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We choose to start the study of topology from a natural extension of absolute value or modulus

between two numbers, that is, a distance measurement on a set. This provides an easy intuition

of the study.

The concept of metric space is trivially motivated by the easiest example, the Euclidean space.

Namely, the metric space (Rn, d) with

d(x, y) = ∥x− y∥ =

[
n∑

k=1

(xk − yk)
2

]1/2

,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). This is usually referred to as the standard metric

on Rn.

There are other metrics on Rn, customarily called ℓp-metric, for p ≥ 1, where

dp(x, y) = ∥x− y∥p =

[
n∑

k=1

(xk − yk)
p

]1/p

.

In this sense, the standard metric is actually the ℓ2-metric. There is also the ℓ∞-metric given

by

d∞(x, y) = max {|xk − yk| : k = 1, . . . , n} .

Why can we say that ℓp and ℓ∞ are also valid ways to measure distance? What are the essential

properties?

Let X be a nonempty set. A metric on X is a function d : X×X → [0,∞), that is, d(x, y) ≥ 0,

satisfying the followings

• d(x, y) = 0 if and only if x = y;

• d(x, y) = d(y, x) for all x, y ∈ X;

• d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

The pair (X, d) is called a metric space.

The first criterion emphasizes that a zero distance is exactly equivalent to being the same point.

The second symmetry criterion is natural. The third criterion is usually referred to as the

triangle inequality . It turns out in most examples, the triangle inequality is the crucial one.

Try to verify the properties of metric in the cases of ℓp and ℓ∞. Note that the triangle inequality

is satisfied by the ℓp-metric on Rn for all p ≥ 1 and p = ∞. There is something wrong when

0 < p < 1.



Let us understand the ℓp-metric for different values of p by considering the pictures of the sets

of radius 1, i.e., {x ∈ Rn : dp(x, 0) = 1 }. The pictures of other radii are similar and they are

convex when p ≥ 1.
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The pictures for p = 1 (green), p = 2 (purple), p = 5 (brown), and p = ∞ (blue).

Try to consider both analytically and geometrically why 0 < p < 1 will not give a metric.

The discrete metric on any nonempty set X is defined by

d(x, y) =

{
0 if x = y,

1 if x ̸= y.

That this defines a metric can be readily proved by verifying the criteria case by case. The

discrete metric is kind of an uninteresting metric because any two distinct points will have a

fixed distance afar. However, it often serves as an example to check certain property of a space.

Similarly, we can understand the discrete metric by doing the following exercise about sets of

a certain radius. This is often a good way to understand a metric.

Let (X, d) be the discrete metric space and x0 ∈ X. Determine the sets {x ∈ X : d(x, x0) < r }
for different values of r > 0.

Metric can be defined on space of functions, although later you may find that it is sometimes

not so successful. Similar to the situation of Rn, there are several metrics on a function space.

For simplicity, let X = C([a, b],R) be the set of all continuous real valued functions defined on

an interval [a, b]. We have metrics dp for p ≥ 1 and p = ∞, namely, for f, g ∈ X,

dp(f, g) =

[∫ b

a
|f(t)− g(t)|p dt

]1/p
,

d∞(f, g) = sup { |f(t)− g(t)| : t ∈ [a, b] } .

The proof for that these are metrics is similar to the Euclidean cases. In fact, d∞ is a metric on

B([a, b],R), the set of bounded functions on [a, b]. However, there is difficulty extending dp to a

larger set of functions, even the functions are integrable.

A suitable choice of metric may have the effect of good comparison. Let X be the set of all

continuously differentiable (C1) functions on an interval [a, b] and

d(f, g) = sup { |f(t)− g(t)| : t ∈ [a, b] }+ sup
{ ∣∣f ′(t)− g′(t)

∣∣ : t ∈ [a, b]
}
.
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With this choice of metric, for the functions illustrated below, d(f, g) < d(f, h) because the

contribution of derivatives |f ′(t)− h′(t)| is large.

0f
f0

g h

To finish, we will give two examples. Both examples are related to error-correcting applications.

You are encouraged to understand them by the two standard tasks: verify the metric conditions

and think of the typical situation of d(x, x0) < r.

Let X = { 0, 1 }n, i.e., it contains points of n-coordinates of 0 and 1; d(x, y) is the number of

different coordinates between x and y.

Let X be the set of finite sequences of alphabets. For example, “homomorphic”, “homeomor-

phic”, “holomorphic”, “homotopic”, “homologous” are elements of X. Suppose there are three

valid operations, inserting an alphabet, deleting an alphabet, and replacing an alphabet by an-

other. For two elements x, y ∈ X, define d3(x, y) by the minimum number of operations required

to transform x to y.

We may also consider replacing an alphabet equivalent to deleting then inserting. In this case, we

only accept two types of operations and let d2(x, y) be the minimum number of such operations.
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