (n+ 1)

n!

is an integer, so that n! is a factor of (2n)(2n− 1) . . . (n+ 1); also each prime p with n < p ≤ 2n is
a factor of (2n)(2n− 1) . . . (n+ 1). Since each such prime p is relatively prime with n!, we see that

(n!)
∏
{p : n<p≤2n} p divides (2n)(2n − 1) . . . (n + 1), i.e.

∏
{p : n<p≤2n} p divides

(
2n
n

)
. In particular,

(22) holds. This further implies

(23)
∏

{p : n<p≤2n}

p ≤ 22n,

since (
2n

n

)
≤

2n∑
k=0

(
2n

k

)
= (1 + 1)2n = 22n.

This completes our estimate of the product inside the logarithm on the right hand side of (21).

Next, we consider those terms in the same product corresponding to m ≥ 2. If m ≥ 2, and
n < pm ≤ 2n, then p ≤

√
2n. Also, for each prime p, there is at most one power of p that lies in

(n, 2n]. Hence
∞∏
m=2

∏
{p : n<pm≤2n}

p ≤
∏

p≤
√

2n

p ≤ (
√

2n)
√

2n.

Hence, together with (23), we obtain

ψ(2n)− ψ(n) ≤ log
(

22n(
√

2n)
√

2n
)
≤ 2n log 2 +

√
2n log(2n)

2
.

This establishes our claim (20).
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Now that we have the claim (20), we see that there exists a constant C ′ such that

ψ(2x)− ψ(x) ≤ C ′x

for all x ≥ 1. In fact it suffices to prove this for x large. To do so, take n to be the integer closest to x.
Then the sum defining ψ(x) and ψ(n) differ in at most one term, and |ψ(x)−ψ(n)| ≤ C log x ≤ C ′′x.
Similarly, |ψ(2x) − ψ(2n)| ≤ C ′′x. Hence together with the bound for ψ(2n) − ψ(n) we already
established, we see that ψ(2x)− ψ(x) ≤ C ′x, as desired.

Now we just iterate this estimate:

ψ(x)− ψ(x/2) ≤ C ′(x/2)

ψ(x/2)− ψ(x/4) ≤ C ′(x/4)

...

and sum up a geometric series on the right. Then

ψ(x) ≤ C ′x

as x→ +∞, as desired. �

Now recall that the Mellin transform of ψ(x) was given in Proposition 3, which in view of (8)
can be written as

(24)

∫ ∞
1

ψ(x)

x

dx

xs
= − ζ

′(s)

sζ(s)
, valid for Re s > 1.

We are interested in showing
ψ(x)

x
− 1→ 0 as x→ +∞. Hence we are led to consider the following

identity:

Proposition 12. ∫ ∞
1

(
ψ(x)

x
− 1

)
dx

xs
= − ζ

′(s)

sζ(s)
− 1

s− 1
, valid for Re s > 1.

Proof. This follows from (24) by simply noting that∫ ∞
1

dx

xs
=

1

s− 1
, valid for Re s > 1.

(This could be interpreted as the Mellin transform of xχ[1,∞)(x).) �

From the meromorphic continuation (12) of ζ to some half-space {Re s > η} with η < 1, we see

that ζ′(s)
ζ(s) + 1

s−1 extends to a homormorphic function on the same half-space. Hence the right hand

side of the identity in Proposition 12 extends to a holomorphic function on an open set containing
the closed half plane {Re s ≥ 1}. This shows that the following Tauberian theorem applies:

Proposition 13. Let f(x) be a bounded function on [1,∞), and define

g(s) =

∫ ∞
1

f(x)
dx

xs
for Re s > 1.

Then g is holomorphic on Re s > 1. If g extends to a holomorphic function on an open set containing
the closed half plane Re s ≥ 1, then

∫∞
1 f(x)dxx exists, and is equal to g(1).
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Indeed

f(x) :=
ψ(x)

x
− 1

is a bounded function by Proposition 11, and the integral∫ ∞
1

f(x)
dx

xs
=

∫ ∞
1

(
ψ(x)

x
− 1

)
dx

xs

extends to a holomorphic function on an open set containing the closed half plane {Re s ≥ 1} by
Proposition 12. Hence assuming Proposition 13 for the moment, we obtain the following proposi-
tion:

Proposition 14. The improper integral

∫ ∞
1

(
ψ(x)

x
− 1

)
dx

x
converges.

The prime number theorem would then follow.

Proof of Theorem 1. As observed before, it suffices to verify (2). We argue by contradiction. Sup-
pose (2) is false. Then either there exists α > 1 such that ψ(xn) > αxn for a sequence {xn} with
xn → +∞, or there exists β < 1 such that ψ(yn) < βyn for a sequence {yn} with yn → +∞. In
the first case, since ψ is an increasing function, we have ψ(x) ≥ ψ(xn) ≥ αxn whenever x ≥ xn. In
particular,

(25)

∫ αxn

xn

(
ψ(x)

x
− 1

)
dx

x
≥
∫ αxn

xn

(αxn
x
− 1
) dx
x

=

∫ α

1

(α
x
− 1
) dx
x
,

the last integral being strictly positive, and independent of n. This contradicts Proposition 14: in
fact, Proposition 14 implies that∫ αxn

xn

(
ψ(x)

x
− 1

)
dx

x
=

∫ αxn

1

(
ψ(x)

x
− 1

)
dx

x
−
∫ xn

1

(
ψ(x)

x
− 1

)
dx

x
→ 0

as n→∞, and this is not compatible with the lower bound we have obtained in (25).

Similarly, in the second case, we use ψ(x) ≤ ψ(yn) < βyn whenever x ≤ yn, to conclude that∫ yn

βyn

(
ψ(x)

x
− 1

)
dx

x
≤
∫ yn

βyn

(
βyn
x
− 1

)
dx

x
=

∫ 1

β

(
β

x
− 1

)
dx

x
< 0

independent of n. This contradicts Proposition 14. �

It remains to prove Proposition 13.

Proof of Proposition 13. Suppose f is bounded, say |f(x)| ≤M for all x ≥ 1. Suppose also that

g(s) :=

∫ ∞
1

f(x)
dx

xs

extends holomorphically to an open set containing the closed half plane {Re s ≥ 1}. Let

gt(s) =

∫ t

1
f(x)

dx

xs
.

Then gt is entire for all t, and our goal is to show that gt(1) converges to g(1) as t → +∞. For
ε > 0 and δ > 0, let Λε,δ be the positively oriented closed contour, given by

(26) Λε,δ = Cε + L
(1)
δ + L

(2)
δ + L

(3)
δ
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where

• Cε be the semicircle in the right half plane {Re s > 1}, that is centered at 1 and of radius
1/ε;

• L(1)
δ is the horizontal straight line joining 1 + iε−1 to 1− δ + iε−1;

• L(2)
δ is the vertical straight line joining 1− δ + iε−1 to 1− δ − iε−1; and

• L(3)
δ is the horizontal straight line joining 1− δ − iε−1 to 1− iε−1.

Then for any ε > 0, as long as δ is sufficiently small, we have, by Cauchy integral formula, that

gt(1)− g(1) =
1

2πi

∫
Λε,δ

[gt(s)− g(s)]
ds

s− 1
.

For various technical reasons, we will actually use the following identity instead (which also follow
from Cauchy’s integral formula, since the extra factor ts−1(1 + ε2(s− 1)2) is entire in s, and equals
1 when s = 1):

(27) gt(1)− g(1) =
1

2πi

∫
Λε,δ

[gt(s)− g(s)]ts−1(1 + ε2(s− 1)2)
ds

s− 1

Now we decompose the above path integral into 4 parts, according to (26). For s ∈ Cε, we have

|gt(s)− g(s)| ≤
∫ ∞
t
|f(x)| dx

xRe s
≤ Mt1−Re s

Re s− 1
,

|ts−1| ≤ tRe s−1

|1 + ε2(s− 1)2| = |s− (1− iε−1)||s− (1 + iε−1)|
ε−2

≤ C |Re s− 1|
ε−1

1

|s− 1|
=

1

ε−1
.

Hence

(28)

∣∣∣∣ 1

2πi

∫
Cε

[gt(s)− g(s)]ts−1(1 + ε2(s− 1)2)
ds

s− 1

∣∣∣∣ ≤ CMε

Next, let C̃ε be the semi-circle in the left half plane {Re s < 1}, that is centered at 1 and of radius

1/ε. Then we integrate the part concerning g in (27), over C̃ε instead of over L
(1)
δ + L

(2)
δ + L

(3)
δ .

(This is possible because gt is entire.) Hence∫
L
(1)
δ +L

(2)
δ +L

(3)
δ

gt(s)t
s−1(1 + ε2(s− 1)2)

ds

s− 1
=

∫
C̃ε

gt(s)t
s−1(1 + ε2(s− 1)2)

ds

s− 1
.

But on C̃ε, we have

|gt(s)| ≤
∫ t

1
|f(x)| dx

xRe s
≤ Mt1−Re s

1− Re s
.

Similarly as before, on C̃ε, we have

|ts−1(1 + ε2(s− 1)2)| ≤ C t
Re s−1(1− Re s)

ε−1
.

Hence

(29)

∣∣∣∣∣ 1

2πi

∫
L
(1)
δ +L

(2)
δ +L

(3)
δ

gt(s)t
s−1(1 + ε2(s− 1)2)

ds

s− 1

∣∣∣∣∣ ≤ CMε.
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Finally, the contribution of g(s) to the contour integral over L
(1)
δ + L

(3)
δ is given by

(30)

∣∣∣∣∣ 1

2πi

∫
L
(1)
δ +L

(3)
δ

g(s)ts−1(1 + ε2(s− 1)2)
ds

s− 1

∣∣∣∣∣ ≤ Cδε
where |g| ≤ C on L

(1)
δ ∪ L

(3)
δ . This is because L

(1)
δ and L

(3)
δ both have lengths ≤ δ, and that

1/|s− 1| ' ε on L
(1)
δ ∪ L

(3)
δ . (Note also that |ts−1| ≤ 1 since Re s < 1, and |1 + ε2(s− 1)2| ≤ C on

L
(1)
δ ∪ L

(3)
δ .) Now the contribution of g(s) to the contour integral over L

(2)
δ is given by

(31)

∣∣∣∣∣ 1

2πi

∫
L
(2)
δ

g(s)ts−1(1 + ε2(s− 1)2)
ds

s− 1

∣∣∣∣∣ ≤ C t−δεδ .
This is because the length of L

(2)
δ is 2/ε, the function |g| is bounded by C on L

(2)
δ , and |ts−1| = t−δ

on L
(2)
δ ; also, |1 + ε2(s− 1)2| ≤ C on L

(2)
δ , and 1/|s− 1| ≤ 1/δ on L

(2)
δ .

Altogether, by (27), (28), (29), (30) and (31), we see that for any ε > 0, there exists a small
δ > 0, such that

|gt(1)− g(1)| ≤ CMε+
Ct−δ

εδ
.

Letting t→ +∞, we see that

lim sup
t→+∞

|gt(1)− g(1)| ≤ CMε.

Since ε > 0 is arbitrary, this shows that gt(1)→ g(1) as t→ +∞, as desired. �

10. Concluding remarks

We end by mentioning some comparisons of the two proofs of the prime number theorem given
above.

The Tauberian proof based on the work of Newman is shorter, and does not involve the use
of any quantitative estimates of ζ on the line {Re s = 1}, whereas the proof given in [9] requires
knowing such estimates. Nevertheless, the proof given in [9] works in more general context, when
one wants to obtain asymptotics for

∑
n≤x an for any appropriate sequences an; also, the proof is

more powerful, in the sense that if we had known further information about the zeroes of ζ (say
we know that ζ has no zeroes on {Re s > η} for some particular η > 0), then we can use that to
our advantage, and obtain lower order correction terms to the asymptotics of π(x). (This would be
hard to do with the Tauberian argument of Newman.) Hence it is useful to know the meromorphic
continuation of ζ to a region in the complex plane that is as large as possible, and to understand
its zeroes there. Indeed, one of the famous “explicit formulas” in the theory of primes says

ψ1(x) =
x2

2
−
∑
ρ

xρ

ρ(ρ+ 1)
− E(x)

where the sum is taken over all zeroes ρ of the ζ function in the critical strip {0 ≤ Re s ≤ 1}, and
E(x) = O(x) is an error term.7 (There is also a corresponding explicit formula for ψ(x), except that
that sum does not converge absolutely, contrary to the one for ψ1(x) given above.) This highlights,
for instance, the importance of the famous Riemann hypothesis, that all zeroes of ζ on the critical

7See Problem 2 in Chapter 7 of [9].
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strip {0 < Re s < 1} is on the line Re s = 1/2. It has been shown in [7] that the Riemann hypothesis
implies that

|ψ(x)− x| < 1

8π

√
x(log x)2

for all x ≥ 73.2, and that

|π(x)− Li(x)| < 1

8π

√
x log x

for all x ≥ 2657. (Note that the power of x on the right hand side is essentially 1/2.) Also, the
Riemann hypothesis can be shown [11] to be equivalent to the estimate

|π(x)− Li(x)| ≤ C
√
x log x

for some constant C. There are actually many other equivalent forms of Riemann hypothesis, which
is beyond our scope of discussion here.
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