MATH2550

Home Work 1

Due Date: 20 Feb. 2017

- 1. Let $\vec{p} = \hat{i} + 3\hat{j} \hat{k}$ and $\vec{q} = \hat{i} + 3\hat{j} + \hat{k}$ be two vectors in \mathbb{R}^3 , find (if any) the unit vector with positive *y* -coordinate and which is orthogonal to both \vec{p} and \vec{q} .
- 2. Compute the following vectors:
 - i. $(\hat{p} \times \hat{q}) \cdot \hat{k} (\hat{p} \times \hat{k}) \cdot \hat{q}$, where \vec{p} and \vec{q} are the two vectors given in question 1 above.
 - ii. Show that for any two non-zero vectors \vec{v} and \vec{w} in \mathbb{R}^3 , the vector $\vec{v} \cdot (\vec{v} \times \vec{w})$ is a zero vector.
- 3. Find the cylindrical coordinates of the point \mathbb{R}^3 whose rectangular coordinates are given by x = -5, y = 1, z = 4.
- 4. Find the rectangular coordinates of the point \mathbb{R}^3 whose cylindrical coordinates are given by $r = 1, \theta = \pi/3, h = -2$.
- 5. Suppose $\vec{r}(t) = \cos(2t) \hat{i} + \sin(2t) + (t^2 + 1)\hat{k}$ represents the position of a certain particle in \mathbb{R}^3 at time t (You may assume $t \ge 0$).
 - i. What is the value of t when the height is 5?
 - ii. What is the speed (i.e. the magnitude of the velocity vector) when the height is 5?
- iii. What are the x, y coordinates of the particle at height 5?
- iv. Suppose that at height 5, the particle leaves its trajectory and moves along a straight line to the origin. Find the length of this straight line.
- 6. Compute the following line integral $\int_C f ds$, where f(x, y) = 2x + 3y + 4zand *C* is the curve given by the vector-valued function $\vec{r} : [0, 2\pi] \to \mathbb{R}^3$, with $\vec{r}(t) = \cos(2t) \ \hat{\iota} + \sin(2t) \ \hat{\jmath} + t\hat{k}$.
- 7. Compute the following line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x, y) = 2x\vec{i} + 3y\vec{j}$ and *C* is the rectangle joining the points (0,0), (0,1), (2,1) and (2,0). (in that order).