
WEEK 9

(1) Let U be an open subset of Rn. Let f : U → R be a 0-form.
The exterior derivative df of f is defined by

df =
∂f

∂x1
dx1 + ...+

∂f

∂xn
dxn.

(2) More generally, if α =
∑

i1<...<ik
αi1,...,ikdxi1 ∧ ... ∧ dxik , then

dα =
∑

i1<...<ik

∑
j

∂αi1,...,ik
∂xj

dxj ∧ dxi1 ∧ ... ∧ dxik .

(3) Note that dxi ∧ dxi = 0 and dxi ∧ dxj = −dxj ∧ dxi.
(4) e.g. if α = x1x3dx2∧dx4, then dα = x3dx1∧dx2∧dx4−x1dx2∧

dx3 ∧ dx4.
(5) e.g. If α = x1x2dx2 ∧ dx4 − x22dx3 ∧ dx4, then dα = x2dx1 ∧

dx2 ∧ dx4 − 2x2dx2 ∧ dx3 ∧ dx4.
(6) Proposition: d2α = 0.
(7) The generalized Stoke’s theorem:

∫
M
dα =

∫
∂M

α. We need
to know what is ∂M (this is not the topological boundary of
M) and we need to assign an orientation to ∂M so that

∫
∂M

α
makes perfect sense. We will do this in low dimensional cases
only.

(8) Assume that M is an open set in R2. In this case ∂M is the
topological boundary. Assume that the topological boundary
is a finite union of closed smooth curves. (To be precise, the
following condition is also needed: for each point x in ∂M there
is an open ball B centred at x such that ∂M ∩ B is a graph
of a smooth function and B − ∂M consists of two connected
components one of which is contained in M and the other one
is outside the closure of M .)

(9) Under the above assumptions, we can define, for each x in ∂M ,
an outward pointing normal n(x) such that n(x) is perpendicu-
lar to the tangent space Tx∂M at x and n(x) is pointing out of
M . We orient ∂M by this outward pointing normal. This means
that a vector v in the tangent space Tx∂M defines the bound-
ary orientation of ∂M if {n(x), v} coincides with the standard
orientation {e1, e2} on R2.

(10) e.g. If M is a disk Dr of radius r, then the boundary orientation
on ∂M is counter clockwise orientation. If M = DR−Dr, where
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r < R, then ∂M consists of two components, one is ∂DR, the
circle of radius R, and the other one is ∂Dr, the circle of radius
r. The boundary orientation induces by M on DR is the counter
clockwise rotation and that on Dr is the clockwise rotation.

(11) Green’s theorem: α = fdx + gdy (is a 1-form defined on an

open set containing the closure of M), dα =
(
∂g
∂x
− ∂f

∂y

)
dx∧dy,

and so∫
∂M

fdx+ gdy =

∫
M

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

(12) Let α = (3x2 +y)dx+(2x+y3)dy and C is the circle of radius r
centred at 0 equipped with the counter clockwise rotation. Find∫
C
α. Let D be the disk of radius r centred at 0. By Green’s

theorem
∫
C
α =

∫
∂D
α =

∫
D
dα =

∫
D
dx ∧ dy = πr2.

(13) Let α = ex sin(y)dx + ex cos(y)dy and let C be the union of
the semi-circle defined by y =

√
1− x2 and the line segment

{(x, 0)|x ∈ [−1, 1]}. Find
∫
C
α. One might start doing it by

using the definition. But it can be done easily by Green’s the-
orem since dα = 0. It follows that

∫
C
α =

∫
D
dα = 0, where D

is the upper half disk of radius 1.
(14) Let α = − y

x2+y2
dx+ x

x2+y2
dy. Note that α is a 1-form on R2 −

{0}, not on R2. If U is an open set such that 0 is not in U
and C = ∂U is a closed curve without self intersection. Note
that dα = 0. Then, by Green’s theorem,

∫
C
α =

∫
U
dα = 0.

On the other hand, if 0 is in U , then Green’s theorem does not
apply since α is not defined on U . Instead, let Dr be the disk
of radius r. r is chosen such that Dr is contained in U . By
Green’s theorem,

0 =

∫
U−Dr

dα =

∫
∂(U−Dr)

α =

∫
∂U

α−
∫
∂Dr

α.

Here ∂Dr is oriented by outward pointing normal of Dr which
completely opposite to that induced by U −Dr. This accounts
for the negative sign before

∫
∂Dr

α.

Let ϕ : [0, 2π] → ∂Dr be the map ϕ(θ) = (r cos θ, r sin θ).

Dϕ(θ) =

(
−r sin θ
r cos θ

)
and so∫

∂U

α =

∫
∂Dr

α =

∫ 2π

0

1 = 2π.


