WEEK 7

- (1) Let A be a $n \times k$ matrix with $n \geq k$. Assume that A has full rank. The k-dimensional volume of $A([0,1]^k)$ is given by $\sqrt{\det(A^T A)}.$
- (2) Note that $A^T A$ is invertible under the above assumptions.
- (3) Note also that the *ij*-th entry of $A^T A$ is given by $\langle v_i, v_j \rangle$, where v_i is the i-th column of A.
- (4) Let U be an open set in \mathbb{R}^k and let $\varphi: U \to \mathbb{R}^n$ be a map which is 1 - 1 and $D\varphi(x)$ has full at each x in U. The k-dimensional volume of $\varphi(U)$ is defined by

$$\int_U \sqrt{\det(D\varphi(x)^T D\varphi(x))}.$$

(5) (U, φ) is called a parametrization of $M := \varphi(U)$. The k-dimensional volume of M is independent of the choice of parametrizations. The proof is done by a change of variables and the chain rule.

(6) Special case (k = 1): In this case,

$$\sqrt{\det(D\varphi(x)^T D\varphi(x))} = |\varphi'(x)|$$

and the 1-dimensional volume of $\varphi(U)$ is its arc-length.

(7) Special case (k = 2 and n = 3): In this case,

$$\sqrt{\det(D\varphi(x)^T D\varphi(x))} = |D\varphi(x)(e_1) \times D\varphi(x)(e_2)|,$$

where \times is the cross product. The surface area, which is also the 2-dimensional volume, of $\varphi(U)$ is

$$\int_{U} |D\varphi(x)(e_1) \times D\varphi(x)(e_2)|.$$

(8) e.g. Area of sphere S of radius R: Let $\varphi: (0, 2\pi) \times (0, \pi) \to S$

$$\varphi(\theta, \alpha) = (R\sin\alpha\cos\theta, R\sin\alpha\sin\theta, R\cos\theta).$$

$$\det(D\varphi^T D\varphi) = R^4 \sin^2 \alpha$$

Area of $S = \int_0^{2\pi} \int_0^{\pi} R^2 \sin \alpha d\alpha d\theta = 4\pi R^2$

(9) Find the area of the surface M in \mathbb{R}^4 defined by $x_1^2 + x_2^2 = r_1^2$ and $x_3^2 + x_4^2 = r_2^2$. Let $\varphi : (0, 2\pi)^2 \to M$ be the parametrization defined by $\varphi(\theta, \alpha) = (r_1 \cos \theta, r_1 \sin \theta, r_2 \cos \alpha, r_2 \sin \alpha).$

$$\varphi(\theta, \alpha) = (r_1 \cos \theta, r_1 \sin \theta, r_2 \cos \alpha, r_2 \sin \alpha)$$

$$\begin{split} \det(D\varphi^T D\varphi) &= r_1^2 r_2^2\\ \text{Area of S} &= 4\pi^2 r_1 r_2 \end{split}$$

(10) e.g. Let U be an open set in \mathbb{R}^m and let $f : \mathbb{R}^m \to \mathbb{R}$ be a C^1 function. The *m*-dimensional volume of the graph $M = \{(x, f(x)) | x \in U\}$ is given by

(0.1)
$$\int_{U} \sqrt{1 + |Df(x)|^2}$$

Let $\varphi: U \to M$ be the parametrization defined by (x, f(x)). Then $D\varphi(x) = \begin{pmatrix} I \\ Df(x)^T \end{pmatrix}$. Then

$$\sqrt{\det(D\varphi(x)^T D\varphi(x))} = \sqrt{\det(I + Df(x)Df(x)^T)}$$

Note that the matrix $B := I + Df(x)Df(x)^T$ has eigenvector Df(x) with eigenvalue $1 + |Df(x)|^2$.

B-I has rank 1, so 1 is an eigenvalue of B with m-1 dimensional eigenspace.

By spectral theorem det B is the product of eigenvalues of B, so det $B = 1 + |Df(x)|^2$. Therefore, (0.1) holds.