
MATH 1010A Notes
Week 1

1. Introduction

In this course, we plan to discuss what is known as ‘infinitesimal’ calculus. The main object
of study in this course are functions.

We will discuss how to describe a function via (i) the curve (or ‘graph’) it describes, (ii)
the behavior as the variable (or ‘input value’) tends to −∞ or +∞, and the (iii) ‘maximum’
or ‘minimum’ points of the function (the terminologies will be defined later).

Roughly speaking, a function is described by the following

Definition 1.1. A function is a rule, f , which assigns a unique value, f(x), to each given
input value x.

Remark 1. In the above definition, we have 3 things: (i) a rule, denoted by a single letter f ,
(ii) a value f(x) (for each x) and (iii) an input x (also known as ‘variable’ or more precisely
‘independent variable’).1

• The rule can be denoted by a single or multiple letter(s) (but without the brackets
and the input variable!). Examples are: f, g, h, cos, sin, tan

• The value f(x) is also known as ‘evaluation’ of f at x.2

• Often times, we denote a function by the following schematic diagram:

x
f7→ f(x)

Sometimes, we also use the following schematic diagram:

f : x 7→ f(x).

After defining a function, we go on to mention its domain.

In this course, when we talk about domain, we usually mean ‘natural domain’, i.e. the
‘largest possible domain’.

Example 1. Let f be the function given by the rule f(x) = 1/x (some people would write it
more rigorously as:

f(x) := 1/x,

where the expression on the left-hand side of the := sign is ‘evaluated’ or ‘computed’ by the
formula on the right-hand side. Then the domain (i.e. the nat. dom. (or natural domain) is
the set

{x ∈ R | x ̸= 0}.

Remark 2. In the above example, we have used notation for a set. Note that it consists of
the following:

1Later on, we will define something called a ‘domain’, the ‘co-domain’ and the ‘range’ associated with a
function.

2It is also known as ‘value’ of f at x.
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(1) Two curly brackets;
(2) the symbol of element in the set, i.e. ‘x’ followed by ‘∈ R’ (this may be omitted if

we know that it is a real no.);
(3) a vertical bar ‘|’, to the right of which we write down further properties the element

x must satisfy (in order to be in this set).

1.1. Sequences. A sequence is a function, whose domain is the set of positive integers,
denoted by N∗.3

Remark 3. In the lecture, we mentioned that there are two ways of writing down a set,
either by specifying the ‘properties’ an element in the set has to satisfy, or by listing all the
elements in the set. E.g.
{x| x is a positive integer} versus {1, 2, 3, · · · }.

The first one is convenient for defining a set consisting of infinitely many elements, because
in such cases, it may not always be possible to list all of them.

Example 2. Let f be the rule given by f(x) = 1/x and now take the domain to be N∗, then
we get a sequence

n
f7→ 1/n

given by f(n) = 1/n. Here we changed the notation for the input from x to n to remind
ourselves that the input is a positive integer.

Traditionally, people denoted sequences by

(1) {fn} (which is a short form of {fn| n ∈ N∗} or {f1, f2, f3, · · · }. (when we use curly
brackets, we are thinking of a set), or

(2) (fn) (which is a short form of (f1, f2, f3, · · · ) (when we use round brackets, we are
thinking of coordinates.)

2. Examples of Functions – Trigonometric Functions

Before we can work with functions, we have to have examples of them. From school math,
we know the following functions, the first three of them were defined already by ancient
Greeks.

sin, cos, tan, exp, ln

Their main properties are

(1) periodic, i.e. their graphs are cut-and-pasting of some fundamental pieces, in terms
of formulas, this is given by

sin(x+ 2π) = sin(x) for each x

cos(x+ 2π) = cos(x) for each x

tan(x) is slightly different.
(2) sine and cosine functions are bounded above by +1 and below by −1. This is the

consequence of the Pythagoras Theorem:

cos2 x+ sin2 x = 1 for each x

3In some books, N denotes the set of positive integers.



3

2.1. Some useful formulas. Here are some useful formulas for sine, cosine and tangent
(which holds for each x in their natural domains).

(1) sin2 x+ cos2 x = 1, 1 + tan2 x = sec2 x
(2) sin(x± y) = sin(x) cos(x)± sin(y) cos(x)
(3) cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)
(4) double angle formulas for sine and for cosine
(5) formula for sin(A) + sin(B) in terms of products of sine and cosine and other similar

formulas (these are derivable form (2) and (3).

Remark 4. If one assumes that the formula

ey = 1 + y +
y2

2!
+

y3

3!
+ · · ·

continues to hold if y is replaced by the imaginary number
√
−1x, where x is a real number,

then one can obtain the formulas (2) and (3) above easily (where one has also to assume the
following formulas for sine and cosine which were discovered by Euler):

(1) sinx = x− x3/3! + x5/5!− · · ·
(2) cosx = 1− x2/2! + x4/4!− · · ·

These formulas were also discovered by Indian astronomers around the 15th century. It is
important to remember that these formulas assume that x is measured in ‘radians’.

2.2. A remark on our goal. One main idea in calculus is ‘approximation’. Indeed, the
above formulas for sine and cosine can be explained by the Taylor’s Theorem (which we will
explain in the middle of the course). This theorem roughly says:

A function (with f ′, f ′′, f ′′′, · · · all defined) can be written as

f(x) = f(c) +
f ′(c)

1!
(x− c)1 +

f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · ·

One can make use of this formula to calculate ‘approximate’ value of sin(x) or cos(x) for
any given x by considering suitable number of terms (instead of ‘all’ terms, which a computer
cannot handle!)

3. Limit of sequences

Before we can discuss Taylor’s Theorem (which is still a long way ahead), one has to first
discuss ‘limits’, because ‘limits’ is a very important tool in understanding

(1) functions,
(2) sequences,
(3) derivatives of functions

We first begin with +,−,×,÷ of limits of sequences. We have

Theorem 3.1. Let {an} and {bn} be two sequences with limits L and M respectively (suppose
also that L and M are finite numbers). Then we have

(1) limn→∞(an + bn) = L+M ,
(2) limn→∞(an − bn) = L−M ,
(3) limn→∞(an × bn) = LM ,
(4) limn→∞(an/bn) = L/M ,

In the last item, one has to assume also that M ̸= 0.
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Using this and some well-known simple facts such as limn→∞ 1/nk = 0, k ∈ N∗ and
limn→∞ nk = ∞, together with the following ‘Monotone Convergence Theorem’ and ‘Sand-
wich Theorem’, one can compute a lot of limits of sequences.

Theorem 3.2. Let {an} be a sequence satisfying

(1) an ≤ an+1 for each n = 1, 2, 3, · · · ,
(2) an ≤ C for some real number C

then limn→∞ an exists (and is a finite number).

Theorem 3.3. Let {an}, {bn} {cn} be three sequences satisfying

(1) an ≤ bn ≤ cn for each positive integer n,
(2) limn→∞ an = L and limn→∞ cn = L (L is assumed to be finite),

then limn→∞ bn exists (and is equal to L).


