
WEEK 10

(1) The generalized Stokes’ theorem:
∫
M
dα =

∫
∂M

α. The diver-
gence theorem is a special case when M is an open set in R3

such that ∂M is a union of finitely many smooth surface. (To
be precise, the following condition is also needed: for each point
x in ∂M there is an open ball B centred at x such that ∂M ∩B
is a graph of a smooth function and B − ∂M consists of two
connected components one of which is contained in M and the
other one is outside the closure of M .)

(2) Under the above assumptions, we can define, for each x in ∂M ,
an outward pointing normal n(x) such that n(x) is perpendic-
ular to the tangent space Tx∂M at x and n(x) is pointing out
of M . We orient ∂M by this outward pointing normal. This
means that an ordered basis {v, w} of the tangent space Tx∂M
defines the boundary orientation of ∂M if {n(x), v, w} coincides
with the standard orientation {e1, e2, e3} on R3.

(3) In this case, α = F1dy ∧ dz − F2dx ∧ dz + F3dx ∧ dy and

dα =

(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dx ∧ dy ∧ dz

=: div(F )dx ∧ dy ∧ dz

where F = (F1, F2, F3).
(4) The divergence theorem (version I):∫

M

div(F ) =

∫
∂M

F1dy ∧ dz − F2dx ∧ dz + F3dx ∧ dy.

(5) Let n(x) the unit normal vector field of a surface N which ori-
ents N . In other words, n(x) has length one, n(x) is perpendic-
ular to TxN for each x, and {v, w} orients TxN if and only if
{n(x), v, w} orients R3. Let dS be the 2-form on N defined by

dS(v1, v2) = det
(
n(x) v1 v2

)
,

where v1 and v2 are in TxN .
(6) Note that dS acts on tangent vectors v in TxN not a differen-

tial form defined on open subsets of R3. (Smoothness and exte-
rior derivative of forms defined on surfaces are defined through
charts, we will not discuss this in the course.)
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(7) Fact: 〈F (x), n(x)〉 dS = F1dy ∧ dz − F2dx ∧ dz + F3dx ∧ dy.
Proof: Decompose F by F (x) = 〈F (x), n(x)〉n(x) + G(x),

where G(x) is in the tangent space TxN .

(F1dy ∧ dz − F2dx ∧ dz + F3dx ∧ dy)(v1, v2)

= det
(
F (x) v1 v2

)
= 〈F (x), n(x)〉 det

(
n(x) v1 v2

)
= 〈F (x), n(x)〉 dS(v1, v2).

(8) The divergence theorem (version II):∫
M

div(F ) =

∫
∂M

〈F, n〉 dS,

where dS is defined by the outward pointing normal.
(9) Remark that |v1×v2| is the volume of the parallelogram spanned

by v1 and v2. | det(n(x), v1, v2)| is the volume of the paral-
lelepiped spanned by n(x), v1, and v2. Therefore,

|dS(v1, v2)| = | det(n(x), v1, v2)| = |v1 × v2|.

(10) Let M be the part of the paraboloid z = 1 − x2 − y2 that
lies above the xy-plane. Find

∫
M
〈F, n〉 dS, where F (x, y, z) =

(x, y, z) and n is the upward pointing normal.
Solution 1: Let ϕ(x, y) = (x, y, 1−x2 = y2) be a parametriza-

tion of M , where (x, y) is contained in the disk D of radius 1.

Dϕ(x, y) =

 1 0
0 1
−2x −2y

 =:
(
v w

)

Since det

 0 1 0
0 0 1
1 −2x −2y

 = 1 > 0, the orientation in-

duced by ϕ coincides with that of defined by the upward point-
ing normal. Therefore,∫
M

〈F, n〉 dS =

∫
ϕ(D)

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

=

∫
D

x(2x)− y(−2y) + (1− x2 − y2) =

∫
D

(1 + x2 + y2)

=

∫ 2π

0

∫ 1

0

r(1 + r2)drdθ =
3π

2
.
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Solution 2: (1, 0,−2x) × (0, 1,−2y) = (2x, 2y, 1) is pointing
upward. So,

n =
1√

1 + 4x2 + 4y2
(2x, 2y, 1).

∫
M

〈F, n〉 dS =

∫
ϕ(D)

〈F, n〉 dS

=

∫
D

2x2 + 2y2 + 1− x2 − y2√
(1 + 4x2)(1 + 4y2)

dS(v, w)

=

∫
D

1 + x2 + y2

(1 + 4x2)(1 + 4y2)
det

 2x 1 0
2y 0 1
1 −2x −2y


=

∫
D

1 + x2 + y2

(1 + 4x2)(1 + 4y2)
(1 + 4x2 + 4y2)

=

∫
D

(1 + x2 + y2) =
3π

2

(11) Find
∫
N
〈F, n〉 dS, where F (x, y, z) = (x, y, 0), N is the sphere

of radius R centred at 0, and n is the outward pointing unit
normal of the ball B of radius R centred at 0.

Solution 1: By the divergence theorem,∫
N

〈F, n〉 dS =

∫
B

div(F ) = 2

∫
B

1 =
8

3
πR3.

Solution 2: Let ϕ : [0, 2π]× [0, π]→ N be defined by

ϕ(θ, φ) =

 R sinφ cos θ
R sinφ sin θ
R cosφ

 .

Then

Dϕ =

 −R sinφ sin θ R cosφ cos θ
R sinφ cos θ R cosφ sin θ

0 −R sinφ

 =:
(
v1 v2

)
.
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The outward pointing normal is n =

 sinφ cos θ
sinφ sin θ

cosφ

 and

det
(
n v1 v2

)
=

 sinφ cos θ −R sinφ sin θ R cosφ cos θ
sinφ sin θ R sinφ cos θ R cosφ sin θ

cosφ 0 −R sinφ


= −R2 cos2 φ sinφ−R2 sin3 φ = −R2 sinφ < 0.

(0.1)

So the orientation induced by ϕ is opposite to that defined by
the outward pointing normal.

Therefore,∫
N

〈F, n〉 dS = −
∫
ϕ([0,2π]×[0,π])

xdy ∧ dz − ydx ∧ dz

= −
∫
[0,2π]×[0,π]

−R3 sin3 φ cos2 θ −R3 sin3 φ sin2 θ

= 2πR3

∫ π

0

sin3 φdφ = 2πR3

∫ 1

−1

1− a2da =
8πR3

3
.

Here a = cosφ.
Solution 3: By (0.1), the orientation induced by ϕ is opposite

to that defined by the outward pointing normal. Therefore,∫
N

〈F, n〉 dS = −
∫
ϕ([0,2π]×[0,π])

〈F, n〉 dS

= −
∫
[0,2π]×[0,π]

R sin2 φdS(v1, v2)

=

∫
[0,2π]×[0,π]

R3 sin3 φ =
8πR3

3
.


