In this course we discuss the well-posededness of the evolution equations in Banach spaces.
Such problems arise in PDEs dynamics and functional equations. We develop the linear and
nonlinear theory for the corresponding solution semigroups. The lectures include for example
the Hille-Yosiida theory, Lumer-Philiips theory for linear semigroup and Crandall-Liggett
theory for nonlinear conrtractive semigroup and Crandall-Pazy theory for nonlinear evolution
equations. Especially, (numerical) approximation theory for PDE solutions are discussed
based on Trotter-Kato theory and Takahashi-Oharu theory, Chernoff theory and the operator
splitting method. The theory and its applications are examined and demonstrated using
many motivated PDE examples including linear dynamics (e.g. heat, wave and hyperbolic
equations) and nonlinear dynamics (e.g. nonlinear diffusion, conservation law, Hamilton-
Jacobi and Navier-Stokes equations). A new class of PDE examples are formulated and the
detailed applications of the theory is carried out.

The lecture also covers the basic elliptic theory via Lax-Milgram, Minty-Browder theory
and convex optimization. Functional analytic methods are also introduced for the basic
PDEs theory.

The students are expected to have the basic knowledge in real and functional analysis
and PDEs.

Lecture notes will be provided. Reference book: ”Evolution equations and Approxima-
tion” K. Ito and F. Kappel, World Scientific.

1 Linear Cauchy problem and Cj-semigroup theory

In this section we discuss the Cauchy problem of the form

d
Eu(t) = Au(t) + f(t), u(0)=wuy€ X

in a Banach space X, where ug € X is the initial condition and f € L'(0,7;X). Such
problems arise in PDE dynamics and functional equations.
We construct the mild solution u(t) € C(0,T; X):

u(t) = S(t)ug +/O S(t—s)f(s)ds (1.1)

where a family of bounded linear operator {S(t), t > 0} is Cy-semigroup on X.

Definition (C; semigroup) (1) Let X be a Banach space. A family of bounded linear
operators {S(t), t > 0} on X is called a strongly continuous (Cy) semigroup if

S(t+s)=S5(t)S(s) for t, s >0 with S(0) =1
|S(t)p — ¢l = 0ast — 0" forall p € X.

(2) A linear operator A in X defined by

A¢p = lim

t—0t

—S(t)(f —¢ (1.2)
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with
t —
dom(A) = {¢ € X : the strong limit of 11151+ w in X exists}.
t—

is called the infinitesimal generator of the Cj semigroup S(t).

In this section we present the basic theory of the linear Ciy-semigroup on a Banach space
X. The theory allows to analyze a wide class of the physical and engineering dynamics using
the unified framework. We also present the concrete examples to demonstrate the theory.
There is a necessary and sufficient condition (Hile-Yosida Theorem) for a closed, densely
defined linear A in X to be the infinitesimal generator of the Cy semigroup S(¢). Moreover,
we will show that the mild solution u(t) satisfies

(u(t), ) = (uo, ) + /(<93(S),A*¢> + (f(s),¥) ds (1.3)

for all ¢ € dom (A*).

Examples (1) For A € £(X), define a sequence of linear operators in X

Swlt) = Z (At

Then
1SN ()] < Z |A|t < it
and p
— ASN_1(t
TN (t) = ASy-1(?)
Since
S(t) = e = Jim Sx (), (1.4)
in the operator norm, we have
d

Z5(t) = AS(t) = S(1)A.

(2) Consider the the hyperbolic equation
ur +u, =0, u(0,2) =up(x) in (0, 1). (1.5)
Define the semigroup S(t) of translations on X = L?*(0,1) by
[S(t)uo](z) = oz —t), where wy(z)=0,2 <0, ay=wuyon [0,1]. (1.6)

Then, {S(t), t > 0} is a Cy semigroup on X. If we define u(t,z) = [S(t)uo)(x) with
up € H'(0,1) with uy(0) = 0 satisfies (1.8) a.e.. The generator A is given by

Ap = —¢' with dom(A) = {¢ € H'(0,1) with ¢(0) = 0}.
In fact

S(t)UO — Up . ao(l' - t) - lNLO
t B ¢

= —uy(x), ae. z€(0,1).



if ug € dom(A). Thus, u(t) = S(t)uo satisfies the Cauchy problem %u(t) = Au(t) if
uy € dom(A).
On the other hand if we apply the operator exponential formula (1.4) for this A,

o0

u(t,z) = Z (_]:') uf (2)t* = ug(x —t)

k=0

for uy € C*°(0,1), which coincides with (1.6). That is, the solution semigroup S(¢) is the
extension of the operator exponential formula.
(3) Let X; € R is a Markov process, i.e.

E*[g(Xsn)|Fi] = E**[g(X3)].
for all g € X = L?*(R"™). Define the linear operator S(t) by
(S(t)uo)(w) = E%%[ug(Xy)], t>0, ug€ X.
The semigroup property of S(t) follows from the Markov property, i.e.
S(t+s)uo = E™*uo(Xoys)] = BIE[uo(X{5)|1F] = BIE“X ug(X,)]] = E[(S(t)uo) (X.)] = S(s)(S(t)uo).

The strong continuity follows from that X — z is a.s for all z € R". If X, = B, is a
Brownian motion, then the semigroup S(¢) is defined by

1 _lz=yl?
Stl(r) = e | ) (1.7

and u(t) = S(t)up satisfies the heat equation.

2

Uy = %Au, u(0,2) = up(z) in L*(R™). (1.8)

1.1 Finite difference in time

Let A be closed, densely defined linear operator dom(A) — X. We use the finite difference
method in time to construct the mild solution (1.1). For a stepsize A > 0 consider a sequence
{u"} in X generated by

= Au™ + ", (1.9)
with L
n—1 _ —

n—1)A

Assume that for A > 0 the resolvent operator

Jy = (]— )\A)_l



is bounded. Then, we have the product formula:

n—1

u = Jlug+ Y Ty (1.10)
k=0

In order to u" € X is uniformly bounded in n for all ug € X (with f = 0), it is necessary
that

M
|Jy| < W for dw < 1, (1.11)

for some M > 1 and w € R.

Hille’s Theorem Define a piecewise constant function in X by

U)\(t) = uk_l on [tk—htk)

Then,

max |uy — u(t)|x — 0
te[0,7

as A — 07 to the mild solution (1.1). That is,

t ¢
S(t)r = lim (I — EA)[E}x

n—o0

exists for all x € X and {S(t), t > 0} is the Cj semigoup on X and its generator is A, where
[s] is the largest integer less than s € R.

Proof: First, note that

M
Il <
|’\’_1—)\w

and for z € dom(A)
Jhr —x = A, Az,

and thus

| e — x| = [N Az| < |Az| — 0

1—Aw
as A — 07. Since dom(A) is dense in X it follows that
|Jyz — x| = 0as A — 07 for all z € X.

Define the linear operators T)(¢) and S\ (t) by

t—t
Sx(t) = J§ and Ty(t) = 3"+ (X = A7), on (te. .
Then,
d
ET’\@ = AS\(t), a.e. int € [0,T].
Thus,

d

ds

Ty (t)uo — To(t)uo = /0 (T ()T (t — $)uo) ds — /0 (Sn()T(t = 5) — Th(s)S, (¢ — s)) Aug ds
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Since ;
Th(s)u — Sx(s)u = S

TA(tk_l)(J)\ — I)u on s € (tk:—lytk]'
By the bounded convergence theorem
|T)\(t>U0 — T#(t)U|X — 0

as A\, u — 0% for all u € dom(A?). Thus, the unique limit defines the linear operator S(t)
by
S(t)ug = lim Sy(t)up. (1.12)

A—0t

for all ug € dom(A?). Since

M wt

and dom(A?) is dense, (1.12) holds for all ug € X. Moreover, we have

S(t+s)u= lim Jy™ = JrJ"u = S(t)S(s)u

A—0t

and limy o+ S(t)u = limy_,o+ Jyiu = u for all uw € X. Thus, S(¢) is the Cy semigroup on X.
Moreover, {S(t),t > 0} is in the class G(M,w), i.e.,

|S(t)] < Me*".

Note that .
T\(t)up — ug = A/ Shug ds.
0

Since limy_,o+ Th(t)ug = limy_ o+ Sx(t)ug = S(t)up and A is closed, we have

t ¢
S(t)ug — ug = A/ S(s)ugds, / S(s)ugds € dom(A).
0 0
If B is a generator of {S(t), t > 0}, then

Bz = lim
t—0+ t
if © € dom(A). Conversely, if ug € dom(B), then uy € dom(A) since A is closed and
t — S(t)u is continuous at 0 for all v € X and thus

1 t
;A/ S(s)ugds = Aug as t — 0.
0

Hence St
—< )u;) — % = Buyg

That is, A is the generator of {S(t), t > 0}.

A'LLQ =



Similarly, we have

n—1 t t
kZ:OJ;‘kfk _/o S,\(t—s)f(s)ds—>/0 S(t—s)f(s)dsas A\ — 0"

by the Lebesgue dominated convergence theorem. [
The following theorem states the basic properties of Cy semigroups:

Theorem (Semigroup) (1) There exists M > 1, w € R such that S € G(M,w) class, i.e.,

|S(t)] < Me*, t>0. (1.13)

(2) If z(t) = S(t)zo, o € X, then z € C(0,T; X)
(3) If 2o € dom (A), then z € C*(0,T; X) N C(0,T;dom(A)) and

d

ax(t) = Ax(t) = AS(t)x.

(4) The infinitesimal generator A is closed and densely defined. For x € X
t
S(t)x—:r:A/ S(s)x ds. (1.14)
0

(5) A > w the resolvent is given by

(AT — A :/ e S(s) ds (1.15)
0
with estimate M
I A" < — 1.1
0= )77 < (1.16)

Proof: (1) By the uniform boundedness principle there exists M > 1 such that |S(t)] < M
on [0,ty] For arbitrary t = kty+ 7, k € N and 7 € [0,%;) it follows from the semigroup
property we get

[SE)] < 1S(T)]|S(to]* < MeMtorltoll < pret
with w = 3 log [S(to)|.
(2) Tt follows from the semigroup property that for A > 0

2(t+ h) — 2(t) = (S(h) — I)S(t)xo

and fort —h >0
x(t—h)—x(t) =St —h)(I —S(h))xg
Thus, x € C(0,T; X) follows from the strong continuity of S(t) at ¢t = 0.
(3)—(4) Moreover,
z(t+h)—x(t) Sh)—1
h h




and thus S(t)zo € dom(A) and

z(t + h) — x(t)

hlir& = AS(t)xy = Ax(t).
Similarly,
. a(t—h)y—a(t) S(h)p—¢
hlggl*' —h B hligl‘*‘ St —h) h = S(t)Azo.
Hence, for xy € dom(A)
t t t
S(t)xg —xg = / S(s)Azgds = / AS(s)xgds = A/ S(s)xods (1.17)
0 0 0

If 2, € don(A) — x and Az, — y in X, we have

S(t)r —x = /0 S(s)yds

Since

1 t
lim —/ S(s)yds =y
0

t—0t+ T

x € dom(A) and y = Az and hence A is closed. Since A is closed it follows from (1.17) that
forx € X

/t S(s)xds € dom(A)

and (1.14) holds. For z € X let
1 [h
Ty = E/ S(s)xds € dom(A)
0

Since x, — x as h — 0%, dom(A) is dense in X.
(5) For A > w define R; € L(X) by

t
R, :/ e S(s) ds.
0
Since A — A1 is the infinitesimal generator of the semigroup e*S(t), from (1.14)
(AN — AR =2 — e MS(t)x.
Since A is closed and |e™*S(¢)] — 0 as t — 0o, we have R = lim, ., R; satisfies
(N — A)Rp = ¢.

Conversely, for ¢ € dom(A)

RA=AD6= [ e S(6)(A= D0 = fim e 500 -0 =~

t—o00
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Hence oo
R= / e S(s)ds = (N — A)™*
0
Since for ¢ € X

M
A—w

],

|Rx| S/ le™S(s)x| < M/ W3 x| ds =
0 0

we have

M
A—w’

(N — A)7Y < A > w.

Note that

()\I—A)_Qz/ e MS(t) ds/ e**S(s) ds:/ / e MGt + 5) ds dt
0 o Jo

0
:/ / e S(o) dadt:/ oe *S(0) do.
o Ji 0

By induction, we obtain

1 [ee]
QI——AY%::T——ER/ (116G (¢) d. (L18)
n—1!J,
Thus,
e M
AN —A) < —— prlem A=Wt gy — 7 [
(AI=4) ‘—<n—1>!/o ‘ Ao

We then we have the necessary and sufficient condition:

Hile-Yosida Theorem A closed, densely defined linear operator A on a Banach space X
is the infinitesimal generator of a Cy semigroup of class G(M,w) if and only if

M
A=A < o forall A > (1.19)
_wn

Proof: The sufficient part follows from the previous Theorem. In addition, we describe the
Yosida construction. Define the Yosida approximation Ay € £(X) of A by

-1

Ay 3

= AJ,. (1.20)

Define the Yosida approximation:

Since

we have

EXOIES=DY
k=0



Since
S ()83 (1 8) = Sx(6)(Ar — A)S3(¢ — ),

we have

Sxa(t)xr — S5 (t)r = /Ot Sx(s)S5(t — s)(Ax — As)xds
Thus, for z € dom(A)
1Sy(t)x — S5(t)z| < MPte" |(Ay — Az)z] — 0
as A\, A — 0. Since dom(A) is dense in X this implies that

S(t)x = lim Sy(t)z exist for all x € X

A—0t

defines a Cj semigroup of G(M,w) class. The necessary part follows from (1.18) [J
Theorem (Mild solution) (1) If for f € L'(0,T; X) define

x(t) = x(0) —1—/0 S(t—s)f(s)ds,

then x(t) € C'(0,7; X) and it satisfies

0 :A/Otx(s) ds+/0tf(s) ds. (1.21)

(2) If Af € L'(0,T; X) then x € C(0,T; dom(A)) and

ﬂw:um+l@hwnﬁwnw

(3) If f € Wh'(0,T;X), ie. f(t) = f(0) + [ f'(s)ds, Lf = f € L'0,T;X), then
Az € C(0,T; X) and

A/O S(t—s)f(s)ds:S(t)f(O)—f(t)+/0 S(t—s)f'(s)ds. (1.22)

//St—s deT—//ST—S)dT)f()dS

t
A/ S(s)ds = S(t) — I
0
we have x(t) € dom(A) and

A/ x—x+/5(t—s ds—/f

9

Proof: Since

and



and we have (1.21).
(2) Since for h >0

z(t+h) — x(t)
h

:/O S(t—s)%f(s)der%/t S(t+h— s)f(s)ds

if Af € L}(0,T;X)

lim SR =) /t S(t — s)Af(s)ds + f(1)

h—0t h

a.e. t € (0,7"). Similarly,

z(t — fi)h— x(t) /0 B S(t—h— s)%ﬂs) ds + % - S(t—s)f(s)ds

N /OtS(t—s)Af(s)ds+f(t)

a.e. t € (0,7).
(3) Since

Tm(t):%(/o S(t+h—s)f(s)ds—/t+ S(t+h— s)f(s)ds

+/0t5(t—s)f(8+h})z_f(s) ds,

letting h — 07, we obtain(1.22). O

It follows from Theorems the mild solution
t
z(t) = S(t)x(0) +/ S(t—s)f(s)ds
0

satisfies t t
x(t):x(O)+A/0 x(s)—i—/o £(s) ds.

Note that the mild solution = € C(0,7; X) depends continuously on x(0) € X and f €
LY(0,T; X) with estimate

j2(t)] < M(e!(0)] + / 9| £(s) ds).

Thus, the mild solution is the limit of a sequence {z,} of strong solutions with z,,(0) €
dom(A) and f, € WH(0,T; X), i.e., since dom(A) is dense in X and W1(0,T; X) is dense
in L'(0,T; X),

|2, (t) — 2(t)|x — 0 uniformly on [0, T

10



for
|2,(0) — 2(0)|x = 0 and |f, — floro7:x) = 0 as n — oo.

Moreover, the mild solution z € C'(0,7 : X) is a weak solution to the Cauchy problem

d
Em(t) = Ax(t) + f(t) (1.23)
in the sense of (1.3), i.e., for all ¥ € dom(A*) (x(t),1)xxx+ is absolutely continues and
é%(lit),ﬂﬁ = (x(t),¥) + {f(1),9) a.e. in (0, 7).

If 2(0) € dom(A) and Af € L*(0,T; X), then Az € C(0,T; X), z € WH(0,T; X) and

d .
Ew(t) = Ax(t) + f(t), a.e. in (0,7T)

If (0) € dom(A) and f € WH(0,T; X), then x € C(0,T;dom(A)) NC*0,T; X) and

%x(t) = Az(t) + f(t), everywhere in [0, T.

1.2 Weak-solution and Ball’s result

Let A be a densely defined, closed linear operator on a Banach space X. Consider the
Cauchy equation in X:

%u = Au+ f(t), (1.24)

where u(0) = x € X and f € L'(0,7;X) is a weak solution to of (1.24) if for every
¥ €dom(A*) the function t — (u(t), ) is absolutely continuous on [0, 7] and

%(u(t),z/ﬁ = (u(t), A*) + (f(t),v), a.e. in [0,7]. (1.25)

It has been shown that the mild solution to (1.24) is a weak solution.
Lemma B.1 Let A be a densely defined, closed linear operator on a Banach space X. If

x, y € X satisty (y,v) = (x, A*¢) for all ¢y €dom(A*), then z € dom(A) and y = Ax.

Proof: Let G(A) C X x X denotes the graph of A. Since A is closed G(A) is closed. Suppose
y # Ax. By Hahn-Banach theorem there exist z, z* € X* such that (Az, z)+ (z, 2*) = 0 and
(y,z) + (z,2*) # 0. Thus z €dom(A*) and z* = A*z. By the condition (y, z) + (x, z*) = 0,
which is a contradiction. U

Then we have the following theorem.

Theorem (Ball) There exists for each z € X and f € L'(0, 7; X) a unique weak solution of
(1.24)satisfying u(0) = « if and only if A is the generator of a strongly continuous semigroup
{T'(t)} of bounded linear operator on X, and in this case u(t) is given by

u(t) = T(t)z + /0 Tt — s f(s) ds. (1.26)
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Proof: Let A generate the strongly continuous semigroup {7°(¢)} on X. Then, for some M,
|T(t)] < M ont € [0,7]. Suppose z €dom(A) and f € W1(0,7; X). Then we have

—(u(t), ) = (Au(t) + f(t),¥) = (u(t), A") + (f(1), ).

For (x, f) € X x L*(0,7; X) there exists a sequence (x,, f,) in dom(A) x WH(0, 7; X) such
that |z, — 2|x + [fn — flri0mx) — 0 as n — oo If we define

un(t) =T(t)x, + /Ot T(t —s)fn(s)ds,
then we have .
(unt).0) = (a.0) + [ (Quns), A°6) + {£u5) ) ds
and i .
WAU—M@MSA4Wm—ﬂx+AIh@%—ﬂ@h%)

Passing limit n —]oo, we see that u(t) is a weak solution of (1.24).
Next we prove that u(t) is the only weak solution to (1.24) satisfying u(0) = x. Let @(?)
be another such weak solution and set v = — @. Then we have

www%ﬂﬁv@ﬁﬂw>

for all ¢» €dom(A*) and ¢ € [0,7]. By Lemma B.1 this implies z(t) = fo s)ds €dom(A)
and £ z(t) = Az(t) with z(0) = 0. Thus z = 0 and hence u(t) = @(t) on [0, T]

Suppose that A such that (1.24) has a unique weak solution u(t) satisfying u(0) = x.
For t € [0, 7] we define the linear operator T'(¢t) on X by T'(t)z = u(t) — uo(t), where wuy is
the weak solution of (1.24) satisfying u0) = 0. If for t = nT + s, where n is a nonnegative
integer and s € [0,7) we define T'(t)x = T'(s)T(7)"x, then T'(t) is a semigroup. The map
0 :x — C(0,7;X) defined by §(z) = T(-)x has a closed graph by the uniform bounded
principle and thus T'(¢) is a strongly continuous semigroup. Let B be the generator of
{T'(t)} and z €dom(B). For 1) edom(A*)

d *
AT ()2, 9)i=0 = (Bx,v) = (2, A")).

It follows from Lemma that z €dom(A) and Az = Bz. Thus dom(B) Cdom(A). The
proof of Theorem is completed by showing dom(A) Cdom(B). Let z €dom(A). Since for
2(t) =T )z

t
((0.0) = ([ 2(5)dt.A'0)
0
it follows from Lemma that fo s)x ds and fo s)Ax ds belong to dom(A) and
t
T(t)r =z+ A/ T(s)xds
0
(1.27)
()ASE—AI+A/ s)Az ds
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Consider the function . .
w(t) = / T(s)Azds — A/ T(s)xds.
0 0

It then follows from (1.27) that z € C(0,7; X). Clearly w(0) = 0 and it also follows from

(1.27) that

d :
£<w(t)>¢> = <w(t)aA W (1'28)

for ¢ edom(A*). But it follows from our assumptions that (1.28) has the unique solution
w = 0. Hence from (1.27)

Tt)r —x= A/tT(s)x ds

and thus

which implies x edom(B). O

1.3 Lumer-Phillips Theorem

The condition (1.19) is very difficult to check for a given A in general. For the case M =1
we have a very complete characterization.

Lumer-Phillips Theorem The followings are equivalent:
(a) A is the infinitesimal generator of a Cy semigroup of G(1,w) class.
(b) A —wl is a densely defined linear m-dissipative operator,i.e.

(AN — A)z| > (A —w)|z| forall z € don(A), A\ >w (1.29)
and for some \g > w
R(NI—A)=X. (1.30)
Proof: It follows from the m-dissipativity
(ol — Ay < !
0 - )\0 — W

Suppose z,, € dom(A) — x and Az, — y in X, the

r=limz, =Nl —A) " lim Nz, — Az,) = NI —A) ' Noz —y).

n—0o0 n—oo

Thus, x € dom(A) and y = Ay and hence A is closed. Since for A > w
A —A=(T+\=x)Nol—A) YN — A),

if K\;—:\g' <1, then (A\T—A)~! € £L(X). Thus by the continuation method we have (A —A)~!
exists and

(A —A)7' <

A—w’
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It follows from the Hile-Yosida theorem that (b) — (a).
(b) — (a) Since for z* € F(x), the dual element of x, i.e. z* € X* satisfying (z, 2*) xxx+ =
|z|* and |27] = ||

(e7S(t)x, ") < |zllz”| = (w,27)

we have for all z € dom(A)

—wt _
0> fim (W=
t—0+ t

%) = ((A—wl)x,z") for all z* € F(x).

which implies A — w I is dissipative. []
Theorem (Dissipative I) (1) A is a w-dissipative

Az — Az| > (A — w)|z| for all x € dom (A).
if and only if (2) for all € dom(A) there exists an z* € F(z) such that
(Az, %) < w|z|?. (1.31)

(2) — (1). Let € dom(A) and choose an z* € F'(0) such that (A4,z*) < 0. Then, for any
A >0,

M2 =Mz, 2*) = Mz — Av + Az, 2*) < 2z — Az, 2%) +w |2)* < | Az — Az||z| + w |z|?,

which implies (1).
(1) — (2). Without loss of the generality one can assume w = 0. From (1) we obtain the
estimate

1
X<|$| — |z —XAzx]|) <0

and

1
(Azz)- = = lim S (o] = |o = AAa]) 0

which implies there exists * € F(x) such that (1.31) holds since (Az,z)_ = (Ax,x*) for
some z* € F(x). O
Thus, Lumer-Phillips theorem says that if m-diisipative, then (1.31) hold for all z* €

Theorem (Dissipative II) Let A be a closed densely defined operator on X. If A and A*
are dissipative, then A is m-dissipative and thus the infinitesimal generator of a Cjy-semigroup
of contractions.

Proof: Let y € R(I — A) be given. Then there exists a sequence z,, € dom(A) such that
y—x, — Ax, = y as n — oo. By the dissipativity of A we obtain

|xn - xm| < |xn — Ty — A(Tn — T)| < |y—ym|

Hence z,, is a Cauchy sequence in X. We set x = lim,,_,oox,. Since A is closed, we see that
x € dom(A) and x — Az = y, i.e.,, y € R(I — A). Thus R(I — A) is closed. Assume that
R(I — A) # X. Then there exists an z* € X* such that

(I — A)z,z") =0 for all z € dom (A).
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By definition of the dual operator this implies z* € dom (A*) and (I — A)*z* = 0. The
dissipativity of A* implies |z*| < |z* — A*z*| = 0, which is a contradiction. [

Example (revisited example 1)

Ap=—¢ in X = L*(0,1)
and for ¢ € H'(0,1)

(A, 6)x /¢ Jodr = (160 - [o(1)P)

Thus, A is dissipative if and only if ¢(0) = 0, the in flow condition. Define the domain of A
by
dom(A) = {6 € H'(0,1) : 6(0) = 0}

The resolvent equation is equivalent to

d
A —Uu =

u+dxu f

and N
u(z) :/ e A9 () ds

0
and R(A\] — A) = X. By the Lumer-Philips theorem A generates the Cy semigroup on
X = L?(0,1).

Example (Conduction equation) Consider the heat conduction equation:

_u = Au = Z a;;(z 8x 0% +b(z) - Vu+ c(z)u, in .

Let X = C(Q) and dom(A) C C*(Q). Assume that o € R*" € C(Q) b€ R™ and c € R

are continuous on () and a is symmetric and
mlI <a(zx)<MIfor0<m< M < .

Then, if 7 is an interior point of 2 at which the maximum of ¢ € C?(f) is attained. Then,

0%*u
Vo(zo) =0, aij(xo)m(xo) <0.
and thus
(Ao — Ag)(x0) < w d(o)

where

w < max c(x).
z€N

Similarly, if x¢ is an interior point of £ at which the minimum of ¢ € C?(f) is attained, then
(A¢ — Ad)(zo) = 0

15



If xo € 00 attains the maximum, then

Consider the domain with the Robin boundary condition:

dom(A) = {u € a(z)u(z) + B(x)%u =0 at 00}

with a, > 0 and inf,con(a(x) + B(x)) > 0. Then,
[Ad — Adlx = (A —w)ldlx. (1.32)
for all ¢ € C*(Q). It follows from the he Lax Milgram theory that
ol — A) € £(LA(Q), HA(9),
assuming that coefficients (a, b, ¢) are sufficiently smooth. Let
dom(A) = {(MI - A)'C(Q)}).
Since C*(92) is dense in dom(A), (1.32) holds for all ¢ € dom(A), which shows A is dissipative.

Example (Advection equation and Mass transport equation) Consider the advection equa-
tion

u + V- (b(x)u) = v Au.
Let X = LY(Q). Assume
be L>(Q)
Let p € C'(R) be a monotonically increasing function satisfying p(0) = 0 and p(z) =
sign(z), |x| > 1 and pc(s) = p(2) for e > 0. For u € C'(Q)

(Au,u) = /F(u 8271” —n-bu, pe(u))ds + (bu — v Vu, %pé(u) Vu) + (cu, pe(u)).

where ) )
(B, ~pl(w) Vu) < v (Vu, —pl(w) V) + 1 meas({u] < e}).

Assume the inflow condition V%u —n-bu =0 on {s € 0Q : n-b < 0} and otherwise

v 2u = 0. Note that for u € L'(R?)
(, pe(u) = [uly and (¢, pe(w)) — (1, signo(u)) for 1 € LY(Q)
as € — 0. If ¢(x) < w, then it follows that
A —w) |u] < [Au— X Au|. (1.33)

Since H'(Q) is dense in L'(Q), (1.33) holds for u € dom(A). For v = 0 case letting v — 0T
(1.33) holds for dom(A) = {u € L'(Q) : (pu), € L' (Q)}.
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Example (X = L?(12)) Let Au = v Au+0b- Vu with homogeneous boundary condition u = 0
on X = LP(2). Since

(Au,u™) = /Q(Au, lulP~2u) = —(p — 1) /Q(Vu, |u|P~2Vu)

and | |2

2v(p—1)

(p—1v
2

(b Vu, [ulP~u) 2 < [(Vu, [ulP~2Vu) 2 + (Jul?, 1) g2

we have
(Au,u*) < wlul®
for some w > 0.

Example (Fractional PDEs I)
In this section we consider the nonlocal diffusion equation of the form

= Au = /Rd J(2)(u(z + 2) —u(x)) dz.

Or, equivalently
Au = / J(2)(u(x + 2) = 2u(z) + u(z — 2)) dz
(R4)

for the symmetric kernel J in R?. It will be shown that
(g = [ [ I+ =) —u@) 60 +2) o) d= e
R J(RI)+

and thus A has a maximum extension.
Also, the nonlocal Fourier law is given by

Au=V - ( ) J(2)Vu(z + z) dz).
Thus,
(Au, @)1z = /Rd » J(2)Vu(z + z) - Vo(x)dz dx

Under the kernel .J is completely monotone, one can prove that A has a maximal monotone
extension.

1.4 Jump diffusion Model for American option

In this section we discuss the American option for the jump diffusion model
2 o272

U—)ux + —— U + Bu+A=0, u(T,x)=1,

ut—i-(x—Q 5

(AaU—T/J):O, )\SO, UZlb
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where the generator B for the jump process is given by

Bu = / k(s)(u(zx + s) — u(z) + (€* — 1)uy,) ds.
The CMGY model for the jump kernel % is given by
Ce MBIl Y = k*(s)  s>0
k(s) =
Ce Gl Y = k= (s) s<0
Since

/00 k(s)(u(x + s) —u(x))ds = /000 Et(s)(u(z + s) —u(z))ds + /000 k™ (s)(u(x — s) —u(x))ds

— /Ooo w(u(x +5) — 2u(z) + u(x — s)) ds + /Ooo M(u(m +8) —u(r — s))ds.

Thus, I
/ </ K(s)(u(z + 5) — u(x) ds)(z) da
/ / (@ + ) — u(@) @z + 5) — b(x)) ds dz
[ / uls)(u(z + ) — u(s))o(z) d
where
kT (s) 4+ k= (s) B kt(s) — k™ (s)
ks(s) = 5 N AE) 5
and hence
(Bu, ¢) = / / u(z +s) —u(z))(p(z +s) — ¢(s)) dsdx
[ m ) us)o e+ [ wods
where

w= /_Z(es — 1)k(s) ds.

If we equip V = H(R) by

]u\v—/ / (8)|u(x + s) — u(x )\2dsd:c+—/ |ug|? dz,

then A+ B € L(V,V*) and A + B generates the analytic semigroup on X = L*(R).
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1.5 Numerical approximation of nonlocal operator

In this section we describe our higher order integration method for the convolution;

CEt(s)+ k() Ckt(s) — k™ (s)
/0 f(u(x+s)—2u(x)+u(x—s))ds+/ —_—

i 5 (u(z+s)—u(z—s))ds.

For the symmetric part,

/OO 2 (s) u(r + s) — 2u(z) + u(z — s) s,

2

o s
where we have

u(x + 5) — ZU(l’) + U(x - 5) -~ um(ﬂﬂ) 4 %uﬂmx(z) —+ 0(84)

52
We apply the fourth order approximation of u,, by

u(z+h) —2u(z) +ulz—h) 1 u(@+2h)—4du(zr) +6u(r) — du(r — h) + u(z — 2h)

Uz () ~ e 12 e

and we apply the second order approximation of ... (z) by

u(z + 2h) — 4u(z) + 6u(z) — 4u(z — h) + u(z — 2h)
h4 '

Thus, one can approximate

SIS

/h ha(s) u(z +s) — 21;(2x) + u(z — s) s

by
(Uk+1 —2up +up—r 1 upgo — dugg + Bup — dup—y + kaz)
po B2 12 h?
P Unp — Augpr + Guy — dug1 + U2
12 h? ’
where

[N
[Nl

h

2

1
,00:/ s’k,(s)ds and plzﬁ/ s'k,(s) ds.

SIS

The remaining part of the convolution
(k+3)h
/ W(xpsj + s)ks(s) ds
(k=3)h
can be approximated by three point quadrature rule based on

2

S
W(Tprg +8) o~ ulTpag) + U (@hg)s + S0 (2hsg)
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with
Uk4j4+1 — Uk45-1

2h

Ul(iCkﬂ') ~

" Uktj+1 — 2Upyj + Upgj—1
u (@hts) ~ :

72
That is,
(k+3)h
/ W(Tps; + 5)ks(s) ds
(k—3)h
Upqj—1 — Uktjt1 Ujyhy1 — 2Upyj + Ujyp1
~ P P P SR
where

(k+3)h
plg = f(k—g)h ks(s) ds

where

5 1 /5
= 2sk,(s)ds, p3=— 25°ky () ds.
_h h? b

We may use the forth order difference approximation
u(@+h) —u(r—h) u(@+2h) = 2u(r+h)+2u(r — h) —u(z - 2h)
2h 6h
and the second order difference approximation
uw(x + 2h) — 2u(x + h) + 2u(z — h) — u(z — 2h)
B3

Uz () ~

and obtain

/_2 ko(5) (u(x + 5) — u(z — 5)) ds

h
2

Ug41 — Up—1  Ugy2 — 2Ups1 + 2up_1 — Uk—l) " P3 Uk+2 — g1 + 2Up_1 — Up_1

2h 6h 6 h
Example (Fractional PDEs II) Consider the fractional equation of the form

NP2(

/O g0/ (t +0)do = Au, u(0) = uy,

—t
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where the kernel g satisfies
g>0, g€ L'(—o0,0) and non-decreasing.

For example, the case of the Caputo (fractional) derivative has

1

9(0) = m|9|_a~

Define z(t,0) = u(t +6),60 € (—o0,0]. Then, 4z = 2> Thus, we define the linear operator
Aon Z =C((—o0,0]; X) by

Az = 2/(0) with dom(A) = {z' € X : /O g(0)2'(0)do = Az(0)}

Theorem 1.1 Assume A is m-dissipative in a Banach space X. Then, A is dissipative and
RAI—A) = Z for A > 0. Thus, A generates the Cy-semigroup T(t) on Z = C((—o0,0]; X).

Proof: First we show that A is dissipative. For ¢ € dom (A) suppose |¢(0)| > |¢(8)] for all
0 < 0. Define

For all z* € F(¢(0))

(6(0) — 6(0),2) < (6(0)] — [6(O))|6(0)] <0, 6 <0.
Thus, . )
tim ([ g0 = ([ glo)ds.a7) >0 (1.34)

But, since there exists a * € F'(¢(0)) such that
(Az,2*) <0

which contradicts to (1.34). Thus, there exists 6, such that |¢(6y)| = |¢|z. Since (¢(0), z*) <
|6(0)| for x* € F(¢(0)), @ — (¢(0),x*) attains the maximum at 6y and thus (¢'(6y),z*) =0
Hence,

Ap—¢'|z = (Ap(0o) — & (00),2") = A|d(6o)| = A[d]2. (1.35)
For the range condition A¢p — A¢ = f we note that

3(0) = e¥'6(0) +(0)
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where

Thus,
BT -260) = [ g0)0'6)db)
where o
A(N) = /\/ g(0)e* do >0
Thus,

0

6(0) = (A(N) T — A)~? / ¢/ (6)(6) do.

—0oQ
Since A is dissipative and

M=o =feZ (0)=0,
thus ||, < §|f|Z. Thus ¢ = (A — A)-1f € Z. 0

Example (Renewable system) We discuss the renewable system of the form
Be= = Shipo(t) + X fy mo)pile,t) do

(Pi)e + (Pi)e = —pi(x)p, (0, ) = s po(t)

for (po,pi;, 1 < i < d) € Rx LY (0,T)% Here, po(t) > 0 is the total utility and \; > 0 is
the rate for the energy conversion to the i-th process p;. The first equation is the energy
balance law and s is the source = generation —consumption. The second equation is for the
transport (via pipeline and storage) for the process p; and u; > 0 is the renewal rate and
i > 0 is the natural loos rate. {)\; > 0} represent the distribution of the utility to the i-th
process.

Assume at the time ¢ = 0 we have the available utility py(0) = 1 and p; = 0. Then we
have the following conservation

o(t) —i—/otpi(s) ds = 1

if t <L. Let X = Rx L'(0,L)% Let A(u) defined by
L
Ar= (= Npo+ 3 [ o) do () = )
i i 70

with domain

dom(A) = {(po,pi) € R x W (0, L)* : p;(0) = X\ po}

Let

o |s| > €

sign (s) =

o |»

|s| <€
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Then,
(A(po, p), (signg(po), sign, (p)) < —(32; M) lpo| + | [ paps d|

S (T (pi(0) — Wo(pi(L)) — [ pipisign, de)

where
|| |s| > €

Since
sign, — sign,, Y. — |s]

by the Lebesgue dominated convergence theorem, we have

(A(po, p), (signg(po), signy(p)) < 0.

The resolvent equation
A(pOap) = (87 f)a (136)

has a solution - m
pi(x) = Nipoe™Jo i 4 [Femom f(s) ds

L, L
(Zz Ai) (1 — elo Hi)po = s+ fo pipi(x) dx
Thus, A generates the contractive Cy semigroup S(t) on X. Moreover, it is cone preserving
S(t)CT C C* since the resolvent is positive cone preserving.

Example (Bi-domain equation)

The electrical behavior of the cardiac tissue is described by a system consisting of PDEs
coupled with ordinary differential equations which model the ionic currents associated with
the reaction terms. The bi-domain model is a mathematical model for the electrical prop-
erties of cardiac muscle that takes into account the anisotropy of both the intracellular and
extracellular spaces. It is formed of the bi-domain equations. The bi-domain model is now
widely used to model defibrillation of the heart. In this paper we consider the feedback
control for bi-domain model.

The weak form of the the bi-domain equation is given by

(%U, ¢) — (B(Vu+ Vu,),Vo)g + (F(u,v),9) =0

(1.37)
(BVu+ (A + B)Vu., Vip)g = (s,1),

for all (¢,v) € HY(Q) x H(Q)/R, where (u,u.) € H' () x H'(Q2)/R is the solution pair

and s is the control current. We consider the boundary current control:

(5.0) = [ stt.op(o) .
r
Here, A and B are elliptic operators of the form

Bp=V-(0:Ve), Ap=V-(0.V9),
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where 7;, 0. are respectively the intracellular and extracellular conductivity tensors. Note
that one can write (1.37) as

%u(t) _ Lu(t) + Flu(t), v())) + Cs(t) = 0, (1.39)

where

L=A"+BNH"!'=BA+B) A

and

Cs = B(A+B)'s.

That is, v = u + u, satisfies

(A+B)v=Au+s
where

(s,¢) = /Fs(t,x)qb(x) dx

with (s,1) = 0. Thus, £ is an self adjoint elliptic operator on L?(f2). The boundary current
control becomes the distributed control of the form Cs(t).

Example (Second order equation) Let V' C H = H* C V* be the Gelfand triple. Let p be a
bounded bilinear form on H x H, 1 and ¢ be bounded bilinear forms on V' x V. Assume p
and o are symmetric and coercive and p(¢, ¢) > 0 for all ¢ € V. Consider the second order
equation

p(ust, @) + plus, @) + o(u, @) = (f(t),¢) for all ¢ € V. (1.39)
Define linear operators M (mass), D (dampping), K and (stiffness) by

(M¢>¢)H:P(¢,w)> ¢7 ¢€H
(Do, ) = (o, 00) &, v eV
<K¢7 QzD>V*><V = U(¢7 w)v ¢7 ’QZ) eV

We assume p is symmetric and H-coercive, o is symmetric and V-coercive and pu(¢, ¢) > 0
for p € V. Let v = u; and define A on X =V x H by

A(u,v) = (v, ~M ™ (Ku + Dv))

with domain
dom (A) = {(u,v) € X :v €V and Ku+ Dv € H}

The state space X is a Hilbert space with inner product

((u1,v1), (uv)) = o (ur, uz) + p(v1, v2)

and

E(t) = |(u(t),v(®) X = o (u(t), u(t)) + p(v(t), v(t))
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defines the energy of the state x(t) = (u(t),v(t)) € X. First, we show that A is dissipative:
(A(u7 U)a (U’7 ’U))X = O'(’U,, U>+p(_M71<KU’+D,U)7 U) = U(“v U)_U(ua 'U)—ILL(U, ’U) = —IU(’U, U) <0
Next, we show that R(A\] — A) = X. That is, for (f,g) € X the exists a solution (u,v) €

dom (A) satisfying
Au—v=f AIMv+Dv+ Ku= Mg,

or equivalently v = Au — f and
NMu+ADu+ Ku=Mg+AMf+ Df (1.40)
Define the bilinear form a on V x V

a(¢,¥) = N p(¢,9) + A (. ) + o (¢,)

Then, a is bounded and V-coercive and if we let

F(¢) = (M(g+Af)o)u + pl(f, o)

then F' € V*. It thus follows from the Lax-Milgram theory there exists a unique solution
u €V to (1.40) and Dv + Ku € H.
For example, consider the wave equation

%utt + k(x)uy = Au

[24] + qu = yu; at T

In this example we let V = HY(Q)/R and H = L*(Q) and define

o(o,¢) = /Q(ng, V) dx—l—/ro@wds

(g, ) = /a r{a)o.da+ / )60 ds

o) = [ s ovde

Example (Maxwell system for electro-magnetic equations)

el =VxH V-E=p
wHy=—-VxFE V-B=0

with boundary condition
Exn=0
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where F is Electric field, Bu H is Magnetic field and D = € E is dielectric with €, pu is electric
and magnetic permittivity, respectively. Let X = L?(Q)¢ x L?(Q)? with the norm defined by

(B ) = [ (elBF + ) da
The dissipativity follows from
/(E.(VXH)_H.(VxE))dx:/v.<ExH)dx:/ n-(Ex H)ds =0

Q Q 00

Let p =0 and thus V - E = 0. The range condition is equivalent to
GE—FVX%(VXE—Q):JC
The weak form is given by
€+ (Y X BV x6) = (£.9) + (9.7 X 6). (1.41)

forpy e V={HY(Q):V-=0, nxey=0at 9N}. Since |V x ¢|> = |Ve|* for V-9 = 0.

the right hand side of (1.41) defines the bounded coercive quadratic form on V' x V', it follows
from the Lax-Milgram equation that (1.41) has a unique solution in V.

1.6 Dual semigroup

Theorem (Dual semigroup) Let X be a reflexive Banach space. The adjoint S*(¢) of the
Cy semigroup S(t) on X forms the Cy semigroup and the infinitesimal generator of S*(t)
is A*. Let X be a Hilbert space and dom(A*) be the Hilbert space with graph norm and
X_1 be the strong dual space of dom(A*), then the extension S(¢) to X_; defines the Cj
semigroup on X .

Proof: (1) Since for ¢, s > 0

S*(t+s) = (S(s)S(t))" = 5*(t)S*(s)
and
(CL’, S*(t)y - y>X><X* = <S<t)$ - x,y>XXx* — 0.

for x € X and y € X* Thus, S*(t) is weakly star continuous at ¢ = 0 and let B is the
generator of S*(t) as

Br = w* — lim w
Since S(t) (1)
T —x y—y
Ry = @, 2,

for all x € dom(A) and y € dom(B) we have
(A7, y) xxx+ = (7, By) x x x~
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and thus B = A*. Thus, A* is the generator of a w*— continuous semigroup on X*.
(2) Since

Sy -y =4 [ 5 s

0

for all y € Y = dom (A*). Thus, S*(¢) is strongly continuous at ¢ = 0 on Y.

(3) If X is reflexive, dom (A*) = X*. If not, there exists a nonzero yo € X such that
(Yo, 2*)xxx+ = 0 for all z* € dom(A*). Thus, for g = (A — A) lyy (Azg — Azg, 2*) =
(g, \o* — A*z*) = 0. Letting z* = (A [ — A*) "'z} for z, € F(x¢), we have zo = 0 and thus
1o = 0, which yields a contradiction.

(4) X; = dom (A*) is a closed subspace of X* and is a invariant set of S*(¢). Since A* is
closed, S*(t) is the Cy semigroup on X; equipped with its graph norm. Thus,

(S*(t))* is the Cp semigroup on X _; = X
and defines the extension of S(¢) to X_;. Since for x € X C X_; and z* € X*
(S(t)z, ") = (, S™(t)x"),

S(t) is the restriction of (S*(¢))* onto X. O

1.7 Stability

Theorem (Datko 1970, Pazy 1972). A strongly continuous semigroup S(t), ¢ > 0 on a
Banach space X is uniformly exponentially stable if and only if for p € [1,00) one has

/ |S(t)x|P dt < oo for all x € X.
0

Theorem. (Gearhart 1978, Pruss 1984, Greiner 1985) A strongly continuous semi-
group on S(t), t > 0 on a Hilbert space X is uniformly exponentially stable if and only if
the half-plane {\ € C': ReX > 0} is contained in the resolvent set p(A) of the generator A
with the resolvent satisfying

(M — A) VYo < 0

1.8 Sectorial operator and Analytic semigroup

In this section we have the representation of the semigroup S(t) in terms of the inverse
Laplace transform. Taking the Laplace transform of

d

Salt) = A(t) + £ (1

we have

~

== A" 2(0)+ f)
where for A > w

i’:/ e M (t) dt
0
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is the Laplace transform of z(¢). We have the following the representation theory (inverse
formula).

Theorem (Resolvent Calculus) For x € dom(A?) and v > w

1 Y+100 N
=— I— A zd 1.42
S(t)x omi ) e (A ) xdA (1.42)
Proof: Let A, be the Yosida approximation of A. Since Reo(4,) < ] il NS v, we have
— Ko
1 Y+i0co N .
u,(t) = Su(t)r = 57 - eM( AN —A,) xd).
Note that
M - AP =T+ (N - A)A (1.43)
Since .
1 y+ioco At
— —d\=
270 oo A
and ,
Y+100
/ A —w|2d\ < oo,
y—1t00
we have

uniformly in g > 0. Since

_ -1, R D L -1l AV=1 42
AN —-A) z—AN—-A)"z 1+/\M(VI AT (AT — A Az,

A

14+ A
obtain (1.42). O

where v = , {uu(t)} is Cauchy in C(0,T; X) if z € dom(A?). Letting u — 0T, we
Next we consider the sectorial operator. For § > 0 let

i
2

be the sector in the complex plane C. A closed, densely defined, linear operator A on a
Banach space X is a sectorial operator if

Y ={AeC argl\—w) < = +0d}

(A — A7 < for all A € 320

A

For 0 <0 <0 let I' =T, 9 be the integration path defined by
IE={zeC:|z|>6 arg(z —w) =+(5 +0)},
Lo={2€C:|z| =6, |arg(z —w)| < § +0}.
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For 0 < 6§ < ¢ define a family {S(t), ¢ > 0} of bounded linear operators on X by

1

Stz = — / T — A) Lz d), (1.44)
2T Jr

Theorem (Analytic semigroup) If A is a sectorial operator on a Banach space X, then A

generates an analytic (Cp) semigroup on X, i.e., for z € X t — S(¢)z is an analytic function

on (0,00). We have the representation (1.44) for z € X and

M,
|AS(t)z|x < T"|x|x (w=0).

Proof: Since

AS(t)z = —— / AN — AV — ) dA.

Comi

we have

M
sinft

The elliptic operator A defined by the Lax-Milgram theorem defines a sectorial operator
on Hilbert space X.

|AS(t)z| < M/ e M0tz o || = |z|.00
0

Theorem (Sectorial operator) Let V, H are Hilbert spaces and assume H C V*. Let
p(u,v) is bounded bilinear form on H x H and

plu,u) > |ul3 for all u € H
Let a(u,v) to be a bounded bilinear form on V' x V' with
o(u,u) >0 |ul3 for all u € V.
Define the linear operator A by
p(Au, ¢) = a(u, ¢) for all ¢ € V.

Then, for Re A > Owe have

Proof: Let a(u,v) to be a bounded bilinear form on V' x V. Define M € L(H, H) by
(Mu,v) = p(u,v) for all u, v € H

and Ay € L(V,V*) by
(Agu,v) = o(u,v) forv eV

29



Then, A= M~1Aj and for f € V* and Re X > 0, (A ] — A)u = M~ f is equivalent to

Ap(u, @) + a(u, @) = (f, @), for all p € V. (1.45)

It follows from the Lax-Milgram theorem that (1.45) has a unique solution, given f € V*
and

Re Ap(u,u) + a(u,u) < |flv|ulv.
Thus,
AT = A) M egeny < =
Also,
M ulz < |flveluly + M fuly, = My | f[7-

for My =1+ 5M2 and thus

E

(AT = A) e <

A2
For fe HCV*®
5 [uf? < Re X p(u,u) + alu,w) < |flulul, (1.46)
and
(Mp(u,w) < | flalula + Mluli, < M| f|ululm
Thus,

ML = A) ey < Bk
Al
Also, from (1.46)
0 fuly < |flalulm < My |fI”.
which implies v
(AL = A) ey < W—12/2

1.9 Approximation Theory

In this section we discuss the approximation theory for the linear Cyy-semigroup. Equivalence
Theorem (Lax-Richtmyer) states that for consistent numerical approximations, stability and
convergence are equivalent. In terms of the linear semigroup theory we have

Theorem (Trotter-Kato theorem) Let X and X,, be Banach spaces and A and A, be
the infinitesimal generator of Cy semigroups S(t) on X and S, (t) on X,, of G(M,w) class.
Assume a family of uniformly bounded linear operators P, € £L(X, X,,) and E,, € L(X,, X)
satisfy

P.E,=1 |E,Pyx—z|x —»0forallze X (1.47)

Then, the followings are equivalent.
(1) there exist a A\g > w such that for all x € X

|E,(MNo I — A,) PPur — (VNI — A)7lz|x =0 asn — oo, (1.48)
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(2) For every x € X and T' > 0
|E,Sn(t) Py — S(t)z|x —  asn — oc.

uniformly on ¢ € [0, 7].

Proof: Since for A > w
By — A) ' Pyz — (AT — A) Lz = / EoS, () Poz — S(t)a dt
0

(1) follows from (2). Conversely, from the representation theory

y+ioco
EoS,(t)Por — St — —— (En(M — A P — (M — A)'ar) dA

2T )y

where

A=A = AT —A) = (A= XA)N — A) " (Ao — A

Thus, from the proof of Theorem (Resolvent Calculus) (1) holds for z € dom(A?). But since
dom(A?) is dense in X, (2) implies (1). O

Remark (Stability) If A, is uniformly dissipative:

Ay, — Aptiy]| > (A — w) |uy
for all u,, € dom(A,,) and some w > 0, then A,, generates w contractive semigroup S, (t) on
X,

Remark (Consistency)
(M — Ap)u, = P, f

Py — A)u = P, f

we have

(AN —A,)(Pou—uy,)+ P,Au— A, Pyu =0

Thus
|Pou — uy,| < M |P,Au — A, Pyu|

The consistency(1.48) follows from
|P,Au— A, P,ul — 0

for all w in a dense subset of dom(A).

Corollary Let the assumptions of Theorem hold. The statement (1) of Theorem is equivalent
to (1.47) and the followings:

(C.1) there exists a subset D of dom(A) such that D = X and (\gI — A)D = X.

(C.2) for all u € D there exists a sequence 4, € dom(A,) such that lim E, 4, = u and
lim E, A, u, = Au.
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Proof: Without loss of generality we can assume Ay = 0. First we assume that condition (1)
hold. We set D = dom(A) and thus AD = X. For u € dom(A) we set @, = A,'P,Au and
u= A"1'z. Then,

By, —u=E,A'Px — A'r =0

and
E, A, — Au= E,A, A Py — AA ‘e = E,Pyx — 1 — 0

as n — oco. Hence conditions (C.1)—(C.2) hold.
Conversely, we assume conditions (C.1)—(C.2) hold. For z € AD we choose u € D such
that u = A~'z and set u,, = A, 'P,x = A ' P, Au. We then for u we choose u, according to

(C.2). Thus, we obtain
|tn, — Pou| = | Py (Eyty, —u)| < M |Eyt, —u|l — 0
as n — oo and
|ty — upn| < |A (AT, — PyAu)| < AP E, Ay, — Aul — 0
as noo. It thus follows that |u, — P,u| — 0 as n — co. Since
E,A'P, — A7 = E,(A,'P,A— P)A™ + (B, P, — )A™Y,
we have
|E A Pur — A7 2| < |Ey(u, — Pou)| + | EnPyu — u| < M |u, — Pyu| + | EpPou —u| — 0

asn —ooforallx € AD. [J
Example 1 (Trotter-Kato theoarem) Consider the heat equation on 2 = (0,1) x (0,1):

d
) = Au, u(0,2) = uo(x)

with boundary condition u = 0 at the boundary 0€2. We use the central difference approxi-
mation on uniform grid points: (ih, j h) € Q with mesh size h = &:

iui’j(t) = Apu = l(uwl’j A uiil’j) l(uivjﬂ — Uiy Uij — Ui,jfl)

dt h h h h h B h

for 1 <4, j < ny, where u;9 = u;, = ul,j = u,; = 0 at the boundary node. First, let
X =C(Q) and X,, = R™=D? with sup norm. Let E,u;; = the piecewise linear interpolation
and (P,u);; = u(ih,jh) is the point-wise evaluation. We will prove that A, is dissipative
on X,. Suppose u;; = |up|o. Then, since

Aui,j - (Ahu)i,j = fij
and ]
—(Ahu)m‘ = _(4ui,j — Uit1,j — Uij4+1 — Ui—1,5 — ui,jfl) >0

h2
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we have

i

0<w,;<

Thus, A, is dissipative on X, with sup norm. Next X = L?(Q) and X,, with 2 norm. Then,

Wi 7 — WUj—1 45 Ui+ — Ui i
(—Ahun,un) = § | 1,] - % LJ|2_{_| 2,] - @, 1|2 2 0
,J

and thus Ay is dissipative on X,, with ¢2 norm.

Example 2 (Galerkin method) Let V' C H = H* C V* is the Gelfand triple. Consider the
parabolic equation

p(%un, ¢) = aun, @) (1.49)

for all ¢ € V', where the p is a symmetric mass form

p(6,0) > c|oly

and a is a bounded coercive bilinear form on V' x V such that

a(e, ¢) > 8|9l

Define A by
p(Au, @) = a(u, ¢) for all ¢ € V.

By the Lax-Milgram theorem
M—-—Au=feH

has a unique solution satisfying
)‘p(uu d)) - (I(U, ¢) = (f7 ¢)H
for all ¢ € V. Let dom(A) = (I — A)"'H. Assume

Vo ={u= Z apPr, ¢p € V}isdensein V

Consider the Galerkin method, i.e. u,(t) € V,, satisfies

d

pgun(t). 6) = alun, 0).

Since for u = (AT — A)~'f and u, €V,
Ap(tn, @) + a(un, @) = (f, ) for ¢ € V,,

Ap(tin, @) + altin, ¢) = Ap(tin — u, ¢) + a(tn — u, ¢) + (f, ¢) for ¢ € V,,

Ap(Up, — Uy @) + AUy — Up, @) = Ap(Uy, — u, @) + aty, — u, @).
Thus,

M
[tun, — Up| < — |t — uly.

)
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Example 2 (Discontinuous Galerkin method) Consider the parabolic system for v = 4 €
LQ(Q)d

9,
U= V- (a(z)Vu) + c(z)u

where a € R? x d is symmetric and

alg)? < (& a(x),pa <alé)?, € R’

for 0 < a < @ < 0o. The region €2 is dived into n non-overlapping sub-domains €2; with
boundaries 9€); such that € = UQ;. At the interface I';; = 0€); N 0€); define

[u]] = ulag, — ulag,
<<u>>= ;(ulog, +ula, ).
The approximate solution wuy(t) in
Vi = {up € L*(Q) : uy, is linear on €;}.

Define the bilinear for on Vj, x V},

>

n(u,v) Z/ x)Vu, Vv) dz— Z/ << n-(aVu) >> [[v]]+ << n-(aVv) >> [[u]]+=

1>7

([u]][[v]] ds),

whee h is the meshsize and S > 0 is sufficiently large. If + on the third term ay, is symmetric
and for the case — then a; enjoys the coercivity

(u,u >Z/ z)Vu,Vu)dz, € u € V,

regardless of § > 0.
Example 3 (Population dynaimces) The transport equation

&+ g+ ma)p(r,t) =0

— [ B@)p(a,t) da

Define the difference approximation

Pi — Di— )
A= (PP g 1< i <0), m=Y i

Then,
(Anp, 519”0 Z m; — Bz |pz| < 0

Thus, A, on L'(0,1) is dissipative.
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Example 4 (Yee’s scheme)
Consider the two dimensional Maxwell’s equation. Consider the staggered grid; i.e. F =

(EZ1 s E?j 1) is defined at the the sides and H = H, 1 i1 s defined at the center of the
—3> J—3 272
cell Q;; = ((i —1)h,ih) x ((j — 1)h, jh).
H | 1-H 1.
e . 4dpl __Tieggty Ticdi-3
i=5:J dt -1 5 h
H 1., 1—H 1. 1
i 2 _ i+5,0+5 i—5,J—+35
€ij+3 thi,j-i-% = R (1.50)
E2 1_E2 L El .- 1 1
d R B e e N o A
Himtg-t wtli-1-3 = h z )

WhereEil_lj:O’j:07j:NaHdE2j_lj:O, Z:O,]:N

i 2 27
Since
N . . 2
j{:__fﬁ—én+; Biyig +_fﬂ+éd+% Hi_y il
h ii%’j E zj—‘,—l
i=1 j=1 J+3
E2 1 E2 -1 El 1 - El 1 -
7‘).]_5 2_17.7_5 1_51.] 1_57‘7_1
+( - JH, 1. 1=0
h h 23:J 773

(1.50) is uniformly dissipative. The range condition A\ I — A, = (f,g) € X}, is equivalent to
the minimization for F

1 i .1 i1 .1 .1 _l.iq
. 1 2 J T3 ? J 73512 1=3] 1=3] 2
min Q(EifévjEi—%J+€"J+%Eiaj+%)+2,uij(‘ . |* + | . 1)
) . 1—g. ) H. . 1—H. .
_(fl 1 ngéyﬁr% ng%df% El - ( 2 1 z+%u+% Z*%J*‘F%) 2
i—%d  Mig h P gg ity Mg h ij+3

Example 5 Legende-Tau method

2 Dissipative Operators and Semigroup of Nonlinear
Contractions

In this section we consider

d
d—? e Au(t), u(0)=up € X

for the dissipative mapping A on a Banach space X.

Definition (Dissipative) A mapping A on a Banach space X is dissipative if

|21 — 20 — A (y1 — y2)| > |x1 — 2] for all A > 0 and [z1,y1], |22, y2] € A,

or equivalently
(y1 — Yo, x1 — x2)— < 0 for all [zq, 1], [x2,y2] € A.
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and if in addition R(/ — AA) = X, then A is m-dissipative.

In particular, it follows that if A is dissipative, then for A > 0 the operator (I — X\ A)~!
is a single-valued and nonexpansive on R(I — A A), i.e.,

(I - XAtz — (I —-2A) | <|r—y| forallz, y€ R(I - \A).
Define the resolvent and Yosida approximation A by

Jax=(I—-XNXA)"tzedom(A), =xe&dom(Jy)=R(I-NA)

(2.1)
Ay =Y o—x), xedom(Jy).
We summarize some fundamental properties of J, and A, in the following theorem.
Theorem 1.4 Let A be an w— dissipative subset of X x X, i.e.,
21 — 22 = A(y1 — 2)| = (1 = Aw) |21 — 25 (2.2)

for all 0 < A < w™ and [z1,91], [z, y2] € A and define ||Az|| by
|Az|| = inf{|y| : y € Az}

Then for 0 < A\ < w™!,

(i) |ax — Sy < (1 — dw) |z —y| for z, y € dom (J)).

(1) Ayx € Adyx for x € R(I — N\ A).

(i17) For = € dom(Jy) Ndom (A) |Axz| < (1 — dw) ™! ||Az|| and thus
| o — x| < M1 — )7t Az].

(iv) If = € dom (Jy), A, u > 0, then

A\ —
%x + K Jrx € dom (J,)
and \
7 — p
J,\IEZJM (Xﬂf—i— \ J)\l’>

(v) If z € dom (J)) Ndom (A) and 0 < p < XA < w™!, then
(1= Aw)[Axz| < (1 — pw) [ Ayl
(vi) Ay is w™(1 — )~ -dissipative and for x, y € dom(Jy)
[ Az — Ayl S AL+ (1= dw) ) [z — gyl

Proof: (i) — (i) If z, y € dom (J,) and we set u = Jyx and v = J,y, then there exist ¢ and
0 such that x = u — At and y = v — Av. Thus, from (2.2)

| Lo — Lyl =lu—v] <(1=dw) Hu—v—XA(a—10)]=(1- )" |z—1yl|
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Next, by the definition Ayz = A" (u —z) =4 € Au = AJyz.
(i73) Let @ € dom (J)) Ndom (A) and & € Az be arbitrary. Then we have Jy(xz — A%) = x
since v — A2 € (I — XA A)z. Thus,

|Ayz| = A hao—z| = A ho—D(z—A2)] < (1-dw) A z—(z—22)] = (1- ) |2].

which implies (7i7).
() If © € dom (J\) = R(I — X A) then we have x = u — A a for [u,u] € A and thus u = Jyx.
For >0

B A= u( A—p

u=u—pt € R(I—pA)=dom(J,).

and

A —
J (%x—i— )\'uJAx) =J,(u—pi)=u=Jyx.

(v) From (7) and (iv) we have

MAxz| = [ha — x| < | — Jx| + | o —

A —
< Ju(gaﬂ— )\MJ,\:E)—J,,:E + |Jur — x|
A —
< (1—pw)™! %x—f— )\uJ,\m—x + |z — x|

= (1= pw) (A = p) [ Asar| + | Aya]

which implies (v) by rearranging.
(vi) It follows from (i) that for p > 0

_r

2=y —p(Aa— A =11+ D) @—y) -2

’ (e = )|

> (1+D)le =yl = Llha = Ty

> (1+5) = 20— eyl = (1= pw(l =) ) |z — g,

The last assertion follows from the definition of Ay and (7). O

Theorem 1.5
(1) A dissipative set A C X x X is m-dissipative, if and only if

R(I —XA)=X forsome \g>0.

(2) An m-dissipative mapping is maximal dissipative, i.e., all dissipative set containing A in
X x X coincide with A.
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(3) If X = X* = H is a Hilbert space, then the notions of the maximal dissipative set and
m-~dissipative set are equivalent.

Proof: (1) Suppose R(I — \gA) = X. Then it follows from Theorem 1.4 (i) that J,, is
contraction on X. We note that

J—AA:%(J—Q—%)JAO) (I — X A) (2.3)

for 0 < A < w™!. For given z € X define the operator T : X — X by

A
Ty:x+(1—XO)JAOy, ye X

Then \
Ty~ Tzl < 1~ Iy

where |1 — %0] < 1if 2X\ > Ag. By Banach fixed-point theorem the operator 7" has a unique
fixed point z € X, i.e., x = (I — (1 — 42 Jy,)z. Thus,

ve(l—(1- %) Ta) (I — Ao A)dom (A).

and it thus follows from (2.3) that R(I — AA) = X if A > 22. Hence, (1) follows from
applying the above argument repeatedly.

(2) Assume A is m-dissipative. Suppose A is a dissipative set containing A. We need to
show that A C A. Let [r,%] € A Since v — A% € X = R(I — A A), for A > 0, there exists a
ly,y] € A such that x — A& =y — Agy. Since A C A it follows that [y, y] € A and thus

[z —yl < |z —y—-A(@-9)]=0

Hence, [z,z] = [y, 7] € A.

(3) It suffices to show that if A is maximal dissipative, then A is m-dissipative. We use the
following extension lemma (Lemma 1.6). Let y be any element of H. By Lemma 1.6, taking
C = H, we have that there exists x € H such that

(—z,m—x+y) <0 forall [{n] € A.

and thus
(g_xvn_(x_y))go for all [@U]GA

Since A is maximal dissipative, this implies that [z,2 — y] € A, that is z —y € Az, and
therefore y € R(1 — H). O

Lemma 1.6 Let A be dissipative and C be a closed, convex, non-empty subset of the Hilbert
space H such that dom (A) € C. Then for every y € H there exists x € C' such that

(—z,m—x+y) <0 forall [{n] € A.

Proof: Without loss of generality we can assume that y = 0, for otherwise we define A, =
{[¢&;n+y] : [&,n] € A} with dom (A,) = dom (A). Since A is dissipative if and only if A, is
dissipative , we can prove the lemma for A,. For [, 7] € A, define the set

Cl§n) ={zr e C:(§—w,n—x) <0},
Thus, the lemma is proved if we can show that (., C([¢,7]) is non-empty.
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2.0.1 Properties of m-dissipative operators

In this section we discuss some properties of m-dissipative sets.

Lemma 1.7 Let X* be a strictly convex Banach space. If A is maximal dissipative, then
Az is a closed convex set of X for each x € dom (A).

Proof: It follows from Lemma that the duality mapping F' is single-valued. First, we show
that Az is convex. Let 21, 75 € Az and set & = a1 + (1 —a) T3 for 0 < o < 1. Then, Since
A is dissipative, for all [y, g] € A

Re (i — §, F(z — ) = a Re (31 — §, F(z — y)) + (1 — ) Re (8> — §, Pz — ) <0.
Thus, if we define a subset A by

) Az if z € dom(A)\ {z}

Az =
Az U{z} if z ==,

then A is a dissipative extension of A and dom (A) = dom (A). Since A is maximal dissipa-
tive, it follows that Az = Az and thus & € Az as desired.

Next, we show that Ax is closed. Let z,, € Az and lim,,_,, Z,, = Z. Since A is dissipative,
Re (%, — g,z —y) < 0 for all [y,g] € A. Letting n — oo, we obtain Re(z — ¢,z —y) < 0.
Hence, as shown above & € Ax as desired. [J

Definition 1.4 A subset A of X x X is said to be demiclosed if x, — = and y, — y and
[0, yn] € A imply that [z,y] € A. A subset A is closed if [x,,, Yn], , — = and y,, — y imply
that [x,y] € A.

Theorem 1.8 Let A be m-dissipative. Then the followings hold.
(1) A is closed.
(i7) If {x)} C X such that xy — x and Ayzy — y as A — 0T, then [z,y] € A.

Proof: (i) Let [x,,2,] € A and (z,,Z,) — (x,Z) in X x X. Since A is dissipative Re (I, —
U, —y); < 0 for all [y,y] € A. Since (-,-); is lower semicontinuous, letting n — oo, we
obtain Re (z — g,z —y); < for all [y,y] € A. Then A; = [z, 2] U A is a dissipative extension
of A. Since A is maximal dissipative, A; = A and thus [z,Z] € A. Hence, A is closed.

(1) Since {A x} is a bounded set in X, by the definition of Ay, lim |Jyz)y — zy| — 0 and
thus Jyzy — x as A = 0. But, since Ayz) € AJyzy, it follows from (i) that [z,y] € A. O

Theorem 1.9 Let A be m-dissipative and let X* be uniformly convex. Then the followings
hold.

(1) A is demiclosed.

(1) If {z\} C X such that ) — z and {|A x|} is bounded as A — 07, then = € dom (A).
Moreover, if for some subsequence Ay, x, — y, then y € Ax.

(10) limy_o+ |Arz| = ||Az]|.

Proof: (i) Let [x,,%,] € A be such that lim z,, = 2 and w — limZ,, = & as n — oo. Since
X* is uniformly convex, from Lemma the duality mapping is single-valued and uniformly
continuous on the bounded subsets of X. Since A is dissipative Re (Z, — ¢, F(z, —y)) <0
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for all [y,y] € A. Thus, letting n — oo, we obtain Re (Z — g, Fl(x —y)) < 0 for all [y, y] € A.
Thus, [x,Z] € A, by the maximality of A.
Definition 1.5 The minimal section A° of A is defined by

A’z ={y € Az : ly| = ||Az||} with dom (A°) = {x € dom (A) : A% is non-empty}.

Lemma 1.10 Let X™* be a strictly convex Banach space and let A be maximal dissipative.
Then, the followings hold.

(i) If X is strictly convex, then A° is single-valued.

(i) If X reflexible, then dom (A°) = dom (A).

(ii7) If X strictly convex and reflexible, then A° is single-valued and dom (A°) = dom (A).

Theorem 1.11 Let X* is a uniformly convex Banach space and let A be m-dissipative.
Then the followings hold.
(i) limy_o+ F(Axz) = F(A%) for each z € dom (A).
Moreover, if X is also uniformly convex, then
(i1) limy_,o+ Ayz = A% for each x € dom (A).

Proof: (1) Let o € dom (A). By (ii) of Theorem 1.4

[ Axa| < || Az]]

Since {A,z} is a bounded sequence in a reflexive Banach space (i.e., since X* is uniformly
convex, X * is reflexive and so is X ), there exists a weak convergent subsequence {A,,z}. Now
we set y = w — lim,,_,o, Ay, x. Since from Theorem 1.4 Ay =z € AJ,, x and lim,, o Jy, ==
and from Theorem 1.10 A is demiclosed, it follows that [z,y] € A. Since by the lower-
semicontinuity of norm this implies

|Az|| < |y|liminf |A,, z| < limsup|Ay, x| < || Az,
n—oo

n—oo

we have |y| = ||Az|| = lim, o |4y, 7| and thus y € A%x. Next, since |F(Ay,z)| = |Ay, x| <
|Az||, F(Ay,z) is a bounded sequence in the reflexive Banach space X* and has a weakly
convergent subsequence F'(Ay, ) of F(Ay, x). If we set y* = w — limy_,o, F(A),x), then it
follows from the dissipativity of A that

Re (Ay,x —y, F(Ay2)) = N\, ' Re (Ay,x — y, F(Jy,z1)) <0,

or equivalently |Ay, z|> < Re(y, F(A,,z)). Letting k& — oo, we obtain |y|*> < Re (y,y*).
Combining this with

v < Jim [F(Ar2)| = Jim [Aya] = ],

we have
| < Rely,y*) < [y, y")| < lylly*| < lyl>.
Hence,
(w.y") = lyl* = ly)?
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and we have y* = F(y). Also, limg,o |F(Ay,2)| = |y| = |F(y)|. It thus follows from the
uniform convexity of X* that
lim F(Ay z)= F(y).

k—o00

Since Az is a closed convex set of X from Theorem , we can show that z — F(A%) is
single-valued. In fact, if C' is a closed convex subset of X, the y is an element of minimal
norm in C| if and only if

lyl <|(1—a)y+az| forallze Cand0 < a <.

Hence,
(z =y, y)4 > 0.

and from Theorem 1.10
0<Re(z—y,f)=Relzf)— |y (2.4)

for all z € C' and f € F(y). Now, let y;, 3o be arbitrary in A%. Then, from (2.4)

y1* < Re (y2, Fy1)) < lyallyal

which implies that (yo, F(y1)) = |y2|* and |F(y1)| = |y2|. Therefore, F(y;) = F(y2) as
desired. Thus, we have shown that for every sequence {\} of positive numbers that converge
to zero, the sequence {F(Ayz)} has a subsequence that converges to the same limit F'(A%r).
Therefore, limy_,o F(Axz) — F(A%).

Furthermore, we assume that X is uniformly convex. We have shown above that for
x € dom (A) the sequence {A,} contains a weak convergent subsequence {4, x} and if
y=w — lim,_,o Ay, then [x,y] € A° and |y| = lim,,_+ |Ax,z|. But since X is uniformly
convex, it follows from Theorem 1.10 that A° is single-valued and thus y = A%. Hence,
w — lim, o Ay, = A% and lim,, o |Ay,z| = |A%2|. Since X is uniformly convex, this
implies that lim,, o, Ay, x = A%. O

Theorem 1.12 Let X is a uniformly convex Banach space and let A be m-dissipative. Then
dom (A) is a convex subset of X.

Proof: It follows from Theorem 1.4 that
| e —z| < MN|Az|| for x € dom (A)
Hence |Jyx — x| — 0 as A — 0T. Since Jyz € dom (A) for X € X it follows that
dom(A)={zeX:|\xt—z| > 0asA— 0"}
Let 1, x EW(A)andOgozg 1 and set
r=azx+ (1 —a)xs.

Then, we have
| e — x| <o — 1| + | hry — 24|

|\ — xo] < |z — xa| + | Jhxe — 22|
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where z — 21 = (1 — ) (2 — z1) and x — 29 = a(x1 — x). Since {Jyz} is a bounded set
and a uniformly convex Banach space is reflexive, it follows that there exists a subsequence
{Jy,x} that converges weakly to z. Since the norm is weakly lower semicontinuous, letting
n — oo in (2.5) with A = \,,, we obtain

|2 = 21| < (1= a) 21 — 22

|z — xo| < a|xy — 2o

Thus,
|1 — w0 = (21 — 2) + (2 — 22)| < |21 — 2] + |2 — 22| < |21 — 22

and therefore |71 —z| = (1—a) |[x1—xs|, |z—x2| = a|z1—22| and |(z1—2)+(2—22)| = |x1—22|.
But, since X is uniformly convex we have z = z and w — lim Jy, x = z as n — oo. Since we
also have
|z — x| <liminf |Jy, @ — Jy, 21| < o — 24|
n—oo

|y, — Iy, x1| = |z —x1] and w—lm Jy, o — Jy, 1 = —2x; as n — oo. Since X is uniformly
convex, this implies that limy_,o+ Jyx =z and x € dom (A). O

2.1 Generation of Nonlinear Semigroups

In this section, we consider the generation of nonlinear semigroup by Crandall-Liggett on a
Banach space X.

Definition 2.1 Let X, be a subset of X. A semigroup S(t), ¢ > of nonlinear contractions on
X is a function with domain [0, 00) x X and range in X satisfying the following conditions:

S(t+s)x=S5(t)S(s)r and S(0)x =z for x € Xy, t,s>0
t — S(t)xr € X is continuous
|S(t)r — S(t)y| < |z —y| for t >0, z,y € X

Let A be a w-dissipative operator and Jy = (I — A A)~! is the resolvent. The following
estimate plays an essential role in the Crandall-Liggett generation theory.

Lemma 2.1 Assume a sequence {a, .} of positive numbers satisfies
An,m S A Up—1,m—1 + (1 - Oé) An—1,m (26)
and ag,, <mAand a,0 <npfor A\>p>0and a = % Then we have the estimate

Anm < [(MA — npu)? + mA2)z + [(mA — np)® + nAul?. (2.7)

Proof: From the assumption, (2.7) holds for either m = 0 or n = 0. We will use the induction
in n, m, that is if (2.7) holds for (n + 1,m) when (2.7) is true for (n,m) and (n,m — 1),
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then (2.7) holds for all (n,m). Let § =1 — a. We assume that (2.7) holds for (n,m) and
(n,m —1). Then, by (2.6) and Cauchy-Schwarz inequality az + By < (a + )z (ax? + By?)?

An+1,m S (0% an,m—l + 6 An.m

< a([((m = DA = np)® 4 (m = DXJ2 + [((m — DA —npr)* +ndp]2)
+6 ([(mA = np)? +mA2 + [(mA — np)? +nip)?)

= (0 + B)3 @ [((m — DA = np)? + (m — 1)V] + B[(mA — np)? + mA?])3
+Ha+B)2(al((m — DX —np)? +ndu] + B [(mA — np)* +niu))

D=

< [(mA = (n+ 1D)p)® +mA%z + [(mA — (n+ 1)p)® + (n+ 1)Au.
Here, we used o + 3 = 1, a\ = p and
al((m =)A= np)* + (m = DN’] + B[(mA — npu)* +mA?))
< (mA —np)? +mA — aX(mA —np) = (mA — (n + Dp)? + mA\? —
al((m — 1A —np)* +niu] + B [(mA = np)* + nyl

< (mA —np)® + (n+ D)Au — 2aX(mA —np) < (mA— (n+ Dp)? + (n+ Dip — .0

Theorem 2.2 Assume A be a dissipative subset of X x X and satisfies the range condition

dom (A) C R(I — X A) for all sufficiently small A > 0. (2.8)
Then, there exists a semigroup of type w on S(t) on dom (A) that satisfies for x € dom (A)
St)r = lim (I —XA) &z, ¢t>0 (2.9)

A—0t

and
|S(t)r — S(t)x| < |t — s|||Az|| for x € dom (A), and t, s > 0.

Proof: First, note that from (2.10) dom (A) C dom (Jy). Let x € dom (A) and set ay,,, =
|J[}x — Jyx| for n, m > 0. Then, from Theorem 2.4

= |z — JPx| < |z — S|+ | ha — Ja|+ -+ | I) e — TP

<mlz — Jyr| <m\|Az].

Similarly, a, o = |Jjz — x| < nu ||Az||. Moreover,

A —
= |Jjx — J{'x| < |Jjw — J, (% T e 4 N P Jf\”x) \

Hljnl Jm1|+

)\
= Q0p-1,m-1 + (1 - 05) An—1,m-
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It thus follows from Lemma 2.1 that
e — 2] <2002 £ a0} Az (2.10)

Thus, J )[%]3: converges to S(t)z uniformly on any bounded intervals, as A — 07. Since J )[%] is
non-expansive, so is S(t). Hence (2.9) holds. Next, we show that S(t) satisfies the semigroup
property S(t + s)x = S(t)S(s)x for x € dom (A) and ¢, s > 0. Letting p — 0" in (2.10), we
obtain .

1S(t)a — JN x| < 2002 + At)3. (2.11)

for x € dom (A). If we let © = J/[\ﬂz, then = € dom (A) and
15(6) 732 — JBIIBL < 2002 107 A2 (2.12)

where we used that ||AJ5}2|| < ||Az|| for z € dom (A). Since [%2] — ([£] + [£]) equals 0 or
1, we have

tts t s
I = TR < s — 2 < Az (2.13)
It thus follows from (2.11)—(2.13) that

m]
X

IS(t+8)z — S(1)S()2] < St + 8)z — I 2 4 [z — gL

IS sy B s B — s@)8(s)2] — 0

as A — 0%. Hence, S(t + s)z = S(t)S(s)z.
Finally, since

t t
[Wa—a] < [5] e — x| <t Ax

we have |S(t)r — x| < t||Az|| for € dom (A). From this we obtain |S(t)xr — x| — 0 as
t — 01 for x € dom (A) and also

[S(t)z = S(s)z] < [S(t = s)z — 2| < (1 = s) [|Az]|

for x € dom (A) and t > s > 0. O

2.2 Cauchy Problem
Definition 3.1 Let 2y € X and w € R. Consider the Cauchy problem

d
au(t) € Au(t), u(0) = . (2.14)

(1) A continuous function u(t) : [0,7] — X is called a strong solution of (2.14) if u(t) is
Lipschitz continuous with u(0) = zy, strongly differentiable a.e. ¢t € [0,7], and (2.14) holds
a.e. t €[0,7T].
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(2) A continuous function u(t) : [0,7] — X is called an integral solution of type w of (2.14)
if u(t) satisfies

|M®—$%ﬂwﬂ—$h§4Oﬂwﬁ—IHﬂ%Mﬁ—fhﬁk (2.15)

for all [z,y] € Aand t >t € [0,7).

Theorem 3.1 Let A be a dissipative subset of X x X. Then, the strong solution to (2.14)
is unique. Moreover if the range condition (2.10) holds, then then the strong solution u(t) :
[0,00) — X to (2.14) is given by

>l

u(t) = lim (I —XA)7!

Iz for 2 € dom (A) and t > 0.
A—07F

Proof: Let w;(t), i« = 1,2 be the strong solutions to (2.14). Then, t — |uy(t) — ua(t)]| is
Lipschitz continuous and thus a.e. differentiable ¢ > 0. Thus

d 2 / /
gl (t) —ua ()" = 2(u(8) — ua(t), wa(t) — ua(t))s

a.e. t > 0. Since u(t) € Au;(t), i = 1,2 from the dissipativeness of A, we have %|u;(t) —
ua(t)|* < 0 and therefore

t

(t) = @) < [ Fha() = ualo) dt <o

which implies u; = us.

For 0 < 2X < s let uy(t) = (I — A A)" Xz and define g () = A" (u(t) — u(t — \)) — o/ (t)
a.e. t > A\ Since limy o+ |ga] = 0 a.e. £ > 0 and |gx(¢)| < 2M for a.e. t € [\, s], where M
is a Lipschitz constant of u(t) on [0, s], it follows that limy_o+ [} |gx(¢)| dt = 0 by Lebesgue
dominated convergence theorem. Next, since

w(t —A) + Aga(t) = ult) = Ad'(t) € (I — X A)u(t),
we have u(t) = (I — X A)"H(u(t — \) + A ga(t)). Hence,

t—=\

ua(t) = u(®)] < (1 =X A) 5z —u(t = A) = Aga(t)]
< fua(t = A) —u(t = A)[+ Alga(t)]
a.e. t € [\, s]. Integrating this on [\, s], we obtain
s A s
3 —uolde <27 [ - e+ [l
s—A 0 A

Letting A — 07, it follows from Theorem 2.2 that |S(s)z — u(s)| = 0 since u is Lipschitz
continuous, which shows the desired result. [J

In general, the semigroup S(t) generated on dom (A) in Theorem 2.2 in not necessary
strongly differentiable. In fact, an example of an m-dissipative A satisfying (2.10) is given,
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for which the semigroup constructed in Theorem 2.2 is not even weakly differentiable for all
t > 0. Hence, from Theorem 3.1 the corresponding Cauchy problem (2.14) does not have a
strong solution. However, we have the following.

Theorem 3.2 Let A be an w-dissipative subset satisfying (2.10) and S(t), ¢ > 0 be the
semigroup on dom (A), as constructed in Theorem 2.2. Then, the followings hold.

(1) u(t) = S(t)x on dom (A) defined in Theorem 2.2 is an integral solution of type w to the
Cauchy problem (2.14).

(2) Ifv(t) € C(0,T; X) be an integral of type w to (2.14), then |v(t) —u(t)| < ! |v(0)—u(0)].
(3) The Cauchy problem (2.14) has a unique solution in dom (A) in the sense of Definition
2.1.

Proof: A simple modification of the proof of Theorem 2.2 shows that for zo € dom (A)

S(t)ze = lim (I — X A) Rz,

A—0+
exists and defines the semigroup S(t) of nonlinear w-contractions on W(A), ie.,
|S(t)x — S(t)y| < e |z —y| for t>0and z,y € dom (A).
For xy € dom (A) we define for A > 0 and k > 1
Yy = N (Jwg — Jy ) = AnJY g € AJY. (2.16)

Since A is w-dissipative, (yxr — ¥, Jyxo — 2)_ < wl|J¥zo — x| for [z,y] € A. Since from
Lemma 1.1 (4) (y,z)_ — (z,2); < (y — z,z)_, it follows that

(Y, Jxzo — )— < w|Jiwo — x|+ (y, Jwo — @)+ (2.17)
Since from Lemma 1.1 (3) (z +y,z)_ = |z| + (y,x)_, we have
MY, T¥wy — o) = |Jiag — x| + (—(Jf_lxo — ), Jixg —x)_ > |J¥wg — x| — |Jf‘1x0 —z|.
It thus follows from (2.17) that
|J¥xg — 2| — | g — 2] < A (w | J¥zo — 2| + (y, Jyze — x) ).

Since JIx) = JF on ¢ € [k, (k + 1))), this inequality can be written as
(k+1)A " "
o= ol = o —al < [ @l — ol + g A0 — 0}t
)

Hence, summing up this in k from k = [%] + 1 to [§] we obtain

1A

>

|J£X]xo — x| — |J£ﬂxo —z| < / (w |J5]$0 — x|+ (y, J@xo — o)+ ds.

(XA
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Since |J£§}x0| < (1 = Aw) ™% |zg| < €Mz, by Lebesgue dominated convergence theorem
and the upper semicontinuity of (-,-), letting A — 07 we obtain

|S(t)xg — x| — |S(t)wg — 2| < /t (w|S(s)xo — x| + (y, S(t)xo — x)4) ds (2.18)

for xy € dom (A). Similarly, since S(¢) is Lipschitz continuous on dom (A), again by Lebesgue
dominated convergence theorem and the upper semicontinuity of (-, -);, (2.18) holds for all
xo € dom (A).

(2) Let v(t) € C(0,T; X) be an integral of type w to (2.14). Since [J¥zg, y5] € A, it follows
from (2.15) that

t
[o(t) = Jyzol = [u(f) — Jimo| < / (wlo(s) = Jizol + (Y, v(s) — Jwo)y)ds.  (2.19)
t
Since Ayt = —(v(s) — J¥xo) + (v(s) — Ji ta) and from Lemma 1.1 (3) (—z +y,2), =
—|z| + (y,z), we have
(A, v(s)=TNzo)+ = —[v(s)=JIywo|+(v(s) = I3~ w0, v(s) = Iy o)+ < —|v(s)—Tywo|+]v(s)— Iy wol.

Thus, from (2.19)
¢

(Jo(t) = Jiwo| = [v(f) — Jywmo)A < / (WAlv(s) = Jywo| = [v(s) — Jywo| + |v(s) — T3 wo]) ds
i

Summing up the both sides of this in &k from [$] 4 1 to [], we obtain
i 3 o g
[ o) = 7o) = o) = o] do
(XA

(XA

t T ol el
< / (=fo(s) = TFag] + u(s) — T a| +/A wlv(s) — TS ao| do) ds.
t

[X]A

Now, by Lebesgue dominated convergence theorem, letting A — 0

/T(|v(t) —u(o)] = |v(f) — u(o)]) do + /t (lo(s) = u(m)| = |v(s) = u(7)]) ds

g/;/;wrv<s>—u<a>rda ds.

For h > 0 we define F}, by

t+h  pt+h
Fn(t) = h_Q/t /t lv(s) —u(o)| do ds.

(2.20)

d
Then from (2.20) we have th(t) < wFy(t) and thus F,(t) < e“'Fj,(0). Since u, v are

continuous we obtain the desired estimate by letting h — 0%. O
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Lemma 3.3 Let A be an w-dissipative subset satisfying (2.10) and S(¢), ¢ > 0 be the

semigroup on dom (A), as constructed in Theorem 2.2. Then, for g € dom (A) and [z,y] € A
t
|S(t)wo — x|* — |S(H)xe — 2> < 2/ (wS(s)wg — z|* + (y, S(s)x0 — )5 ds (2.21)
t

and for every f € F(xy — z)

<S(t)x0 — X

limsup Re ) Swlzo — 2P + (y, 10 — )5 (2.22)

t—0t

Proof: Let y; be defined by (2.16). Since A is w-dissipative, there exists f € F(Jxo — )
such that Re (y§ — vy, f) < w|J¥zo — x|>. Since

Re <yl,\€7 f> = )\_1 Re <J/]\€x0 — T — (J;filxo - l'), f>

> NN ([ Jywo — o — | Iy o — wl| Jywo — xf) = (20) (| Jywo — 2P = |J3 " ao — 2,
we have from Theorem 1.4

| ywo — xf? — |3 wg — af* < 2XRe (yy, f) < 21 (w30 — @] + (y, Jywo — ).

Since J/[é]a:o = J¥zo on [k), (k + 1))), this can be written as

(k+1)X

1t t
|J/]\“:1:0 — x]z — |J/’\“_1x0 —zf* < / (w ]J/[\*xo — 33\2 + (y, JLA]xO —x)g)dt.

kA

Hence,

4] 2 (4] 2 SN 2 5]
|\ wo — z|* — |\ e — x]F < 2 / (Wl xg — x]* + (y, JM g — x)5) ds.
[$1A
Since |J£§]x0| < (1 = dw) 7% |xg| < €|z, by Lebesgue dominated convergence theorem
and the upper semicontinuity of (-, ), letting A — 0% we obtain (2.21).
Next, we show (2.22). For any given f € F(zo — x) as shown above

2Re (S(t)zo — o, f) < |S(t)wo — @]* — [z — 2.
Thus, from (2.21)

Re (S(t)xg — mo, f) < /0 (w|S(8)zo — x| + (y, S(s)wo — 7)s) ds

Since s — S(s)xg is continuous, by the upper semicontinuity of (-, )5, we have (2.22). O

Theorem 3.4 Assume that A is a close dissipative subset of X x X and satisfies the range
condition (2.10) and let S(t), t > 0 be the semigroup on dom (A), defined in Theorem 2.2.
Then, if S(t)z is strongly differentiable at tq > 0 then

S(ty)r € dom (A) and %S(t)x li=t, € AS(t)x,
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and moreover

S(to)r € dom (A°) and %S(t)x |i—to = A%S(to)x.

Proof: Let £5(t)z |i—, =y. Then S(to — Az — (S(to)z — Ay) = o()), where 'O(T’\)' — 0 as
A — 0. Since S(ty — A\)x € dom (A), there exists a [zy,y\] € A such that S(ty — Nz =
)y — Ay, and

Ay —yn) = S(to)xr — xx + o(N). (2.23)
If we let o =z, y = y) and zg = S(tp)z in (2.22), then we obtain
Re(y, f) <w|S(to)z — oa* + (yx, S(to)r — 1)

for all f € (S(to)xr — x,). It follows from Lemma 1.3 that there exists a g € F(S(to)x — xy)
such that (y, S(t)r — x))s = Re (yx, g) and thus

Re{y —yx, g) < w|S(to)x — =5[>

From (2.23)
-1 2 lo(M)] . 2
A TS () — )| < S |S(to)r — zx| + w [S(to)x — x|
and thus
S(to)I—%A

(1-)w) —0 as A—0".

Combining this with (2.23), we obtain
zy — S(to)r and yy —y

as A — 0T. Since A is closed, it follows that [S(to)z,y] € A, which shows the first assertion.
Next, from Theorem 2.2

1S(to + Nz — S(to)z| < M|AS(to)z| for A >0

This implies that |y| < ||[AS(to)z||. Since y € AS(ty)z, it follows that S(tg)z € dom (A°)
and y € A°S(to)z. O

Theorem 3.5 Let A be a dissipative subset of X x X satisfying the range condition (2.10)
and S(t), t > 0 be the semigroup on dom (A), defined in Theorem 2.2. Then the followings
hold.

(1) For ever x € dom (A)

lim |Ayz| = liminf |S(t)z — z|.
A—0t t—0t

(2) Let x € dom (A). Then, lim,_,o+ |Axz| < oo if and only if there exists a sequence {z,}
in dom (A) such that lim,,_,,, x, = z and sup,, ||Az,| < oco.
Proof: Let z € dom (A). From Theorem 1.4 |Ayz| is monotone decreasing and lim |A,x|

exists (including o). Since |J/[\X] —z| < t|Axz|, it follows from Theorem 2.2 that

e —x| <t li A
[S(#)z — 2z <t lim |Azz|
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thus ]
liminf — |S(t)x — x| < lim |Ayz|.
t A—0F

t—0t+

Conversely, from Lemma 3.3

1
1trné£1 ; |S(t)x — z||x —u| < (v, — u)s

for [u,v] € A. We set u = Jyz and v = Ayz. Since x — u = —\ Az,

1
— lim inf " 1S(H)x — 2| A Ayz| < =\ |Ayz]?

t—0t
which implies

o1
hgl)égf . |S(t)xr — x| > |Axz|.

Theorem 3.7 Let A be a dissipative set of X x X satisfying the range condition (2.10) and
let S(t), t > 0 be the semigroup defined on dom (A) in Theorem 2.2.

(1) If x € dom (A) and S(t)x is differentiable a.e., t > 0, then u(t) = S(t)z, t > 0 is a
unique strong solution of the Cauchy problem (2.14).

(2) If X is reflexive. Then, if © € dom (A) then u(t) = S(t)z, t > 0 is a unique strong
solution of the Cauchy problem (2.14).

Proof: The assertion (1) follows from Theorems 3.1 and 3.5. If X is reflexive, then since an
X-valued absolute continuous function is a.e. strongly differentiable, (2) follows from (1). OJ

2.2.1 Infinitesimal generator

Definition 4.1 Let X, be a subset of a Banach space X and S(t), ¢ > 0 be a semigroup of
nonlinear contractions on Xy. Set A, = h=(T'(h) — I) for h > 0 and define the strong and
weak infinitesimal generators Ay and A, by

Aoz = limy, o+ Apz  with dom (Ag) = {z € Xo : limy, o+ Apx exists}

(2.24)
Apr = w — limy, o+ Apx  with dom (Ag) = {z € Xo : w — limy,_,o+ Apx exists},
respectively. We define the set D by
D = {z € X, : liminf | A,z| < o0} (2.25)
h—0

Theorem 4.1 Let S(t), t > 0 be a semigroup of nonlinear contractions defined on a closed
subset Xy of X. Then the followings hold.

(1) (Apzy — Apxe, *) <0 for all z1, 29 € dom (Ay) and z* € F(x1 — x3). In particular, Ay
and A, are dissipative. o

(2) If X is reflexive, then dom (Ay) = dom (A,) = D.

(3) If X is reflexive and strictly convex, then dom(A,) = D. In addition, if X is uniformly
convex, then dom (A,) = dom (Ag) = D and A, = Ay.
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Proof: (1) For z1,x9 € Xy and z* € F(x; — z3) we have
(Apzy — Apze, x*) = h 1 ((S(h)xy — S(h)za, %) — |71 — 72]?)
S hil(‘S(h)l'l — S(h)l’g“l’l — $2| — ’371 — .1'2‘2) S 0.

Letting h — 0", we obtain the desired inequality.

(2) Obviously, dom (A) C dom (A,) C D. Let x € D. Tt suffices to show that = € dom (Ay).
We can show that ¢ — S(¢)z is Lipschitz continuous. In fact, there exists a monotonically
decreasing sequence {t;} of positive numbers and L > 0 such that ¢, — 0 as k — oo and
|S(ty)x — x| < Ltg. Let h > 0 and ny be a nonnegative integer such that 0 < h — ngty < tg.
Then we have

|S(t+ h)x — S(t)z| <|S(t)x — x| = |S(h — nity + ngty)x — x|
< |S(h —ngty)r — x| + Lngty < |S(h —ngtg)r — x|+ Lh

By the strong continuity of S(t)x at ¢t = 0, letting & — oo, we obtain |S(t+h)z—S(t)z| < L h.
Now, since X is reflexive this implies that S(t)x is a.e. differentiable on (0,00). But since
S(t)z € dom (Ap) whenever LS5(t)x exists, S(t)z € dom(Ag) a.e. t > 0. Thus, since
|S(t)r — x| — 0 as t — 07, it follows that = € dom (Ap).

(3) Assume that X is reflexive and strictly convex. Let 29 € D and Y be the set of all weak
cluster points of t~*(S(t)zo — xo) as t — 0T. Let A be a subset of X x X defined by

A= AgU[zg,co0Y] and dom (A) = dom (Ay) U {zo}
where co Y denotes the closure of the convex hull of Y. Note that from (1)
(A1 — Aga, x¥) <0 for all z1, 29 € dom (Ap) and z* € F(x1 — x3)
and for every y € Y
(Apzy —y,z%) <0 for all x; € dom (Ap) and z* € F(xq — x9).

This implies that A is a dissipative subset of X x X. But, since X is reflexive, t — S(t)xg
is a.e. differentiable and

%S(t)l’o = AoS(t)on € AS(t).Z'o, a.ce., t > 0.

It follows from the dissipativity of A that

d
it
for z* € F(S(t)xg — zo). Note that for h > 0

(S(t)xzo — x0), 2*) < (y,2*), a.e, t>0andy € Az, (2.26)

(R (S(t+h)wo—S(t)x0), 2*) < A~ (|S(t+h)xo—10|—|S(t)20—20|)|2*| fOr 2* € F(S(t)m0—"20).
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Letting h — 07, we have

d

(2 (S()z0 — o), 27) < |S(t)zo — wo| . |S(H)wo — wo|, ae. >0

The converse inequality follows much similarly. Thus, we have

d

%(S(t)xo —xg),2") for ¥ € F(S(t)xg —xo). (2.27)

d
|S(t)zo — Io|£|5(t)930 — | = (

d
It follows from (2.26)—(2.27) that %]S(t)xo —zo| < |y| for y € Y and a.e. t > 0 and thus

1S(t)zo — w0 < t|| Az for all t > 0. (2.28)

Note that Azg = co Y is a closed convex subset of X'. Since X is reflexive and strictly convex,
there exists a unique element yy € Az such that |yo| = ||Azg||. Hence, (2.28) implies that
coY =yo = A,zo and therefore zo € dom (A,). )
Next, we assume that X is uniformly convex and let xy € dom(A,) = D. Then
S(t)rg —

w — lim M:yo as t — 0.

From (2.28)
(S ()0 — wo)| < |yol, a.e.t>0.

Since X is uniformly convex, these imply that

S(t)xg —
limwzyo as t —07.

which completes the proof. [

Theorem 4.2 Let X and X* be uniformly convex Banach spaces. Let S(t), ¢ > 0 be
the semigroup of nonlinear contractions on a closed subset X, and Ay be the infinitesimal
generator of S(t). If z € dom (Ap), then

(1) S(t)x € dom (Ap) for all ¢ > 0 and the function ¢ — ApS(¢)x is right continuous on
0, 00).

(17) S(t)z has a right derivative %S(t)x for t > 0 and %S(t)x = AoS(t)z, t > 0.

(i1i) 45(t)x exists and is continuous except a countable number of values ¢ > 0.

Proof: (i) — (i1) Let # € dom (A,). By Theorem 4.1, dom (Ay) = D and thus S(t)z €
dom (Ap) and

+
Z—tS(t)x = ApS(t)x for t > 0. (2.29)

Moreover, t — S(t)z a.e. differentiable and £S(t)z = AgS(t)x a.e. t > 0. We next prove
that AgS(t)x is right continuous. For h > 0

%(S(t + h)x — S(t)x) = AoS(t+ h)x — ApS(t)xz, a.e.t> 0.
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From (2.27)
|S(t+ h)x — S(t)x| %\S(t +h)x — S(t)x| = (AoS(t + h)x — ApgS(t)x,z*) <0

for all z* € F(S(t + h)x — S(t)z), since Ay is dissipative. Integrating this over [s,t], we
obtain
|S(t+h)x — S(t)z| < |S(s+ h)x — S(s)x| for 0 <s<t

and therefore o

—S(t)z| < ]£S(s):c]

Hence t — |AgS(t)z| is monotonically non-increasing function and thus it is right continuous.
Let tp > 0 and let {tx} be a decreasing sequence of positive numbers such that ¢, — .
Without loss of generality, we may assume that w — limg_,o, AgS(tx) = yo. The right
continuity of |ApS(t)z| at t = ty, thus implies that

lyol < |AoS(to)x] (2.30)

since norm is weakly lower semicontinuous. Let Ay be the maximal dissipative extension of
Ap. Tt then follows from Theorem 1.9 that A is demiclosed and thus yo € AS(t)z. On the
other hand, for z € dom (Ap) and y € Az, we have

d
<E(S(t)x —z),2") < (y,z%) forall z* € F(S(t)x — x)
a.e. t > 0, since A is dissipative and LS(t)x = AgS(t)x € AS(t)x a.e. t > 0. From (2.27)
we have ) )
tS(t)xr — | < |Az| = ||A | for >0

where A° is the minimal section of A. Hence Agz = A%. It thus follows from (2.30) that
yo = ApS(to)r and limy_o AgS(tx)xr = yo since X is uniformly convex. Thus, we have
proved the right continuity of AyS(t)x for ¢t > 0.

(17i) Integrating (2.29) over [t,t + h], we have

S(t+h)x—S(t)r = /Hh ApS(s)xds

for t, h > 0. Hence it suffices to prove that the function ¢ — AS(t)z is continuous except
a countable number of ¢ > 0. Using the same arguments as above, we can show that if
|ApS(t)x| is continuous at t = to, then AS(f)x is continuous at t = ty. But since |ApS(t)z|
is monotone non-increasing, it follows that it has at most countably many discontinuities,
which completes the proof. [

Theorem 4.3 Let X and X* be uniformly convex Banach spaces. If A be m-dissipative,
then A is demiclosed, dom (A) is a closed convex set and A° is single-valued operator with
dom (A%) = dom (A). Moreover, A° is the infinitesimal generator of a semigroup of contrac-
tions on dom (A).
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Proof: It follows from Theorem 1.9 that A is demiclosed. The second assertion follows from
Theorem 1.12. Also, from Theorem 3.4

%S(t)x =A"S(t)x, a.e.t>0

and
S(t)x — x| <t|A%2], t>0 (2.31)

for x € dom (A). Let Ap be the infinitesimal generator of the semigroup S(t), ¢ > 0 generated
by A defined in Theorem 2.2. Then, (2.31) implies that by Theorem 4.1 z € dom (Aj) and
by Theorem 4.2 %S(t)a: = ApS(t)x and ApS(t)x is right continuous in t. Since A is closed,

Agz = lim ApS(t)x € Ax.
t—0t

Hence, (2.30) implies that Agx = Az.

When X is a Hilbert space we have the nonlinear version of Hille-Yosida theorem as
follows.
Theorem 4.4 Let H be a Hilbert space. Then,
(1) The infinitesimal generator Ay of a semigroup of contractions S(t), ¢ > 0 on a closed
convex set Xy has a dense domain in X, and there exists a unique maximal dissipative
operator A such that A = A,.

Conversely,
(2) If Ay is a maximal dissipative operator, then dom (A) is a closed convex set and A° is
the infinitesimal generator of contractions on dom (A).

Proof: (2) Since from Theorem 1.7 the maximal dissipative operator in a Hilbert space is
m-dissipative, (2) follows from Theorem 4.3. [J

Example (Nonlinear Diffusion) Consider the nonlinear diffusion equation of the form

u = Au = Ay(u) — B(u)
on X = LY(Q). Assume v : R — R is maximal monotone. and v : R — R is monotone. Let
dom(A) = {there exists a v € W(Q) such that v € y(u) and Av € X}
Thus, sign(z—y) = sign(y(z)—~(y)). Let p € C*(R) be a monotonically increasing function
satisfying p(0) = 0 and p(z) = sign(z), |z| > 1 and p.(x) = p(%) for € > 0. Note that for

ueX
(u, pe(w)) = [u[ and (¥, pe(u)) = (¢, signo(u)) for ¢ € X

as € — 0T,

(Auy — Aug, pe(y(u1) — y(uz))) = —(V(y(ur) — y(uz)), p. V(y(u1) — 7(uz)))

—(B(u1) — Bluz), pe(y(ur) —v(ugz)) < 0.
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Letting ¢ — 0* we obtain
(Auy — Aug, signo(u; —ug)) <0

for all uy, us € dom(A).
For the range condition: we consider v € y(u) such that

Ay ) — Av+ By (v) = f, (2.32)
Let 95 = Ay~ 1(:) + B(y71(+)). For f € L*(Q) consider the minimization

1 :
3 [19eP +i0) = fe)o) o
Q
over v € H}(2). Tt has a unique solution v € H%(2) N H} () such that
Av+ f e dj(v).

For f € X we choose f, € L*(Q) such that |f, — flx — 0 as n — oo. As show above
Up = Avn+fn7
|un - um'X S M ‘fn - fm’X

Thus, there exists v € X such that Av, — u — f. Moreover, there exists a v € Wh4, 1 <
q< ﬁ such that v, — v in X and Av =u — f. In fact, let p > d. For all hy € LP(Q2) and

h e LP(Q) )
—Ap=ho+V-h
has a unique solution ¢ € W1?(Q) and
|plwre < M (Bl + | l,)-
By the Green’s formula
[(hoy vn) = (B, Vou)| = | = (A, @) < M ([l + [R]p]) [ Avn 1.
Since hy € LP(Q) and h € LP(Q)? are arbitraly
[Onlwia < M Ay,
Since W4(Q) is compactly embedded into L'(€2),
v, = v, ve WlQ).

Since 97 is maximal monotone u € 9j(v) equivalently u € v~ !(v) and Av + f € 9j(v).

Example (Conservation law) We consider the scalar conservation law

w4+ (f(u)e + folr,u) =0, t>0 wu(r,0)=u(z), € R (2.33)
where f: R — R%is C'. Let X = L'(R?) and define
Au = =(f(u))a,
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where we assume fy = 0 for the sake of simplicity of our presentation. Define
C={peZ:¢>0}
Since Ac = 0 for all constant ¢, it follows that
p—ceC=(I—-NXA)'p—ceC.

Similarly,
c—peC=c—(IT- A 'peC.

Thus, without loss of generality, one can assume f is bounded.
We use the following lemma.

Lemma 2.1 For ¢ € H'(R?) and ¢ € L%, = {¢ € (L*(R%))?: V- ¢ € L*(R%)} we have
(¢, Vi) +(V-0,0) =0
Proof: Note that for ¢ € C5°(R?)

(6. V(C¥)) + (V- 6,C8h) =0

Let g € C*(R?) satisfying g = 1 for |z| <1 and g = 0 if [z| > 2 and set ( = g(%£). Then we
have

(6.0 + L4Vg) + (V- 6,C4) = 0.

Since (%) — 1 a.e. in R as r — oo thus the lemma follows from Fatou’s lemma. .

dissipativity Note that

—(f(u)e = f(u2)e, plur — u2)) = (f (ur) = f(u2), p'(u1 — u2) (ur = ua)a),
If we define W(z) = [ 0p/(0) do and pc(x) = p(£) for € > 0. then

Uy — U2

(1 (ur — ug), pi(ur — uz) (ur — ug)s)| = € (P( )y Me) < Melngli — 0

as € — 0. Note that for u € L'(R%)

(u, pe(u)) = |ul - and (v, pe(u)) — (¢, signo(u)) for ¥ € LI(R)

as € — 0%. Thus,
(Auy — Aug, signg(u; — ug)) <0

and A is dissipative.
It will be show that
range(A\ ] — A) = X,

i.e., for any g € X there exists an entropy solution satisfying
(sign(u — k)(Au — g), ¢) < (sing(u — k)(f(u) = f(F)), ¥s)
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for all v € C}(R?) and k € R. Hence A has a maximal monotone extension in L'(R?).
In fact, for € > 0 consider the viscous equation

Au—eAu+ f(u), =g (2.34)
First, assume f is Lipschitz continuos, one can show that
Au—eAu — f(u), : HY(RY) — (HY(RY)*

is monotone, hemi-continuous and coercive. It thus follows from the Minty-Browder theorem
that(2.34) has a solution u¢ € H'(R?) for all g € L?>(RY) N LY(RY). Since f(u), € L*(R?),
u € H*(RY).

L>®(R?) estimate From (2.34)

(Au— € Au+ f(u)g, [ul"~*u) = (g, [ul " u).

Since 2 y 5
Aulb 4 (f"(w)ue, [ulP~u) — e(p — 1) (Jul> " ug, [u]> ™ u,)
0 | f']o
< _ _
< (A 5 265( )), ‘
we have 1 y
< (= ) 1 ‘
|U|p—(2)\ 5¢ )\( )) |g|p

By letting p — oo we obtain
1
[uloo < T19loc- (2.35)

Thus, without loss of generality, f is C*(R)%.
WL RY) estimate Assuming g € W (RY), v = u, satisfies

Av — eAv + (f'(u)v), = ga.

Using the same arguments as above
|U| < |gr|1-
Thus, u€ is of bounded variation uniformly in € > 0. Since BV () is compact in L'(2) for

any bounded set in R?. Thus, for g € W' there exists a strong limit u of u¢ in L'(R) as
¢ — 07 and u € BV N L*™ such that

Jovu=gode— [(0).0)dr =0

for all ¢o(R?), i.e. Since (2.35) holds uniformly € > 0 and W is dense in L', one can show
that R(A T — A) = X.
Entropy solution We show that for every & € R and nonnegative function ¢ € C°(R?)

sign(s =)= g19) = . 9) < sign(u—B(E) = J9) ) e K, A9) 20
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It suffices to prove for u € C2(R%). Note that

(pelot — k) F(w)ar ) = (( / " pels — K (u) ds)e )

_ _(/ku Dl — B) fult, 2, ) ds, )

Since f:ﬂ pe(s —k)ds = efol p(s)ds — 0 as € — 0, letting € — 0 we obtain

(sgn(u — k) f(w)e, ¥) = —(sgn(u — k)(f(u) = f(K)), ¢¥z)

Next,
_(pﬁ(u - k)Auv ¢) = (p;(u - k)“oca ¢Ux) + (p€(u - k)uxa 1/11;)

where
(pe(u — k)ug,z) = (=¥ (u — k), De|tar)) — —(Ju — k|, Ay) as € — 0.

Thus, we obtain
—(pe(u — k)Au,¥) > —(ju — k|, A)
and u° satisfies (2.37). Letting e — 07,

(sign(u — k)(Au — g,,¢) — e(Au, ) < (sign(u — k)(f(x) — f(k)),1s) 2 0 (2.37)

for all limit of u¢ as e — 0T, i.e. u is an entropy solution. It can be shown that the entropy
solution is unique.

Example (Hamilton Jacobi equation) Consider the Hamilton Jacobi equation for value func-
tion v = v(t,x) € R:

v + f(vg) = 0. (2.38)

Note that u is a solution to a scalar conservation in R', then v = [ “udz satisfies the the
Hamilton-Jacobi equation. Let X = Cy(R?) and

Av = —f(v,) dom(A) ={f(v.) € X}
Then, for vy, v, € CHRY) N X

(A(vr = v2),02) = —(f((v1)(0)) — f((v2)2(20))) =0

where o € R" such that |v|x = |v(z0)].
We prove the range condition

range(Al — A) =X for A > 0.

That is, there exists a unique viscosity solution to Av — f(v,) = g; for all ¢ € C1(Q) if v — ¢
attains a local maximum at x, € R%, then

Av(zo) — g(wo) + f(pz(70)) <0
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and if v — ¢ attains a local minimum at z, € R?, then

Av(wo) — g(x0) + f(@x(0)) > 0.

Thus, A is maximal monotone and (2.38) has an intgral solution.
Consider the equation of the form

AV + H(z,V,) —vAV =w f.
Assume that H is C' and there exist & > 0, & > 0 and ¢ € L?(R?) such that
|H(x,p) — H(z,q)| <& lp—q| and H(t2,0) € L*(R)

and

A

|Hy(,p)| < és(x) + &2 |p]
Define the Hilbert space H = H*(R?) by
H={¢e L*(R"): ¢, € L*(R")}
with inner product

(@) = [ a)ila) + 6a(o) - vu(a) do

Define the single valued operator A on H by

AV = —H(z,V,) + e AV

with dom (A) = H3(R?). We show that A — \ [ is m-dissipative for some \. First, A — & [
=2

with A\ = £ is monotone since
(A9 — Ay, ¢ — )i = —e (|6x — o3 + |A(0 = ¥)3)
—(H(00) = H(00), b0 = e = A(d = )
< A6 =l = 5 16— veliy

where we used the following Lemma 2.1.
Let us define the linear operator T on X by T'¢ = £ A. with dom (T) = H*(R"). Then

T is a self-adjoint operator in H. Moreover, if let X = H?(R?%) then X* = L*(R%) where
H = H'(RY) is the pivoting space and H = H* and T € £(X, X*) is hermite and coercive.
Thus, T is maximal monotone. Hence equation wV — AV = w f in L?(R?) has a unique
solution V' € H. Note that from (2.7) for ¢ € H%(R?)

H(x,¢y)0e = Ho(x, ¢0) + Hy(%, ¢0)buw € LA(RY).

Thus, if f € H then the solution V' € dom (A) and thus A is maximum monotone in H.
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Step 3: We establish W1°(R?) estimate of solutions to
wV+H(z,V,) —vAV =wf,
when f,, H,(x,0) € L>®(R%) and H satisfies
(2.9) |Ho(2,p) = Ha(2,0)] < My Jp| - and  [Hy(x,p)| < My /1 +Jaf.
Consider the equation of the form
(2.10) wV+yH(x,V,) —vAV =w f

where )
c

w<$> = m for ¢ Z 1.

Then +(x) H(z, p) satisfies (2.6)—(2.7) and thus there exists a unique solution V' € H3(R?)
to (2.10) for sufficiently large w > 0. Define U = V.. Then, from (2.10) we have

(2.11) w(U,¢) + (e H(x,U) + ¢ Hp(x,U) - Uy, @) + v (U, ¢z) = w [z, 0)

for ¢ € HY(RY)4. Let

U=4/U+---+U? and |U|,= U(x)|P dx ’
p Rd

Define the functions ¥, ® : Rt — R* by
rs for r < R? rz=' for r < R?
(r) = and @(r) =
RP~%y for r > R2 RP™2 for r > R2.

Setting ¢ = ®(|U|?)U € HY(R%)? in (2.11), we obtain

S IV(UPIh — (e (V)0 . U)
(212) @ (H (e, 0) — w £2), ®(UP)U) + (6 Hyla, U), (UP) GIUP).)

o 2@ (UPYGIUP), GIUP)) + (@(UPIU:, Un)} =0,

Since from (2.9)
[H(z,p)| < const \/1+[z]? (1 + [p]),

there exists constants kq, ks independent of ¢ > 1 and R > 0 such that

20 -U

WCDOUP),@DH(LU)))) < by (6, W(UR) + ks [@(UD)U],

(
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where ¢ = -5 It thus follows from (2.9) and (2.12) that

w|T(UP) + % (@(U*) Ux, Us) < @[C(UP) N+ (k2 + [ He(2,0)], + w [ folp) [R(U)U -

for some constant @ > 0 independent of ¢ > 1 and R > 0. Since |¥(|U|*)]y > |®(JU]*)U4, it
follows that for w > @

TP + 5 (V) Vs, U)

is uniformly bounded in R > 0. Letting R — oo, it follows from Fatou’s lemma that
U € LP(R%) and from (2.12)

20 - U
02+ |{E|2

w (|Ulp = |felp) + (¥ U2, H(x,U) + (¢ Hy(x, V), IU!”_Q(%IUIQ)x)

W H (e, 0),J0P20) 40 {(p = 2) (U, GIUP), IO + (UP720, U},

Thus we have .
\Ulp < | felp + ;(Up \Ul, + ko + |Hy(2,0],)

where

v Hy(z,U)

2
Jp:k1+M1+ (p—2)1/|oo

Letting p — oo, we obtain

1
(2'13) |U|oo < |fa:|oo + ;((kl + Ml) |U|oo + k2 + |Hx(m7 O|OO)'

For ¢ > 1 let us denote by V¢, the unique solution of (2.10). Let ((z) = x(z/r) €
C%*(RY), r > 1 where y = x(|z|) € C?(R?) is a nonincreasing function such that

X(s)=1 for 0<s<1 and x(s)=exp(—]|s|) for s > 2.
and we assume —Ay < k3 x. Then
(2.14) w (V08 + (v H(x,U%),C&) — v (AVE, (&) =w (f,C8)
for all £ € L?(RY), and U® = V¢ satisfies
(2.15) w(U%Co)+ (W H(z,U), V- (Co) —v(trU;,V-(o) =w(fe,C9)
for all ¢ € H(R%)?. Setting ¢ = U° in (2.15), we obtain

w (U U + (¢ H(z,U®),U¢ - + (V- U)

1

FA(CUSUS) = 5 (AG U} = w (£ CU).

61



Since |U¢|4 is uniformly bounded in ¢ > 1, it follows that for any compact set  in R? there
exists a constant Mg independent of ¢ > 1 such that

w(CUU) + v (CUE U < Mg.

Hence for every compact set Q of R? Since if Q, = {|z| < r}, then H?(Q,) is compactly
embedded into H'(,), it follows that there exists a subsequence of {V°} which converges
strongly in H'(Q,). By a standard diagonalization process, we can construct a subsequence
{V¢} which converges to a function V' strongly in H 1(2)) and weakly in H2(Q) for every
compact set Q) in R Let U = V,. Then, U® converges weakly in H'(Q)? and strongly
in L(). Since L2(Q) convergent sequence has an a.e. pointwise convergent subsequence,
without loss of generality we can assume that U¢ converges to U a.e. in R?. Hence, by
Lebesgue dominated convergence theorem

H,(-,U®) — H,(-,U) and H,(-,U%) — H,(-,U)

strongly in L2(Q)?. It follows from (2.14)-(2.15) that the limit V satisfies

(2.16) w(V,¢8) + (H(z,V;),C&) — v(AV, (&) = w (V. (E)

for all ¢ € L2 (R%) and

(2.17) w(U,C¢) + (H(z,U),V-((9)) = v (trUs, ((@)e) = w(fa: ()
for all ¢ € H} (R?). Setting ¢ = |U[P72U in (2.17), we obtain

(2.18)
W (G 1) + (¢ Hylr, ), [UP (S U)) + (¢ Halar, U, [U20) = w0 (o, [UP20)

{0 =D (CUP GIUP)a GIUP)) + (¢[00, ) = ~(AGIUP)} =0

for all { = x(z/r). Thus,

1 11 1
(2.19) (GAUP) < (G 1felP)r + = (e (G UP)? + (¢, | Hy(, 0)[7)7)
¢ Hp(2,U) |2
where ¢, = M; + ]“ + S5 and
(2.20) (H,(2,0) — Hy(z,p),p) < My [p|* all z € R".

Now, letting p — oo we obtain from (2.19)

(w— M) sup |U| <w|feleo + [He(2,0)|c0-

|z[<r
Since r > 1 is arbitrary, we have

(2.21) (W= M) |Ulse Sw|faloo + [Hz(z,0)]s
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Setting £ = V in (2.16), we obtain

W (GIVE) + (6w, 0) = (£,CV) 4 v { (VP 5 (ACIUP)} = 0.
Also, from (2.18)
W (CNUP) + (¢ Hy,0).U - Uy) + (¢ Hola, U).U) = (f2,C D)

(UL, ) ~ 5(ACIUP)} =0

Since |U] is bounded, thus V € HZ . In fact

Loc*

W(CViV) +v QU Us) < ar [U[% + asw (G, f) + (C o fo)

for some constants aq, as.
Step 4: Next we prove that for w > max(M;,w,) equation

wV —-AV=wf

has a unique solution satisfying (2.21). We define the sequence {V;} in HZ _(R?) by the
successive iteration

(222) w Vk+1 — Ay(t)VkJrl — (w — wo)Vk = Wy f

From Step 3 (2.22) has a solution V., satisfying

(2.23) (W= M) [Uksa]oo < (w = wo) [Ukloo +wo | fr|oo + [Ha (2, 0)]oo
Thus,
Uploo < (1 — W~ Wo )1 (wo | feloo + [Ha(z, 0)[o0) _ Wo | feloo + [He(, 0o _
Floo = (.U—Ml W—Ml CL)O—Ml

for all K > 1. {V;} is bounded sequence in W1°(R9) and thus in H2, (R%). Moreover, we

have from (2.4)
w—w
Vi1 — Vilx < °

Vi — Vi1 x-

W — Wy
Thus {V,} is a Cauchy sequence in X and {V;} converges to V' in X. Let us define the
single-valued operator B on X by B¢ = —H (z, ¢,). Since { BV;} is bounded in L®(R?) we
may assume that BV} converges weakly star to w in L>(R?). If we show that w = Bu, then
V € H?(R?) solves the desired equation. Since {V;} is bounded in H?(€2,), {V;} is strongly
precompact in H'(Q,) for each r > 0. Hence BV}, — BV a.e. in , and thus w = BV.
Step 5: Next, we consider the case when H € C' is without the Lipschitz bound in p but
satisfies (2.2). Consider the cut-off function of H(z,p) by

) Hy(w, 2)(p— M £) + H(ME) if |p| > M

H (z,p) =
H(z,p) if |p| < M.
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From Step 3 and (2.20) equation
wV +HM(2,V,) —vAV =w f

has the unique solution V and U = V, satisfies (2.21) with M; = M +a. Let M > 0
be so that (w — (BM + a)) M < w|fzloo + |Hz(2,0)|o. Then, |Uloe < M. and thus
V € H} (RY) N Whe(RY) satisfies

(2.24) WV + H@ V,) —vAV =w f
and
(2.25) (w=(BM +a)) M < w|foloo + [Ho(z,0)]o
for w > M,. If 8 =0, then
p(V) - olf) ao(V) +b

where b = |H,(2,0)].
Step 6: We prove that the solution V¥ to (2.24) converges to a viscosity solution V' to

(2.26) wV+H@V,)=wf

as v — 0T. First we show that for all ¢ € C?(Q) if V¥ — ¢ attains a local maximum
(minimum, respectively) at xo € R", then

(227)  w(V(wo) = f(w0)) + H(wo, 6u(x0)) — v (AV)(70) <0 (= 0, respectively).

For ¢ € C?(Q)) we assume that V¥ — ¢ attains a local maximum at zop € R%. Let Q = {z €
R®: |x—xo| < 1} and T denote its boundary. Then without loss of generality we can assume
that V¥ — ¢ attains the unique global maximum 1 at zp and V¥ — ¢ < 0 on I'. In fact we
can choose ¢ € C*°(2) such that V¥ — (¢ — () attains the unique global maximum 1 at x,
VY —(¢—¢) < 0onT and ((xo) = 0. Let v = sup(0,V” — ¢) € W, ™(Q). Multiplying
P~ to (2.26) and integrating over €2, we obtain

Wl + (- (V" = @)a, 0P 71) + v (p = 1) (W0, ¥ ) = = (00,4771,

where .
0
and
d=w(o—f)+H(z, ¢) —vAg.
Since .
(1 g, WP < m“ﬂ%w(g) W2+ v(p — 1) |2 |3

it follows that

@ = =) ol < ~(60, 7).
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Letting p — 0o, we can conclude that 6(z) < 0 since § € C(2). Setting ¢ = inf(0, V" — ¢))
and assuming V¥ — ¢ has the unique global minimum —1 at zop and V¥ — ¢ > 0 on I', the
same argument as above shows the second assertion.

Next, we show that there exists a subsequence of {V*} that converges to a viscosity
solution V' to

(2.28) wV+H(z, V) =wf,
ie., for all ¢ € CH(Q) if V — ¢ attains a local maximum at o € R?, then
(2.29a) w (V(wo) = f(wo)) + H(20, ¢2(0)) <0
and if V — ¢ attains a local minimum at o, € R", then
(2.290) w (V(wo) = f(wo)) + H (20, 42(0)) = 0.
It follows from Step 5 that for some v > 0 independent of v
VY wiee) <

Thus there exists a subsequence of {V*} (denoted by the same) that converges weakly star
to V in Wh*(R9), and thus the convergence is uniform in Q. We prove (2.29a) first for
¢ € C*(Q). Assume that for ¢ € C*(Q) V¥ — ¢ has a local maximum at o € 2. We can
choose ¢ € C*(Q) such that (,(x¢) = 0 and V¥ — (¢ — () has a strict local maximum at z.
For v > 0 sufficiently small, V¥ — (¢ — () has a local maximum at some z,, € Q and x, — xg
as v — 07, From (2.27)

w (V" () = f(zy)) + H(@y, du(20)) — v (AP)(20) <0

We conclude (2.29a), since V¥(x,) — V(20), ¢z(x,) — G(2)) = du(20) — C(x0) = ¢z(0)
and v A¢(z,) — 0 as v — 0F. For ¢ € C'(Q) exactly the same argument is applied to the
convergent sequence ¢, € C?*(Q2) to ¢ in C*(Q) to prove (2.29a).

Step 7: We show that if V', W € D, are viscosity solutions to w (V — f) + H(z,V,) = 0 and
w(W —g)+ H(z,W,) = 0, respectively, then

(3.30) (W= wa) Ju—vlx <wl|f—glx.

For 6 > 0 let .

If u, v € D, then

(2.31) lim ¢(z)V(z) = lim ¢(x)W(zx)=0.

We choose a function € C*(R?) satisfying

0<B<1, BO)=1, Bx)=0 if |z| > 1.
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Let M = max (Ju|x;,, |W|x,). Define the function ® : R" x R™ — R by

(2.32) O(z,y) = Y(x)V(2) — Y (y)W(y) + 3MB(x — y)

where

Bu(z) = 5(%) for z € R%.

Off the support of f.(z—y), & < 2M, while if |x|+|y| — oo on this support, then |z|, |y| — oo
and thus from (2.30) limjg|4|y|»0e ® < 3M. We may assume that V(z) — W(z) > 0 for some
Z. Then,

d(z,7) =Y(x)(V(Z) — W(Z)) +3M B(0) > 3M.

Hence ® attains its maximum value at some point (zg,y) € R% x R%. Moreover, |zo—1yo| < €
since fS(zo — yo) > 0. Now x¢ is a maximum point of

V(Y)W (o) — 3M Be(x — o) + P(w0, yo))
Y(x)

o(a) (Vo) -
and since ¢ > 0 the function

Y(yo)W (o) — 3M Be(x — yo) + P(z0, Yo)
Y ()

x—=V(r)—

attains a maximum 0 at zy. Since

V(yo)W (o) — 3M Be(z0 — yo) + P(0,y0) = ¥ (20)V (20)

and V' is a viscosity solution

(2.33) (o) (w (V(wo) = f(20)) + H(z0,p)) <0,

where
2+9

p= TM‘TO)V(%W(%)MOP o — 3MB (xg — yo)‘

¥ (o)

and we used the fact that (|z|**?)" = (2 4 §)|z|°z. Moreover since V € D,

(2.34) Ip| < a

Similarly, the function

V(o) V (20) + 3M Be(20 — y) — (20, Y0)

y—= Wiy - o)
attains a minimum 0 at yo and since W is a viscosity solution
(2.35) U(yo)(w (W(yo) = 9(v0)) + H(yo,q)) = 0,
where 2490 5 3MBL(zo — yo)
¢ = ——¥(50)W (y0)¥ (y0) lyol” yo — o(0)
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and |¢| < a. Thus by (2.33) and (2.35) we have
w (Y (o) V (w0) — ¥(y0) W (90))

< (o) H(yo, q) — ¥(x0) H(xo, p) + w(t(x0) f(x0) — ¥ (y0)g(¥0))

Since ®(z,y0) > P(z, ) we have

b(0)V (o) = P (yo)W (yo) = ¥ (2)(V(Z) = W(Z)) +3M (1 — Be(x0 = %0))

(2.36)

and thus

(¢ (x0) = (o)) V(wo) + 1 (yo) (V(x0) = W ko)) = ¢(2)(V(z) = W(Z)) +3M (1 — Be(xo — 10))-

Since

(2.37)
|(¥(x0) =¥ (90)) V(20)| = ¥ (o) ¥ (o) |V (w0)| (V1 + [yo|>2 — /1 + [axo|*+0) < const |wo —yol,

it follows that V(o) > W (yo) for sufficiently small ¢ > 0. Note that
U(yo) H (Yo, ¢) — ¥ (x0) H (2o, p) = (¥(y0) — ¥ (o)) H (20, D)
+4(yo) (H (yo, p) — H(wo,p)) + ¢ (yo) (H (Y0, q) — H(yo,p))-
From (2.36)-(2.37) we have that
w ((x0)V (o) — (Y)W (yo) — (¢ (o) f (x0) — ¢(y0)9(%0)))

(2.38)
< O(e) +¥(yo) (c1(y0),p — @) + 2 [p — q).

where O(€) — 0 as € — 0. Now we evaluate p — ¢, i.e.,

246

p = a =32 ((w0)V (o) = (o)W (50))(0) ol o

2496
2

+3M Bi(wo — yo) (V1 + [ao[H0 — /1 + Jyo[>*9).

) 1 2
’$0| V +|$0‘ |ZL’0| SM?)

1+ |$0|2+5

(o) V (20) (¥ (o) 0]’ 0 — ¥ (y0) ol yo)

Since
|9(20)V (20)¥(0)|0|® 0| < |ulx

for some M3 > 0, it follows from (2.34) that

3|Bi(wo — yo) /1 + |zo]2T0| < M,y

for some M, > 0. Thus,

|3M BL(x0 — o) |\/1 + |zo|?H0 — \/1 + |yo|?19| < const (24 6) M My|xg — yol.
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and therefore

2TM¢($0)V(I0)(¢($0)|$0|5930 — ¥(Y0)|vol yo) + 3M Be(wo — yo) (|zol*T* — |yo|*™*) = O(e).

In the right-hand side of (2.38) we have
U(yo)((er(yo),p —q) + 2 lp —4ql)

2 é‘ 246 1+6
<0 + + 0 B [yol "™ + cacx |yo|

S 9 1+ o2+ ((@o)u(wo) — ¥ (yo)v(yo))-

Hence from (2.38) we conclude

(2.39) wyy (Y (wo)ulxo) = ¥ (yo)v(yo)) < ¥ (o) f(wo) — ¥ (y0)9(yo) + O(e)

where

ws = sup (i — 240 Blyol*™ + caar [yl
S 2 1+ [yo[2+8

Assume that w > \,. For z € R? we have

).

(@) (u(z) —v(x) +3M = @(z, ) < D(z0,50) < h(z0)ulz0) — Y (yo)v(yo) +3M

and so by (2.39)

ws sup 9 (x)(u(x) —v(r))" < w(@(zo)u(ro) — P(Yo)v(o)) < ¥(0)f (o) — ¥ (y0)g(yo) + O(e)

Rd

< sup U(f = 9)" + ¥ (x0)g(x0) — 1 (yo)g(yo)| + O(e)

< sup O(f = g)" + wyg(e) + O(e)
where wy,(+) is the modulus of continuity of 1g. Letting e — 0, we obtain

(3.40) s SUp (@) (u(r) —v(x))" < sup b(f —9)"

Since |¢]x; — |¢|x as § — 07 for ¢ € X we obtain (2.30) by taking limit 6 — 07 in (2.40).
Example (Plastic equations) Consider the visco-plastic equation of the form

vy + div(o) =0
where the stress o(e) = ¢! minimizes
h(oc)—€:0o

and the strain € is given by
1( 0 n 0 )
€= =(=—v; + =—v;).
J 20 T Oy
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That is,
o € 0h*(e)

where h* is the conjugate of h

h*(e) = sup{e: o — h(o)}

oeC

For the case of the linear elastic system

011

3 Evolution equations

In this section we consider the evolution equation of the form

d
—a(t) € A(bu(t) (3.1)

in a Banach space X N D, where D is a closed set. We assume the dissipativity: there exist
a constant w = wp and continuous functions f : [0,7] — X and L : R* — R™ independent
of t, s € [0,T] such that

(1=Aw) |21 =2| < w1 =22 =A (Y1 —w2) [+ A [ () = f(8)[L(22) [ K (|3]), K () = T4cr (3.2)
for all x; € D Ndom (A(t)) zo € D Ndom (A(s))and y; € A(t)xy1, yo € A(S)xs, and
A(t), t € [0,T) is m-dissipative and Jy(t) = (AT — A(t))™' : D — D Nndom(A(t)). (3.3)
Thus, one constructs the mild solution as
u(t) = lim I T (b uo,  te = kA

That is,
% € A(t)us, t; =i\ (3.4)

Remark Assume there exists a Liapunov functional ¢ such that

o(u;) — p(ui1)
A

< ap(u;) +b. (3.5)
for (3.4). Define
D,={ueD:pu)<a}l.

That is,
J(t;) : Dioy — D; Ndom(A(t;))

where D; = {u € D : p(u) < a;} and a; = (1—aX) "} (a;_1+b). Assume the local dissipativity
condition: (3.2) holds with w = wp_. It is said that (A(¢), X) is locally quasi-dissipative
operator in the sense of Kobayashi and Oharu.
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Theorem 1.1 (Crandall-Pazy Theorem) Let (A(t), X) satisfy (3.2)—(3.3). Then,

Ult,s) = lim T2 Jy(s + N

A—0t

exists for z € dom (A(0)) and 0 < s <t < T. The U(t,s) for 0 < s <t < T defines an
evolution operator on dom A(0) and moreover satisfies

U(t, )z = U(t,s)y| < e |z —y|

for 0 < s <t<Tandz, ye€ dom(A(0)).

Proof: Let h; = X and t; = s + i\ in (3.2). Then x; = Jy\(¢;)x;—1, where we dropped
the superscript A and z,,, = (1_[z Itz Thus |2 < (1 —wA)™ < e20=9) |z = M,
for 0 < mA < T —s. Let &, is the approximation solution corresponding to the stepsize
h— j = p and t = s+ jp. Define a,,,, = |2 — 2|, We first evaluate agp, ampo-

o = | — ] <Y I ()2 — (I Ja(t)2]

<D (1= wA) TN At)2]|| < T ImA M ().
k=1
where M(z) = supyeo 7y |||A(t)z]|]. Similarly, we have
agn < 2Ty M(x).
Next, we establish the recursive formula for a; ;. For A > >0

ai; = |v; — &) < [I(t)wim1 — Ju(t;) @54

~

<At wimy — Ju(ta)Zja| + [Ju(ti) i1 — Ju(t;) -1
From Theorem 1.4
| Ia(ti)zio1 — Ju(ti) -]

A—p
A

= |Ju(tz‘)(ﬁa?z‘—1 +

)\ Ia(ti)wicr) — Ju(ts) |

Bl - Tj1l).

1M . —
<(1—-wp) 1(x|5€i71—%’71|+ S

Hence for i, j > 1 we have
j < (1 — wu)il(& @;—1,5—1 + Bai,jfﬁ + bi,j

where )
o= %, and (= %’u
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and
bij = |Ju(ti) @51 — Ju()&5-] < | f(t:) — fFE)|L(25 ) K (|Au()E5-1]).
We show that if y; = Ay (t;)z;_1, then there exists a constant My = Ms(xg, T, ||A(s)zo]|)
such that |y;| < My Since z; = Jy(t;)x;—1 and Ay (t;)x;—1 € A(t;)z;, from (H.1) we have

A )zill] = [Ax(t)xioa| < [AN(Eimn)@ia] 4+ [ () = F(Eioa) [L(M)(1 + [Ap(Eia)ia]))
< (1= N (A=) zia ]| + 1 () = fE-) | L)L +[[JAti-) i l]).
If we define a; = ||| A(t;)2,]||, then
(I—wX)a; < a1 +bi(1+a;—1).

where b; = L(M)|f(t;) — f(ti—1)]. Thus, it follows from the proof of Lemma 2.4 that
|| A(t;)z;||| < My, for some constant My = M (xy,T'). Since

il < (1= wX) (A1) @iz ||| 4+ 1 () — f(tima) [ILOM) (1 + [[[A(ti-1)ziall]),

thus |y;| is uniformly bounded.
It follows from [Crandall-Pazy, Tto-Kappel] that

i < €T M () [((npp — mA) + (X — )? + ((npp — mA)? +mAA — )"

n—1 min(m—1,5) .
CEPTED DD DI ) [

7=0 =0
where mA, nu < T — s. Let p be the modulus of continuity of f on [0,77, i.e
p(r)=sup {|f(t) = f(1):0<t, 7 <Tand|t—7| <7}

Then p is is nondecreasing and subadditive; i.e., p(ry + 12) < p(r1) + p(re) for r, ro > 0.
Thus,

n—1 mm m—1 ] .
J = Z Z 5j_1ai ( z ) bm—i,n—j

:Jm—mvw*w(g)pwu—mm).

where we used () with C' = L(M;)K (M,), the subadditivity of of p and the estimate

min(m—1,5)
5 (2 1

—

n—

< Cu (np(!nu —mA)|) +

Il
=)

J 7
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Next, let 6 > 0, be given and write

n— 1m1nm 1]

Z Z 5j_10/(‘§)p(\ju—ik)l)zlﬁb

where I; is the sum over indecies such that |ju — i\ < d, while I5 is the sum over indecies
satisfying |ju — iA| > d. Clearly I; < np(J), but

n—1 min(m—1,j) . . .
L — A2 T T)n?
I, < p(T E E Fla (‘Z ) in = " ng)n(n—l)(Au—ﬁ) < ”(53 f(A—p1)

Therefore,

7 < Con (o= w4 060) + 2 or = ) )

Combining these inealities, we obtain

A < XTI M () [((pr = mA)? + (A = )2 + ((np — mA)? + mAA — )]

T
+e2T=)C iy <p(|nu —mAl+p(0) + pfsg nn(x “)> :

Now, we can choose, e.g, 6> = \/A\ — p and it follows that a,, ,, as function of m, n and A, p,
tends to zero as |[nu —mA| — 0 and n, m — oo, subject to 0 < nu, mA < T — s, and the
convergence is uniform in s.

Theorem 1.1 Let (A(t), X) satisfy (3.2)—(3.3). Then,

Ult,s) = lim T2 Ja(s + N

A—0t

exists for z € dom (A(0)) and 0 < s <t < T. The U(t,s) for 0 < s <t < T defines an
evolution operator on A(0) and moreover satisfies

Ut 5)e — Ut s)y] < e |z —y|

for 0 < s <t<Tandz, ye€ dom(A(0)).
Moreover, we have the following lemma.

Lemma 1.2 If z € lA), then there exists a constant L such that
|U(S + r, S)fL’ - U(‘§ + T, §)ZL‘| S Lp(|8 - §|)

forr>0and s, §, s+7r, s+r<T.

Proof: Let ay = |z, — &1 where

=1, (I —XNA(s+i\) o and 2 = (I —NAGS+i)\) o
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Then, for A =
ap = |JIa(s + kN a1 — IA(§+ kX)) Tp_1]
< |In(s+kN)xp—1 — A8+ EXN)xp_r| + |8 +EN)zpo1 — In(5+ Kk N)Tp_1|
<ACp(|s—3))+ (1 =) ary

for some C. Thus, we obtain

2wr

er —1 R
|a| < p(ls = 3l),

and letting A — 0 we obtain the desired result. [J

3.1 DS-approximation and integral solution

In order to discuss the convergence of the sequence {z;} to the solution of (2.1) we introduce
the following notions.

Definition 2.1 Given s € [0,7] and zo € D N dom (A(s)), ux(t) is said to be a DS-
approximation of (2.1) if
up(t) = x}, te(t) )]

i 1—1r "

where for some a > 0 the sequence of {t},z},y},e}} in R x D, x X x X satisfies

s=ty<ty <. <tr<--<ty =T

x) € dom (A(t)))

(2.10) N RN PYP
Y = ti\—t;l —€ € A(t})z;}, 1<i<N,

dy =max () —t} ) =0, S (8 =2 )]} =0 as A — 0.

Definition 2.2 A continuous function w(t) : [s,7] — X in is said to be a mild solution of
(2.1) on [s, T if there exists a DS—approximation wuy(-) such that lim, . |ux(t) — u(t)| =0
uniformly on [s, T]. If for & > 0 u,(t) € D,, t € [s,T] then we say that the mild solution is
confined to D,,.

We next introduce the notion of integral solution that plays an important role in char-
acterizing the mild solution and establishing the uniqueness of the mild solution.

Definition 2.3 A continuous function « : [s,T] — X is said to be an integral solution on
[s,T] of (2.1) if there exists a constant 8 > 0 such that for w = wg the following integral
inequality is satisfied.

(2.11)  fu(t) — =] = [u(r) — 2| S/<y,U(0)—CL’>++WW(0)—$|+C|f(0)—f(7”)|d0
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for s <7 <t<T, relsT]and [z,y] € A(r) with x € Dg, where C' = L(|z|) K (|y|).

Definition 2.4 An operator U(t,s), 0 < s <t < T of nonlinear operators from D into itself
is called a nonlinear evolution operator on D if

Ult,s)x =U(t,r)U(r,s)r and U(t,t)x=x for xe€ D, 0<s<r<t<T
t — U(t,s)r € X is continuous for each s > 0 and z € D.

Let {tj, o, y5, €'} be a DS-approximation sequence in R x D, x X x X starting from
x(8) = %o that satisfies

S=ty <ty <<ty <<ty =T

(2.12) o — 2t
Yy = tf‘ t’i —ef € A(t))a, 1<j< N,
i b

— 0, Ne (% — ¢t Y |ed — 0 as p — 0.
J J—1/ 1%

Define

=t —t',, 1<i<N, and hy =t — 1t

]171S.j§N,LL

Then we have

) — Ry — = her, yr € Az}, 1<i< N,
(2.13)
— byl —af = hEe yl € A(t)al, 1< <N,

We now discuss the estimate of a; ; = |2} — 2| due to Kobayasi, Kobayashi, Oharu [KKO].
We define

A
ht B h)h!

aij:—7 6’5 y Vg T T o
T P T g T
(2.14) AR - L

cij(0) = (6} =t =0 + (] — 5) + du(t] - D). dig =11 - Gl

We start with the following technical lemma which is essential for establishing the main
estimate.

Lemma 2.2 For 1 <¢< N,, 1 <j < N, and o € we have

@ijcio15(0) + Bijcio1(0) < cij(o)

Proof: Since o ; + ;; = 1 by Cauchy Schwarz inequality we have

[N

I =ajcio1j(0) + Bijcio1j(0) < (aij iy ;(0) + Bijcim1,4(0))2.
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Since t} | =t} — b} and t}'_ | =t — bl

(@—1 - t? - ‘7)

(8 =t = 0 = 2NE — 1 — o) + (})?

(t} =ty —0)? =) =t — o) +2h (1} =t — o) + (h])%.

? J
Thus
1 A
< h> + he [P (£ — 1) = 0)? + da(tiy — 8) + du(t] — 3))
¢ J

+h((t — th,—o)+ da(t} — s) + du(ty ) —3))]

= (1) =t — o) + da(t] — 5) + du(th — 8) + 755 (b} — dx + B — d,,) < ¢ (o)
where we used the fact that h} < d, and h;‘ <d, O

Next, we prove the uniform bound of |z}|, 1 < i < Nj.

Lemma 2.3 Let 23, 1 <4 < N, be the solution to (2.10) and either (C.1) or (C.2) holds.
Then there exists M M (T, zy, ) such that |z}| < M for 1 < i < Ny,

Proof: We drop the index \ for simplicity of our expositions in the proof. For w = w, from
(2.4) we have

(1 —whi) |z — ul <2 — hiys — ul + hafv| + Bil £ (&) — f(r)] L(Ju]) K (J0])

for [u,v] € A(r). Since x; — h;y; = x;_1 + h;e; we obtain from (2.6.b)
(1 = whi) |z — ul < —ul + hi(lo] + les| + [f(8) — f(r)] L(lu]) K([v])

)

for v € [0,T] and [u,v] € A(r). Multiplying this by II;_" (1 — wh;) and then summing up
this in ¢ we have
(2.15)

i —ul < My (1= wha) ™ lzo — ul + (8 — ) [o] + oy P (el + £ (t) = f ()| L(|ul) K (Jo])]

But since for § > 0 5
1 _ h —1 < (1+5)h f O < h < -
( ) <e , for 0<h< T

assuming wdy < % it follows that for 6 =1
(1 —why) ™ <M,
Thus we have
i — | < *T [Jwo —u| + Tlof + Xy fox (lenl + 1 (tr) — £(r)| L{jul) K (|o])]

Since f is continuous

S (1) — H/ M|t as n— oo



which completes the proof. [

The following lemma shows the uniform bound of |y}, 1 < i < Ny for the sequence
(), 2}, y7) satisfying (2.8).

Lemma 2.4 Suppose the sequence (¢}, 2 ,yZ ,€) satisfy (2 10) with 3™ €} < M, for some
constant M, independent of A (especially €} = 0) and x) = 2o € dom (A(s)). Then there
exists a constant My = My (T, g, @) 1ndependent of A such that |y} < M, 1 <i < N,.

Proof: From (2.10) we have

y € At}

and y; =

and thus from (2.6.0) with 71 = 2, 2o = 2} |, y1 =y}, y2 =y, and X\ = h} we have
(1= hiw) [y + & <[] + |yl + () = FEDIL(ioa ) (1 + [ylal).
and thus
(2.16) (1= hiw) ly?] < 206 + [yt | + 1F () = FEDIL(2y DA + [yt ).
If we define a; = 1T} _, (1 — hjw) |y?| then multiplying (2.16) by I}_} (1 — hjw) we have
a; < (L+b)ai_1+bi+2¢ <ebaj_1 +b;+2¢

where
bi = L(M) |f() = f(t} ).

Thus we obtain the estimate

a; < exp (s bi) (a0 + D4y (b + 2er))

where y) € A(s)z. Since f is of bounded variation on [0, 7] this estimate implies that |y
is uniformly bounded. [J

We define the the modulus p(-) of continuity of f by
p(o) =max {|f(t) — f(s)|; |t —s| <o andt,se[0,T]}

Then p : [0,T] — R™ is bounded, nondecreasing and lim p(o) — 0 as 0 — 0. The following
inequality plays an important role in the proof of the main estimate.

(2.17) p(r) < c tp(T)|r — 7’|+ p(6) for r € [0,T]

where 0 < ¢ < d < T and 0 <1’ < § — c. In fact, if'r’<5thenp( ) < p(9) and thus (2.17)
holds. If r > 6 and ' < § — ¢ then ¢ < § — ' < r — " and thus p(r) < p(T) < ’"’Tr/p(T)
which implies (2.17).

Now, we are ready to prove the fundamental estimate due to [KKO] in the following
theorem.
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Theorem 2.5 (Kobayashi-Kobayashi-Oharu) Let s, § € [0, T] xo € DNdom (A(s)) and
Zo € DNdom (A(S)). Assume that for a > 0 the sequences {t}, 2}y, €} and {4, 2, ¥ €}
in R x D, x X x X satisfy (2.10) and (2.12) and z) = xg, 2}, = %o, respectively and that
(C.1) holds or (C.2) holds with €} = €/ = 0. Then for 0 < |o| <d < T, 0 < ¢ < d— o], if

dy,d, < § — |o| — ¢ then there exists a constant M = M (T, x, &9, a, [u, v]) such that

wigla? — | < lwo —ul + |20 — ul + ciy(s — 8) (|[v] + Mp(T))

(2.18) + 2 Rl + 20 Ay lef]

+M(t] = 3) (¢ p(T)ei (o) + p(8))
for 1 <i< Nyand1l<j<N, wherer € [0,7], [u,v] € A(r), and
(2.19) wi; =T (1 —wh)TH_, (1 — whl).
Proof: From (2.15)

wio |27 — ap] < wio (|27 — ul + o — ul) < |og —ul + |af — ul + (& = 5)J]

+ 3k i (€} + £ () = () L(Ju]) K (o))
Let L(|u|)K (|o]) < M. Since
[£(t2) = f(r)] < p(lty — 7)) < p(T)
it follows that
wioaip < |y —ul + | —ul + (£ = 5)(Jo| + Mp(T)) + X4 1t e

and so (2.18) is satisfied for 1 <7 < N, and j = 0.

Obviously, the same argument is applied to show that (2.18) holds for the case i = 0 and
1 <j < N,. If we prove that suppose (2.18) holds for the pairs (i, j — 1) and (i — 1, j) then
(2.18) holds for the pair (7,7), then by induction (2.18) holds for every pair (i,j). To this
end, we first prove the following relation between a;_; ;, a; ;-1 and a; ;.

(2-20) wig @iy < Qij(wicrgaio1y + heN]) + Big(wijo1aij-1 + h¥|ed]) + My jds 5.

where a;;, fBij, 7i; are defined in (2.14) and d;; < p(|t} — t¥]). From (2.6.a) with A\ =
hy, 21 = x} and p = Y, x5 = 2 we have
A A A

< B} ot — Byl — )+ 0 a) = hy) — 2|+ MORRE|F()) — ()]

where we assumed L(M (T, &g, o)) K (My(T, i, ) < M. Substituting (2.13) into this and
then dividing by A} + R, we obtain

(1= wiy) aij < ijaimrg + Bijaij—1 + vig (|6} + €f] + M dy )
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Multiplying the both side of this inequality by w; ; we have
(1 - W%‘,j)wi,j a;j; < (1 - hf\w)wi—l,jai,jai—l,g‘ + (1 - hgw)wi,j—lﬁi,jaz‘,j—l
+wi v (|€] + |€f] + Md; ;).

Since
0 <w;; <max{l— hf‘w, 1-— hé-‘w} <1—-wyy

and v;; = hla;; = h%Bij, devision of this by 1 — wy;; yields (2.20). Substituting the
estimates of a,_; ; and @; j_1 by (2.18) and the induction hypothesis, we have

wijai; < |z —ul + |z — ul + (ujeim;(s — 8) + Bijcij—1(s — 8) (Jv| + Mp(T))
+ 22:1 hi\ |€2’ + Z?:l hft ‘Eﬂ

HM (= 8)(c " p(T)aijcio1,(0) + aiyp(6))

(2.21)

+M(t?_1 - §)(C71P(T)ﬁi,jci,jfl(‘7) + ﬁi,jp((s)) + M%’,jdi,j-
It thus follows from Lemma 2.2 and (2.21) that
wig iy < oy —ul + o —ul + cig(s = 8) (Ju] + Mp(T))
(2.22) + D B e+ oy B lef |+ Mt — ) (e p(T)eiy(0) + p(3))

+M (=B (c p(T)cij-1(0) + p(8)) + vijdi )

We show that the last term of (2.22) is less than or equal to zero. In fact, if r = [t} — t¥]
and 7" = |0 — hf| then it follows that

r' <l|o|+h <lo|+d, <6—c and |r—7'| <[t} =t} + R — o < cijo1(0)
and thus (2.17) implies
Yigdig = i Bisdiy < B Bigp(t) —t4))

< 1B (e p(T)cij-1(0) + p(9))
Hence (2.18) holds if (2.18) holds for the pairs (i, — 1) and (i — 1, ). O
Next, we show the existence of DS—approximation under range condition (R).
Lemma 2.6 Let A(t) be a quasi-dissipative operator satisfying H1 and relaxed range con-
dition
for for each > 0 and all € D,lpha,

(1)
liminfyor L d((I — XA(t)) (dom (A(£) N Dit—ax)-1(asty:
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where d(S,z) denotes the distance between a set S and a point x in X. and let zq €
D N dom (A(s)) and € > 0. Then there exist {t;}, {x;} and {y;} which satisfy (1) — (3),
where [z, ;] € A(t;) with x; € dom (A(t;)) N Dy, —s,p(z0))s ¢ > 1t

(1) s=to<thy<---<t; < ---<ty=T
(2) ti_ti—l Sé

(3) |wi — w1 — (i —ticy) il < €e(ti — i)

Proof: We let a = (T — s,p(z0)), w = w, and may assume that 2we < 1. For each
x € DgNdom(A(s)), from condition (R) we can choose § € (0,¢] such that there exist
x5 € Dy, Ndom (A(t +0)) and y; € A(t + d)xs such that

(2.23) lzs — 2 — dys| < e€d

For each x € Dg we define §(x) as the least upper bound of § > 0 that satisfies (2.23). Note

that ¢(8,¢(7, B)) = (1 +6,6) for 7, § > 0.
We can select the sequence {t;,x;,vy;} satisfying (1)—(3) as follows. At each t;, from

the definition of §(x;), we can select ip1 € Dys,p(,)) N dom A(t; +9), y; € A(t; +9) and

hiy1i = tivg — t; > @. If we can show that ¢ty > T then the proof is completed. Suppose

lim; .o t; =a < T. It will be shown at the end of the proof that for all i > j > k
(2.24)

wij |z — x5 < (i — 1) (lyel + Mp(a — ti))

et —te) +e(ty —te) + M D B | f(t) = FE)| +M D | f(ta) — ()]

n=k+1 n=k+1

where and 0 < ¢ < § are arbitrary. It thus follows that

limsup; j o [ — 7]

< ) (2¢(q — 1) + 2M /a |f(s) = f(ty)|ds) — 0 as k — oc.

Hence {z;} is a Cauchy sequence. Let z = lim;_,o, ;. Since ¢ is lower semi-continuous we
have

p(x) < 1i7lir_l>i£f () S YOk his ()

for all £ > 1. From condition (R), there exist p € (0, 5] and [z,,,y,] € A(a + p)z, satisfying

€
(2.25) n =2 —pyul < gpand o(w,) < ¥, ()
Now, we choose k > 1 so that

i1 < %7 Z:ik-H hi < 3

Z;‘led hi ly,| < $p and |z — x| < <.
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Then from (2.25), we have for p+3>7, | h; <e
|2y =z — (0 + Z(i)ikJrl hi)yul < |z — 2 — pyu| + loe — 2| + z;‘ikﬂ hi Y,

Sep < (pt il hi)e

and
p@n) < h(ps () <Pl Q2 his p(an)) < i+ 255 i p(r))
Hence, by the definition of §(xy)

ot D hi < 0(ay)
(k)

However, since =3 ) < hyy < £ we have () < pand p+ Y7, 1 h; < p. This is a

contradiction and therefore ty = T for some N.

Finally, we prove (2.24) for all ¢ > j > k. The proof is very similar to the one for
Theorem 2.5 and we use the same notation as in the proof of Theorem 2.5. Setting A = p,
s =1 =tg, u=mx, and v = Yy, from (2.15) we have

e [t = ax] < (8 = )yl + Mpla = t)) + (b = te) e+ MY hy |f(ta) = f(tr)]-
n=k+1

Hence (2.24) holds for j = k. Also, it is self-evident that (2.24) holds for i = j. Now, let
i > j > k and assume that a;_1; = |r;_1 — x| and a; j_1 satisfy (2.24). Then, if we show
that a; ; = |z; — ;| satisfies (2.24), then by induction, (2.24) holds for all i > 5 > k. By the
arguments leading to (2.20) in the proof of Theorem 2.5 we have

Wi j @i < o (w1 jai—1j + hi€) + Bij(wij—1a; -1+ hje) + M%‘,j |f(t:) — f(t;)].

Substituting the estimates of a;_;; and a@; j_1 by (2.24) into this, we obtain (2.24) for a; ;
since

Qij(ticn — ;) + Bij(ti —tj—1) =t — t;

and

|f (&) = F()] < [f(8) — f{E)] + [f(E) — f(E:)][.O

Similarly, we can show the existence of DS—approximation under range condition (3.3)
and continuity condition (3.3).

Lemma 2.7 Let A(t) be a quasi-dissipative operator satisfying (3.2) and range condition
(3.3), and let 29 € D Ndom (A(s)) and € > 0. Then there exist {¢;}, {x;} and {y;} which
satisfy (1) — (3), where [x;,y;] € A(t;) with @; € dom (A(t;)) N Dyt,—s,p(z0))s ¢ = 1:

(1) s=to<thy<---<t; < ---<ty=T
(2) ti—ti_lﬁe
3) wi—wim—(ti—tic1)y; =0
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Proof: We can select the sequence {t;,x;,y;} satisfying (1)—(3) as follows. By the range
condition (R.1) at each t;, we can select t; 11 — t; = min {e, A\(z;)} and [x;11,vi11] € A(tis)
such that

i —xio1— (i —tic) v =0 and  @(zip1) — (i) < (L — ) g(o(@it1)).

Suppose lim; ,o, t; = a < T. Then it follows from the proof of Lemma 2.6 that {z;} is a
Cauchy sequence. Let x = lim;_,o, z;. Then x € D and lim;_,o, A(x;) = 0. But since A(+) is
lower semicontinuous, it follows that A(x) = 0, which is a contradiction. Hence ty = T for
some N. O

Now we show the existence of the mild solution to (2.1).

Theorem 2.8 Let A(t), t € [0, 7] satisfy (A.1) — (A.2) and assume that either (R) — (C.1)
or (R.1) — (C.2) hold. For the case of (C.2) we assume that o € D Ndom (A(s)) and f is
of bounded variation. Then we have

(1) For s € [0,T] and zy € DN dom (A( )) there exists an a > 0 such that there exists
a DS-approximation sequence {t}, z2, 3}, e}} satisfying (2.10) . Under condition (R.1) we
haveel =0,1<17< N,

(2) Every DS-approximate sequence uy(t) in D, converges to a continuous function u(t; s, o) :
[s,T] — X uniformly on [s,T], and u(t, ) € D, N dom (A(t)). Moreover, if dom (A(t)) is
independent of ¢ € [0, 7], then s — u(t; s, xy) € X is continuous.

(3) If g € dom (A(s)) and f(-) is of bounded variation then ¢ — wu(t;z¢) € X is Lipschitz
continuous on [s, 7.

Proof: The existence of DS—approximation sequence follows from Lemmas 2.6 and 2.7.
Moreover, it follows from Lemma 2.4 that |y})| is uniformly bounded in A and 1 < i < N,
for the case of (C.2). We apply Theorem 2.5 with § = s and g = x¢. Let ¢t € (s,7] and
assume that ¢ € (t3 .3 ] and t € (¢ _,¢} |. By the definition of ¢;;(-) cx, 5, (0) = 0 as
A, pu— 0 since tﬁA — tas A — 0 and t“u — t as ;4 — 0. As shown in the proof of Lemma
2.3, if dywa, dyws < % then

71 dwa (T—s) _
Wil < etenT=9) = ¢

Since ux(t) — w,(t) = 23, — a1t follows from Theorem 2.5 that
lim  ux(t) = u,(8)] < C (2|20 — u| + M(T — 5)p(9))
A, u—0

for all w € D, Ndom (A(s)) and § > 0, where we set 0 = 0. Since limp(d) = 0 as
d — 07 it follows that limy ,0 |ux(t) — w,(t)| = 0 uniformly on [s,T]. Note that u,(t) €
dom (A(ty, _,)) and tp, _; — ¢~ as A = 0. Thus, it follows from (A.2) that u(t) € dom (A(t)).
Since ¢(-) is lower semi-continuous u(t) € D, t € [s,T].

Next, we prove the continuity of u(t;s,-). Let ¢, 7 € [s,T] and ¢t € (t3 _y,tk,] and
t € (), _1,t;,]. Since dy — 0 it follows that ¢, — t and th — 7 and thus ¢; ;(0) — |t — 7.
Thus from Theorem 2.5 with A = pu, s =3, té‘ = zfA xj = x and o = 0 we obtain

u(t) = ()| = lim Jur(1) = wr(7)
< C (20— ul + |t = 7l((o] + Mp(T)) + M(7 = 5)(c p(T) |t = 7| + p(5))
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for all [u,v] € A(s) and 0 < ¢ < 0 < T. For € > 0 we take u € D, N dom (A(s)) such that
2C |zg — u| < £ and let § > 0 such that Cp(6) < £. Then if we set ¢ = ¢ and choose

‘t—7\<min{ < €0 }
=M\ 3G (o] + SIp(T)) SO T = 9p(T)

then we have |u(t) — u(7)| < € and thus u(-) is uniformly continuous on [s, T]. Similarly, for
fixed ¢t € [0,T] and 25 € X we have

[ult: s,20) — u(t; ,20)] < C (2o —u] +|s = 8|(Jvl + Mp(T)) + M (t — )™ p(T) |s — 5| + p(5))

for [u,v] € A(r). Thus, if dom (A(t)) is independent of ¢ € [0, T], then s — u(t; s, z9) € X is
continuous.

Assume that zy € dom (A(s)) and f(-) is of bounded variation. We prove that t — u(t) €
X is Lipschitz continuous. It follows from Lemma 2.5 that |y}*| < M; and y € dom (A(t}))z
for 1 <i < N. Letting s =t} and u = 2}, and o = 0 where so € (£}, _;,},], it follows from
Theorem 2.5 that

[u(t) = u(r)] = lim [u(t) = wr(7)

< C(Jt = 7|(My + Mp(T)) + M(7 = so)e™* p(To — so0) |t = 7| + p(6))

forall0 <c <0 < T and sy € [s,7) and Ty € (¢, 7). Since there f(-) is of bounded variation
there exists a constant L such that |u(t) —u(7)| < L|t — 7| for s <7<t <T.0O

Next we prove the uniqueness of the mild solution.

Theorem 2.9 Let A(t), t € [0, 7] satisfy either (3.2)—(3.3). For > 0let w: [s,7] — X be
a mild solution of (2.1) on [s,T] confined to D,. For the case of (C.2) we assume that the
sequence {y?'} defined by (2.10) is bounded in X uniformly in A and 1 <4 < Ny. Then we
have

(1) The mild solution u is an integral solution of (2.1) on [s,T].

(2) If v is an integral solution of (2.1) on [s, T then there exists w = w, such that

[o(t) = u(t)] < e u(0) — u(0)]

(3) The mild solution is unique.

Proof: First we show that the mild solution is an integral solution. Since
(g, 2)- = (z2)1 <{y—22)-
it follows from (2.5) that for [z,y] € A(r)
(226) (v, 27 — @)= = (y, 27 — 2}y < (4 =y 2} — 2)- Swalai —a| + CIf(&) = f(7)]
where C' = L(|z|)K (]y|). Thus
(Y2 — 2)- < (y,27 — 2)s +walz — 2|+ Cf() = f(r)].
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Since h}y} = (z} — x) — (x} ; — x) — hle}, the left side of this is estimated by

(Riyp, 2} — 2)— = |af — @ + (=(xiy —2) — hie) 27 — ) > [af — 2] — |2y — 2| = h}l€]|
where we used the fact that (ax +y,z)_ = a|z| + (y, x)_. Hence, we have
|27 — 2| = |2y — 2| < B (wala — o+ (y, 27 = 2)4 + CLFE) = ()] + |e}])-

Summing up this in ¢ from ¢ = j 4+ 1 to ¢ = k, we obtain

A

k
o = ol = Jx —al < [ "(@luslo) = o+ (5.}(0) = o)) dor
g

+ i 1 (LFE) = F)] + 1e)

Let s < 7 <t < T and let tg — 7 and t;‘ — t as A — 0. By Theorem 2.8 and the
upper-semicontinuity of (-, ), we obtain (2.11), letting A — 0.

Next we show the assertion (2). Since v : [s,T] — X is an integral solution of (2.1) on
[s, T, there exist w = w(a) and C' = L(|z|) K (|y|) such that

[o(t) — 2| = v(7) — 2] < / wlv(o) — |+ (y,v(0) —2)4 + C[f(0) = f(r)|do

for s <7 <t <Tand [z,y] € A(r), r € [s,T] with z € D,. Since [z}, y}] € A(t}) and
1) € D,, it follows that

[o(t) = 23] = [o(7) — 2| < / wlv(o) =] + (g v(o) = ai)s + CLf(0) = f(8)] do

where C' = supy L(|2}[)K(|y7[). Since hy} = (23 — v(0)) — (271, — v(0)) — hie} and
<Oé$+y, >+IOé|$|+<y, >

(hiy v(o) = ai)s = —|v(o) — 2| + (= (aiy — v(o) = hie},v(o) — 27)+

—|v(0) = a3+ [v(0) — 2y | + ke
Thus, we have
(lv(t) — 23| = [v(r) — 2}|) A3

S/(—IU(U)—w?IHU(U)—%?_l!+h?(w\ﬂ(0)—SC?HC!J”(U)—f(t?)HIE?I)CZU-

Summing up the both sides of this in ¢ from ¢ = j + 1 to « = k, we obtain
t

[0 = @)1 = o) — wa(eD e

tA

< [ (o) =@+ ote) =)l + [ wlote) us(©) dedo

+ [ Sl m (Cle) = FE)] + e do
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We now take any pair p, 1 such that s < n < p < T and choose the sequences tA — n and
ty — p as A — 0. Letting A — 0, we obtain

[ 100 w1 = otr) =@ de + [ (lo(o) — ulp)] = olo) — utn)) do
221y '

< / / (@ [0(0) — ul€)| + C|f(0) — F(©))) de do

For h > 0 we define the function F}, : [s,T — h] — R* by

)= h- /t+h/ w(é)| do de.

Then (2.27) implies that Fj(-) satisfies

d t+h
Fu(t) SwFi(t +C’h/ / f(&)|do dé.

and by Gronwall’s inequality

Fy(t) < e® / Cet=7)( / o / f(&)| do d€) dr

Letting o — 0T and by the continuity of u and v on [s, T, we obtain the desired estimate.
Finally the uniqueness of the mild solution follows from the assertions (1) and (2). O

Corollary 2.10 Let A(t) satisfy (A.1) — (A.2) and (R.1) — (C.2). For z € D and every
sequence in D N dom (A(s)) such that |z, — x| — 0 as n — oo, the limit lim,_,o u(t, s, x,)
in X exists and belongs to D N dom (A(t)) and the limit is independent of the choice of
convergent sequences {x,}. With no confusion we denote such a limit function by u(t; s, x).
Then u(t; s, ) is the unique integral solution to (2.1) and satisfies

u(t; s, ) —u(t; s, )] < e |z — i

for 0 < s<t<Tandz, &€ DnNdom(A(s).

Proof: For z € D Ndom (A(s)) we assume that {z,} is a sequence in D N dom (A(s)) such
that |z, — x| — 0 as n — oco. Then it follows from the proof of Theorem 2.8 that u(¢; s, x,,)
is confined to D, for some a > 0 and thus from Theorem 2.9 it is the integral solution to
(2.1) where w can be chosen to be independent of n in (2.11). It follows from Theorem 2.9
that

lu(t; s, ) — u(t; s, zm)| < e |z, — 2| = 0 asn,m — oco.

for every sequence in D N dom (A(s)) such that |z, — x| — 0 as n — oo. Thus {u(t; s, z,)}
is a Cauchy sequence in C(s,T; X) and thus has the unique limit. Let {Z,} be any other
convergent sequence to x. Then

u(t; s, 2,) — u(t; s, 2m)| < e |z, — & = 0 asn,m — oco.
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Hence the two sequences u(t; s, z,) and u(t; s, &,,) converge to the same limit wu(t;s,z) in
X. The limit function wu(¢;s,x) is an integrable solution on [s,T] since (-,-), is upper-
semicontinuous. []

Define the nonlinear operators U(t,s) : D Ndom (A(s)) — D Ndom (A(t)) by
(2.28) U(t,s)r = u(t; s, x)
where u(t; s, z) is the integral solution to (2.1) defined in the sense of Theorem 2.8 for case

(R) — (C.1) and of Corollary 2.10 for case (3.2)—(3.3). Then, we have the following theorem.

Theorem 2.11 Let A(t), t € [0,T] satisfy (3.2)—(3.3). Then the family of operators U(t, s)
generated by A(t) via (2.28) defines an evolution operator on D in the sense of Definition
2.4 and there exist a constant w such that

(2.29) U(t,8)x — U(t,s)i| < e |z — i

for 0 < s <t <Tandz, &€ DnNdom (A(s). Moreover, there exists a constant C' such that

t
(2.30) Ut +s,8)x —U(t+5,8)2] < etz — 2 +/ Ce | f(r +5) — f(r +8)|dr
0

for © € DNdom (A(s), © € DN dom(A(S) in case (C.1) and x € D Ndom (A(s), & €
D Ndom (A(S) in case (C.2), respectively.

Proof: The well-posedness and continuity of U and (2.29) follow from Theorems 2.8-2.9
and Corollary 2.10. For the semigroup property we let t@A — t and t;‘ﬂ — t and note that

from Lemma 2.5 with s = 15’\,A — t~ we obtain

lu(t; s, z) —u(t;r,z)| = lm  |u(t;s,z) —uu(t, 7, 7)|

A—, p—0
< C(20& —ul + M(t = 1)p(9)),
where & = u(r;s,x), for all w € D, Ndom (A(r)) and 0 < § < T. This implies u(t;s, z) =

u(t;r,Z) and hence the semigroup property.
For the estimate (2.30) it follows from (2.27) that

t+h
%Gh()<wGh +Ch/ / flo+s)— f(§+8)|dodf)

where
t+h
)=h" / / u(o+ s;s,x) —u(€ +8;8,1)|dod€.

By Gronwall’s inequality

Gu(t) < e”'Gy( / Cevt=7) /T+h/ flo+s)— f(E+8)|dodE.



Letting h — 07 and the continuity of u in ¢ we obtain the estimate (2.30). .

Suppose the range condition (R.1) is strengthen by (R.1) holding for all 0 < § < &
independent of u® € D, then from (A.1) (I — NA(t))™" : D — D x dom (A(t)) is locally
Lipschitz and the squence {z} defined by

T — Hle(] — ]’LZA(tZ))_ll’

for any sequence {h;} in (0,dy] defines a DS-approximation, confinded in D,. Thus, from
Theorems 2.8-2.9 and Corollary 2.10 we have the product formula

t—s

t—s -1
(2.30) U(t,s)r = lim Hggz] (I —hA(s+k )) r as h— 0%
Corollary 2.12 Let C' be a closed convex subset of X.
(1) CCRI—-XA(t)for0<A<dandt >0
(2) (I -XA@)tcC
(3) there exists a a continuous function f in X which is of bounded variation on any bounded

interval [0,7] and a monotone increasing function L : Rt — R* such that for all z; €
dom (A(t)) N C, 9 € dom (A(s)) N C and y; € A(t)z1, ya € A(S)x

(1 = dw)lwy = xo| < |z — @2+ A(yr — w2)[ + AF(E) = f() L]z ) K (Jy2])-

Then
t—s

t—s -1
U(t,s)r = lim HL:TI] (I—hA(s—l—k: )) r as h— 0"

defines a unique integral solution in C. Here, U(t, s) : dom (A(s)) N C — dom (A(t)) N C' is
continuous in ¢ € [s,00) and satisfy

\U(t,s)x —U(t,s)y| < e |z —y| for z,y € X.

Proof: We let D, = C for a > 0, ¢(x) = I¢, the indicator function of C' and g = 0. Then
condition (R.1) — (C.2) holds and therefore the corollary follows from Theorems 2.8-2.10.

3.2 Applications
We consider the Cauchy problem of the form

d
(1.1) %u(t) = A(t,u(t))u(t) u(s) = ug
where A(t,u), t € [0,T] is a maximal dissipative linear operator in a Banach space X for
each u belonging to D. Define the nonlinear operator A(t) in X by A(t)u = A(t,u)u. We
assume that dom (A(t,u)) is independent of u € D and for each a € R there exists an w, € R
such that

(1.2) (At w)zr = As, u)w, 21 = 22) - S wa |ty — 2| + [f(8) = F(s)[ L2 K (|A(s, u)s])
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for u € D, and x; € dom (A(t,u)), xo € dom (A(s,u)). Moreover, A(t) satisfies (3.2), i.e
(1.3) (1=Awa) [ur—us| < [(ur—uz) = A (A(t)ur—A(s)us) [+ | f ()= f ()| LJuz| ) K (| A(s)usal)

for uy € dom (A(t)) N Dy, ug € dom (A(s)) N D,. We consider the finite difference approxi-
mation of (1.1); for sufficiently small A > 0 there exists a family {u}} in D such that

A

% At} u) Du} with  ug = ug
(1.4)

p(u7) = p(u )

Then, it follows from Theorems 2.5-2.7 that if the sequence

(1.5) = At ud)ud — A}, ) ) satisfy ST RMe) — 0 as A — 0%,

€ i=1""

then (1.1) has the unique integrable solution. We have the following theorem.

Theorem 5.0 Assume (1.2) holds and for each o € R there exist a ¢, > 0 such that
(1.6) |(A(t,u)u — A(t,v)u| < cqlu—v|, for u, v € dom (A(t)) N D,.

Let f be of bounded variation and uy € dom (A(s)) N D. Then (1.3) and (1.5) are satisfied
and thus (1.1) has a unique integrable solution u and limy_,q+ uy = w uniformly on [s, T.

Proof: If 3 = (b))~} (u} — u} ), then we have
Vi — Yi = At uudey — A, ud)u)
A, u)uy — At )
and thus from (1.2) and (1.6)
(1= Awa) [ya] < (L4 Aca) [y] + | £(t2) = FADIL(w ) K (Jy:])

with g3 = A(s, u®)u’ = A(s)ug. Thus by the same arguments as in the proof of Lemma 2.4,
we obtain |y}*| < M for some constant M and therefore from (1.6)

SN MTA =0 as A — 0.

We also note that (1.3) follows from (1.2) and (1.6).

3.3 Navier Stokes Equation, Revisited

We consider the incompressible Navier-Stokes equations (5.1). We use exactly the same
notation as in Section.. Define the evolution operator A(t,u) by w = A(t,u)v € H, where

(5.1) (w, 9 + v o(u, ) + b(u,v,0) = (f(t),)u =0
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for ¢ € V, with dom (A(t)) = dom (Ap). We let D =V and define the functional as below.

Theorem 5.1 The evolution operator (A(t,u), ¢, D, H) defined above satisfies the conditions
(1.2)—(1.5) with g(r) = b, a suitably chosen positive constant.

Proof: For uy, us € dom (Ay).
(A(t,v)ur — A(s, v)ug, u1 — ug) g + v fuy — uslfy = (f(£) — f(s), ur — uo)

since b(u, vy — vy, v1 — V) = 0, which implies (1.2). The existence of u’ € V for the equation:
S Hud —u®) = A(t,ul)u’ for u® € V, § > 0 and t € [0, T] follows from Step 2. of Section NS
and we have

612 0|2
u’|g — |u 1
(5.2 W1 e < 2 pm

We also have the estimate of [u’|y.

27]\44
(63) 5wk TR OB+ PR

for the two dimensional case. Multiplying the both side of (5.2) by ]u‘;\%{ + |[u®[%, we have

—[u'R) + 5 [Aou’? <

1

|u |H_‘u ’jrl{—l-l/(’ué -
14

J

Since s — log(1 + s) is concave

B W) < = (el + [ [FOF

1 log(1L+ [0}) — log(1 + |u’l)

)
< o5 et A (71 174 e o Lo A QL
T T+ T
where we set ¢ = ————. Thus, if we define

27M
o(u) = 2 |ul3 + cov* log(1 + |ul})
then for every 6 > 0
8\ _ n(10
o) o) _,
5 <

for some constant b > 0, since |u|g is uniformly bounded. For (1.5) if y* = (h}) ™! (u} —u ),
then

(y{\+1 - yz')\a y?ﬂ) + Vh?ﬂ |yi)\+1|2 + h? b<yi)\7 UZ'\? y{\+1) + (f(t?+1) = f(tz)\>7 yz‘/\+1)
Note that

1
‘b(yz')\>uz?\7yi>\+1)‘ < Ml‘uf\"/ ‘yz ‘H’yz ’V‘yz—&-l’H‘yz—H‘\Q/

(5.4) | "

L M 2
) z+1 v

< 5 |yz)\+1’%/ + 5 il + |y Yit1 v+
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For simplicity of our discussions we assume h} = h Then we have

(5.5) (L=hwa) [yl thv yalit < (Lthwa) [yt Fr+v 1yda B+ F (6 — F D) alyda o
which implies that |y}|g < M for some constant independent of h > 0.
Note that

1 1 1 1
At wyu — At v)uli = sup  [b(u,u, 6) — by, )] < [u— offu — ol Julb Aoulh
|philp <1

and from (5.3)

N
gz h | Agup 3 <
i=1

for some constant C' independent of N and h?. Since |y}|g < M, |u} —u} ;| < M h}. Thus
(1.5) holds and (1.1) has a unique integrable solution v and limy ,o+ uy = w uniformly on
s, T.

Next, we consider the three dimensional problem (d = 3). We show that there exists a
locally defined solution and a global solution exists when the data (ug, f(+)) are small.

We have the corresponding estimate of (5.3):
27 M3
— [y’

(56) L+ 1P

1%
(R = [0R) + 2 Ag

We define the functional ¢ by
p(u) =1 = 1+ fufy)™

Since s — 1 — (14 )" is concave and |u}|y is uniformly bounded, it follows from (5.2) and
(5.6) that for every 6 > 0

90(“5) - ‘P(UO) 27M§’ 014 ‘ué 2
2

(5.6) < (s

PR+ OP)

Thus () () .
o(u;) — p(ui 27M. 1 _
< G WO ) PAOR) 0+ ) < b

where b; = (21%2 [u}} + < and from (5.3)

ClT
Z h [} < (|UO|H+7)'

The estimate (5.4) is replaced by

3
|b(yz ) U; 7yz+1>’ < M1|u)\‘v ’yz ’H‘yz ‘V’yz+1|H|yz+1’é’

3M2|u 3MP|u[y . 3M?|u¢A v

v
< 5 ’yf\ﬂ‘%/ + 35 ‘Z/z'+1|v Yit1 v+ T z+1|V

Thus, if h} = h then we obtain (5.5) and thus |y |z < M for some constant independent of
h > 0 and (1.5) holds. O
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3.4 Approximation theory
In this section we discuss the approximation theory of the mild solution to (3.1). Consider

an evolution equation in X,,:

(3.1) %un(t) e Apn(Hun(t) t>s un(s) =z

where X, is a linear closed subspace of X. We consider the family of approximating sequences
(A, (t),dom (A, (t)), p, D) on X, satisfying the uniform dissipativity: there exist constant
w = w, continous functions f : [0,7] — X and L : Rt — R" independent of ¢, s € [0,T]
and n such that

(3.2) (1= Awa) |21 = 2| < fwr — 22 = Ay — g)| + A[S(E) = f(s) | L(22) | K (Jy2])

for all 1 € D, Ndom (An(t)) 2 € Dy Ndom (Ay(s))and y; € Ap(t)xy, yo € An(s)za, and
the consistency:

for />0, t € [0,7], and [x,y] € A(t) with x € Deg,
(3.3) there exists [y, yn] € An(t) with x,, € Dy () such that
lim |z, — 2|+ |y —y| =0asn — oco.

where o) > 8 and o : Rt — R™ is an increasing function.

Lemma 3.1 Let (A(t), X) satisfy (3.2)-(3.3) on [0,7]. For each A > 0, we assume that
(8,2}, 4, €}) satisfies

)

A A
Ty — Ti1 A A\ A
[ 1—1

with t) = s and ) = x and 2* € D, for 0 <i < Ny. We assume that x € D x dom (A(s)),
f is of bounded variation, and |y;| is uniformly bounded inl <4< N,and A > 0. Then
the step function uy(t; s x) defined by wuy(t,s,2) = 2 on (t} |,t}], satisfies

i—17 Y

lus(t; s, 2) — u(t; s, )| < e2CHN) 2]z — ul + dy (Jv] + Mp(T))

+M(T — s)(c ' p(T)dy + p(6) + 6,).

Proof: It follows from Lemms 2.6-2.7 that there exists a DS-approximation sequence

(t, 2%, y;‘, ¢;) as defined in (2.12). For the case of (C.2) — (R.1), from Lemma 2.4 we have

|y | < Kfor1<j< N, uniformly in p. It thus follows from Theorem 2.5 that there exists
a constant M such that

lu(t; s, 2) — w,(t; s, 2)] < e2CHA) (2 —ul + dy (Jv] + Mp(T))

+M(T — 8) (¢ p(T)dy + p(6) + 65 — 6,,).
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Theorem 3.2 Let (A, (t),dom (A,(t)),p, D) be approximating sequences satisfying (R) or
(R.1) (resp.) and (3.2)—(3.3) and we assume (A(t),dom (A(t)), D, ) satisfies (A.1)—(A.2)
and (R) or (R.1) (resp.). Then for every x € D Ndom (A(s)) and x,, € D N X,, such that
limz, =z as n — oo we have

lim |u,(t; s, 2,) — u(t;s,z)] =0, asn — oo
uniformly on [s, T|, where u(t; s, z) and w,(t; s, x) is the unique mild solution to (2.1) and
(3.1), respectively.

Proof: Let [z;,vy;] € A(t;) and z; € D, for i = 1, 2. From (3.3) we can choose [z, y!'] €
A"(t;), i = 1,2 with ; € D, such that |z} —z;|+|y? —yi;| = 0asn — oo fori =1, 2. Thus,
letting n — oo in (3.2), we obtain (C.1) or (C.2). Let (¢}, 22, 4}) be a DS—approximation
sequence of (2.1). We assume that there exits a 8 > 0 such that z} € Dy for all A\ and
1 < i < N,. By the consistency (3.3) for any e > 0 there exists an integer n = n(e) such
that for n > n(e)

(3-4) 7" —ad < e "y < e

and a:f‘" € D, for 1 <i < N,.

S =t — oy
(3.5)
<SS o) — ) = By A+ (Na + T) e+ |2 — 2| = Gpne

By Theorems 2.5 and 2.8 that

urn(t, T0) — un(t; 20)| < €CHFN) (2|2, — | + dy (Jvn] + Mp(T))
(3.6) )
+M(T — s)(c ' p(T)dy + p(0) + Ime)

forall 0 < ¢ <0 < T and [uy,,v,] € An(s) with uw,, € D,. From the definition of function
Uy, Uy, and (3.4)

lur(t; s,2) — upn(t; s, xn)| <€, te€(s,T], n>n(e)
Thus, we have
[wa(t; s, 20) = ult, s,2)] < *CHN (2a, — up| + 2|2 — u| + da (|va] + [v] + 2Mp(T))
+2M(T = 5) (™' p(T)dx + p(8)) + Oxne) + €

for t € (s,T], n > n(e), where [u,v] € A(s) with u € Dg. From the consistency (3.3) we
can take [u,,v,] € A,(s) such that u,, — u and v, — v as n — oo. It thus follows that

My, oo |Un(t; S, 2n) — u(t; s, )| = €2 (4)z — u| + 2dy (|v] + Mp(T))

+2M(T — 8) (e p(T)dy + p(8)) + 6rc) + €
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for ¢t € [s,T], where 0, = (N) + T)e. Now, letting ¢ — 07 and then A — 0T, we obtain

m  |up(t; s, 2,) — u(t; s, )| = e (4] — u| + p(9)).

n—oo
Since u € Dg Ndom (A(s)) and § > 0 are arbitrary it follows that lim, o |u,(t;s,z,) —
u(t; s,x)| = 0 uniformly on [s,7]. O

The following theorems give the equivalent characterization of the consistency condition
(3.3).
Theorem 3.2 Let (A,,X,), n > 1 and (A, X) be dissipative operators satisfying the
condition

dom (A,) C R(I —XA,) and dom(A) C R(I —\A)

and set J{ = (I —XA,) ' and J, = (I — XA)™! for A > 0. Also, let B be the operator
that has {[Jyz, A" (Jyx — z)] : © € dom (A), 0 < A < w™'} as its graph. Then the following
statements (i) and (ii) are equivalent.

(i) B C limy, 0o Ay (i.e., for all [z,y] € B there exists a sequence {(z,,y,)}| such that
[Zn,yn] € A and lim |z, — x| + |y, — y| — 0 as n — c0.)

(ii) dom (A) C lim, o dom (A,) (equivalently, for all x € dom (A) there exists a se-
quence {z,} such that z, € dom(4,) and lim |z, — x| — 0 as n — oo.) and for all
T, € dom(A,) and x € dom (A) with z = lim,, o z,, we have lim, ,o, JYz, — Jyz for
each 0 < A <w™.

In particular, if dom (A) C dom (A,,) for all n, then the above are equivalent to

(iii) limy, s0o JRo — Jyz for all 0 < A < w™! and x € dom (A).

Proof: (i) — (i7). Assume (i) holds. Then it is easy to prove that dom (B) C lim,,_,, dom (A,).
Since Jyx — x as lambda — 07 for all x € dom (A), it follows that dom (B) = dom (A).
Thus, the first assertion of (ii) holds. Next, we let =, € dom (A,), * € dom(A) and
lim, 0o ©, = x. From (i), we have [ — AB C lim, oo I — AA,. Thus, R(I — AB) C
lim, o R(I —XA,). Since z = Jyx — MA Y (Jyz —2)} € (I — AB)Jyz for x € dom (A),
we have dom (A) C R(I — A B). From (i) we can choose [u,,v,] € A, such that lim |u, —
L)+ v, — A\ — x)] = 0 as n — oco. If 2, = Jx,, then there exists a [z,,y,] € A,
such that x,, = z, — Ay,. It thus follows from the dissipativity of A,, that

[un — 2| < |tn — 20 — ANV — Yn)| = |t — Ay, — 20| = | — (S —2) —2| =0
as n — o0o. Hence, we obtain
lim Jyz,, = lim z, = lim u,, = Jxx as n — oo.

(17) — (7). If [u,v] € B, then from the definition of B, there exist z € dom (A) and 0 <
A < w! such that w = Jyz and v = A7} (Jyz — x). Since x € dom (A) C lim,,_,, dom (A,)
we can choose z,, € dom (A,) such that lim x,, = z. Thus from the assumption, we have
lim JYx, = jyr = w and lim A} (J%z, — z,) = AN (Jax — z) = v as n — oco. Hence we
obtain [u,v] € lim, . A, and thus B C lim,_,o, A,.

Finally, if dom (A) C dom (A,), then (ii) — (iii) is obvious. Conversely, if (iii) holds,
then

| x, — he| < |z, —z|+ |[Jyx — Jyx| =0 as n— o0
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when lim x,, = z, and thus (4i) holds. O

Theorem 3.3 Let (A,, X,,), n > 1 and (A, X) be m-dissipative operators, i.e.,
X,=R(I-\A,) and X =R(I—\A)

and set J7 = (I —XA,) and J, = (I = XNA)"! for 0 < A < w™'. Then the following
statements are equivalent.

(i) A=1lim, ., A,

(i) A C limy o A,

(iii) For all z,,, € X such that lim,_,~ x, = x, we have lim,,_,o JYx, — Jyz for each
0<A<wl

(iv) Forall z € X and 0 < A < w™! lim,, o, Jyx — Jy\z.

(v) For some 0 < A\g < w™!, lim,, oo J{z — Jyzx for all z € X.

Proof: (i) — (ii) and (iv) — (v) are obvious. (ii) — (iii) follows from the proof of (i) — (i)
in Theorem 3.2.

(v) = (i1). If [z,y] € A, then from (v), lim J{ (z — Xoy) = Jr,(z — Xoy) = z and
lim Ay (J2 (2 — Xoy) — (z — Ao y)) =y as n — oo. Since Ay (JL (z — Aoy) — (z — Ao y)) €
A (1 — Ao y), [z,y] € lim, oo A, and thus (ii) holds.

(1) — (7). It suffices to show that lim, .., A, C A. If [x,y] € lim,,_,o, A, then there
exists a [z, yn] € A, such that lim |z, —x|+|y,—y| = 0 as n — oo. Since x,— Ay, = r—A\y
and n — oo, it follows from (iii) that z,, = J{(x, — Ayn) — Jr(z —Ay) as n — oo and hence
x=Jy(x — \y) € dom (A). But, since

A —(x = Ay) = A Iz = Ay) — (z — Ay)) € Ad\(x — \y) = Ax

we have [z,y] € A and thus (i) holds. [
The following corollary is an immediate consequence of Theorems 3.1 and 3.3.

Corollary 3.4 Let (A,(t), X,) and (A(t), X) be m-dissipative operators for t € [0, 7], (i.e.,
X, =R(I—AA, () and X = R(I — NA(t))

and (C.2) is satisfied), and let U,(t,s), U(t,s) be the nonlinear semigroups generated by
A, (t), A(t), respectively. We set Jy(t) = (I — ANA,(t))™! and Jy(t) = (I — NA(t))™! for
0 < A< w ! Then, if

Sy Tn = JrgT as m— 00

for all sequence {z,} satisfying z,, — x as n — oo, then
\U,(t, s)x, —U(t,s)x| =0 as n— oo

where the convergence is uniform on arbitrary bounded subintervals.

The next corollary is an extension of the Trotter-Kato theorem on the convergence of
linear semigroups to the nonlinear evolution operators.

Corollary 3.5 Let (A,(t), X) be m-dissipative operators and {U,(t,s), t > s > 0} be the
semigroups generated by A, (t). We set Ji(t) = (I — A A,(t))~!. For some )\ < w™!, we

93



assume that there exists lim J} (t)x exits as n — oo for all # € X and ¢ > 0 and denote the
limit by Jy,z. Then we have

(i) The operator A(t) defined by the graph {[Jy,(t)x, Ay (Jy,(t)x — )] : © € X} is an
m-dissipative operator. Hence (A(t), X') generates a nonlinear semigroup U(t, s) on X.

(ii) For every x € R(Jy,(s)) (= dom (A(s))), there exist a x,, € dom (A,(s)) such that
lim z,, = z and lim U(¢, s)z, = U(t,s)x for t > s > 0 as n — oo. Moreover, the above con-
vergence holds for every x,, € dom (A,(s)) = X satisfying lim z,, = z, and the convergence
is uniform on arbitrary bounded intervals.

Proof: (i) Let [u;,v;] € A(t;), i = 1,2. Then from the definition of A(t) we have

U; = J)\O(tz’>xi and V; = )\61 (J)\O (tz)l’z - IZ)
for z;, i = 1,2. By the assumption
hm J;LO(tZ)IZ = J)\O(tz)xl hm AEI(J;LO(E)IZ — IZ) = )\al(J)\o (tz)l’z — I’Z>

as n — oo for i = 1,2. Since Ay (J} (t:)z; — ;) € An(t:)J"(J3, (t;);), it follows from (C.2)
that

(1= Aw) [J5, (tr)z1 — I3, (F2) 2]
< [T (t)@n = Ty (t2)as — A (g (T, (B)an — 21) = Ag (I3, (t2) w2 — 22))

() = F(S) LIS, (t2)2a] ) (1 + NG (T3, (E2) s — 22)]).
Letting n — oo, we obtain
(1= w) [ur — wg| < fur —up = Avr = v2)| + A[f(E) = f(s) | L(|uz])(1 + |va]).

Hence, (A(t), X) is dissipative. Next, from the definition of A(t), for every x|inX we have z =
Ino )z — Mo(ANg H(Jr () — 1)) € (I — Xg A(t))Jr,@, which implies Jy, (t)z = (I — AN A(t)) .
Hence, we obtain R(I — Ay A(t)) = X and thus A(t) is m-dissipative.

(i) Since A(t) is an m-dissipative operator and Jy,z = (I — \g A(t))~" and dom (A(t)) =
R((Jy, (1)), it follows from Corollary 3.4 that U,(t,s)x, — U(t,s)r as n — oo if x €
dom (A(s)) and z,, - x as n — oo. [J

3.5 Chernoff Theorem

In this section we discuss the Chernoff theorem for the evolution equation (2.1).

Lemma 2.12 Let {T,(¢)}, ¢t € [0,T] for p > 0 be a family of mapping from D into itself
satisfying
To(t) : Dg = Dy(pp),

for t € [0,7] and 8 > 0,

T, (t)x — T,(t)y| < (14 wap) |z — Yy
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for z, y € D,, and

[Ap(t)z — Ap(s)z] < L(|z])(1 + [Ay(s)z|) | f () — f(s)]
for x € D and t, s € [0,T], where
1
At)x=-T,(t)r—=x), zeD
Then, the evolution operator A,(t), t € [0, 7] satisfies (C.2).
Proof: For xz, x5 € D,
|21 — @2 = A (Ap()z1 — Ay(s)22)]|

> (1 %) 21 — o] — % (T, (01 — Ty(t)zal) + [Ty ()s — To(s)s

> (1= Awa) |21 = wa| = AL([a]) (1 + A, (s)x2]) [ (£) = f(s)].0]

Lemma 2.14 Let X be a closed convex subset of a Banach space X and a > 1. Suppose
C(t) : Xo = X, t €[0,T] be a family of evolution operators satisfying

(2.30) |C(t)x — Ct)y| < arfx —y
for x, y € Xy, and
(2.31) |C(t)x — C(s)z| < L(|z])(6 + [(C(s) — I)x[) [g(t) — g(s)].

where § > 0 and ¢ : [0,7] — X is continuous. Then, there exists a unique function
u=u(t;z) € CY0,T; Xy) satisfying

d
(2.32) Eu(t) = (C(t) — Du(t), u(0)=ux,
and we have
(2.33) u(t; z) —u(t;y)] < e Dz —yl.

Proof: It suffices to prove that there exists a unique function u € C'(0,T’; X,) satisfying
t
(2.34) u(t) =e 'z +/ eI (s)u(s)ds, te0,T].
0

First, note that if v(t) : [0,7] — X is continuous, then for ¢ € [0, T

elw + [ eI (s)u(s) ds

—(1— N+ A (fot e TICs)(s) ds) € X,

fot e—(t=9) ds
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where

t
A :/ e (79) s,
0

since X is closed and convex. Define a sequence of functions u,, € C(0,T; Xy) by

t
u,(t) = e 'z +/ e~ IC(s)up_1(s) ds
0

with ug(t) = z € Xy. By induction we can show that

e (8) — (8] < 2 [ 1ete - alas

and thus {u,} is a Cauchy sequence in C(0,T; Xy). It follows that u, converges to a unique
limit w € C(0,T; Xy) and wu satisfies (2.34). Also, it is easy to show that there exists a unique
continuous function that satisfies (2.34). Moreover since for z, y € X

t
¢ lult;x) — ultyy)] < / o ¢ lu(s; ) — uls:y)| ds,
0

by Gronwall’s inequality we have (2.33). Since s — C(s)u(s) € X, is continuous, u €
CY(0,T; Xy) satisfies (2.32). O

Theorem 2.15 Let a > 1 and let C(t) : Dg — Dg, t € [0,7] be a family of evolution
operators satisfying (2.30)-(2.31). Assume that Xz is a closed convex subset of X and g
is Lipschitz continuous with Lipschitz constant L,. Then, if we let u(t) = u(t;z) be the
solution to

d
Srultin) = (C() = Dultia), u(052) =,

then there exist some constants M, such that for ¢ € [0, 7]
(2.35)

lu(t; ) — I, Ciz| < ame@ Dt [(n — at)? + at]z (Cpr + |C(0)z — z|)

N[

+L,L(M;) /o @) [(n — 5) — aft — 5)? + at — 5)]2 K(|C(s)u(s) — u(s)]) ds

where C; = C(i), i > 0 and C,,» = L(|z|)Ly(6 + |C(0)z — x|) max(n, 7).
Proof: Note that

(2.36) u(t;x) —x = /0 e HC(s)u(s;x) — ) ds

Thus, from (2.30)—(2.31)

u(t; ) — =] < /0 e (|C(s)ulsi ) = CO)u(s, )| + |C(0)u(s; x) — C(0)x| + |C(0)x — x|) ds

< /O e (L(Ju(s, z)])lg(s) — g(O)K(IC(0)x — z[) + |C(0)z — x| + a [u(s; ) — z]) ds
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where K(s) = d + s. Or, equivalently
e Jut;x) — 2| < /Ot e’ (L(M)]g(s) = g(O)[K(|C(0)x — z[) +|C(0)x — x| + ae’[u(s; x) — z[) ds
since |u(t,z)| < M on [0, 7] for some M = M,. Hence by Gronwall’s inequality
(2.37)  Ju(t;z) — 2| < /Ot VI (L(M)]g(s) = g(OIE(IC(0)z — ]) +C(0)a — ) ds.
It follows from (2.36) that
u(t;z) — I, Cix = e H(x — 11}, Cyz) + /Ot eSO (s)u(s; ) — I, Cy) ds.
Thus, by assumption

¢
lu(t) — I, Ciz| < e |z — I, Cz| + / eSH|C(s)u(s) — Cou(s)| + |Crul(s) — C’nﬂ?z_llCixD ds
0

t
<e a6, +/ eTHL(M)|g(s) — g(n)||C(s)x — x| + a |u(s) — I Cix| ds
0

where 6, =" | |Cix — z|. If we define
on(t) = a e |u(t, z) — T, Ciz|
then )
eolt) <t [ (e'a™lg(s) = g(m] + 9ua(s)) ds

By induction in n we obtain from (2.36)—(2.37)
(2.38)

n—1
Op_it" 1
k=0 ’

n—1

I /0 (t — s)" tase® ds (L(|z|) Lyr K(|C(0)z — x|) + |C(0)z — =)

noog _ )k
+20na Y [ a0 - u) 9(s) - oo — 0 s

ont € [0, 7], where we used

t
/ ela=Ds g < ate te,
0

Since

/t(t _ S)nflskJrl ds — ph+n+l (k+1)(n— 1)!_
0 (k+n+1)!
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we have

t
t—Sn asds_ . n18k+1d8
k;l
0

e ktk-l-n-i—l e (k . n)(xk_ltk
— 1 | = — 1! ~ /-
(n Z k + S TR 2 Kl
k=0 k=n+1

Note that from (2.31)
|C(k)x — x| < L(|z])L,kK(|C(0)z —z|) for 0 <k <n.

Let Cy» = L(|z|)LyK (|C(0)z — x|)max(n, ). Then we have
(2.39)

C i [ s tase ds (L(al) Ly (C0)0 — o)+ €0~ o)

k=0

|k — n\o/“tk ot 9 1
(Z > (Crr 4+ |C(0)z — z]) < Ce™[(n— at)® + at]2 (Cyr + |C(0)x — z]),

where we used

]k—n|a’“tk at |k — n|2akth N
Z g; ZT <et[(n—at)+at]

k=0

Moreover, we have

n

ot LK () — gt — k)

s . ak(t_s)k
< Lyt Y — s (n=k)
k=0

< ettt (Z s = (n =P k(t_s>>

< Lyefe® ™9 [(n — s) — aft — 5)? + at — 5)]

(2.40)

VI

Hence (2.35) follows from (2.36)—(2.40). O

Theorem 2.16 Let {7,(¢)}, t € [0,T] for p > 0 be a family of mapping from D into itself
satisfying

(2.41) T,(t) : Dg = Dy,
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for t € [0,7] and 8 > 0,

(2.42) T,(t)z — T,(t)yl < (1+wap) lz — Yl

for z, y € D,, and

(2.43) | Ap(t) — Ap(s)x| < L(|z|)(1 + |Ay(s)x|) [ £ () — f(s)]

forx € D and t, s € [0,T], where
At =-T,(t)r —x), z€D

Assume that Dj is a closed convex subset in X for each 5 > 0 and f is Lipschitz continuous
on [0, 7] with Lipschitz constant L;. Then, if we let u,(t) = u(t; z) be the solution to

(2.44) %u(t; r) =A,()u(t;x), u(0;x) =2z € D,,

then there exist constant M and w = w, such that
4]

[up(t) = L Ty (kp)a| << e [(1+wt)’p+wtp+1]2 (e (L(|2| Lpt(1 + |A,(0)]) + |4,(0)z])

L) [ 1+ Aoy (o)]) do)

for z € dom (A(0)) and ¢ € [0, 7.

Proof: Let o = 1 + wp and we let C(t) = T,(pt), g(t) = f(pt) and § = p. Then, C(t)
satisfies (2.30)-(2.31). Next, note that |u,(t)] < M. It thus follows from Lemma 2.14 and
Theorem 2.15 that

2]

[up(t) = L Ty (kp)a] < € (14 wt)p +wip + ]2 /p (| Ap(0)z] + L(|x|) Lt (1 + [ 4,(0)]))

+LfL(M)e°"t/0 ew(t_")[(l +w(t—0o))p+wlt—o)p+ (t— a)]%\/ﬁ(l + |A,(0)u,(0)]) do.

where we set s = %, since Ly = Lysp. U

Theorem 2.17 Assume that (A(t), dom (A(t)), D, ¢) satisfies (A.1) — (A.2) and either (R)—
(C.1) or (2.3) — (C.2) and that D3 is a closed convex subset in X for each § > 0 and f is
Lipschitz continuous on [0,T]. Let {T,(¢)}, t € [0,T] for p > 0 be a family of mapping from
D into itself satisfying (2.41)—(2.43) and assume the consistency

for 5 >0, t € [0,7], and [z,y] € A(t) with z € Dy
there exists x, € D, () such that lim |z, — x|+ |A4,(t)z, —y| =0 as p — 0.

Then, for 0 < s <t >T and z € D Ndom (A(s))

[£52]

(2.45) L2, Ty(kp + s)x —u(t;s,z)| =0 as p—0F

99



uniformly on [0, 7], where u(t; s, z) is the mild solution to (2.1), defined in Theorem 2.10.

Proof: Without loss of generality we can assume that s = 0. It follows from Lemma 2.4
and Lemma 2.12 that

(2.46) |[Ap(tu(t)| < elo D THEEDlavon (|4, 0)a] + L(M) | flsvm)

on [0,7]. Note that u,(t) satisfies

Uy (iN) —up((i — 1)) . . A
) = A, (iIN)u, (i) + €

where
1 A ‘ ‘
d=1 /( (An(s)u,(s) = A, (iN)u, (i) ds.

i—1)A
Since A,(t) : [0,7] x X — X and t — u,(t) € X are Lipschitz continuous, it follows that
SN =0 as A — 07,
Hence u,(t) is the integral solution to (2.44). It thus follows from Theorem 3.2 that
lim |u,(t) —u(t;s,z)|[x -0 as p—0
for x € D Ndom (A(s)). Now, from Theorem 2.16 and (2.46)

=

1L, To(kp + s)x —u,(t)] < My/p

for x € Dg N dom (A(s)). Thus, (2.45) holds for all for x € Dz N dom (A(s)). By the
continuity of the right-hand side of (2.45) with respect to the initial condition = € X (2.45)
holds for all € Dg N dom (A(s)). O

The next corollary follows from Theorem 2.17 and is an extension of the Chernoff theorem
of the autonomous nonlinear semigroups to the evolution case.
Corollary 2.18 (Chernoff Theorem Let C be a closed convex subset of X. We assume
that the evolution operator (A(t), X) satisfies (A.1) with Lipschtz continuous f and

CCR(I-XNA®) and (I—-MA@)'teC

for 0 <A < ¢ and ¢t > 0. Let {T,(¢)}, t > 0 for p > 0 be a family of mapping from C' into
itself satisfying
| T,(t)x — Tp(t)y| < (L +wp) |z —yl

and
[Ap(t)z = Ap(s)a| < L(|x)(1 + [Ay(s)x]) [f(E) — f(5)]
for x, y € C. If A(t) C lim,_o+ A,(t), or equivalently

T,(t) — I

(I —\=2 ; Yle — (I = NA(t) '
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forallz € Cand 0 < A <4, then forx € Cand 0 <s <t

|H£€:;1]Tp(8 +kp)r —U(t,s)r| -0 as p— 0T,

where U(t, s) is the nonlinear semigroup generated by A(t) and the convergence is uniform
on arbitrary bounded intervals.

Corollary 2.19 (Chernoff Theorem) Assume that (A(t), X) is m-dissipative and satisfy
(A.1) with Lipschitz continuous f, and that dom (A(t)) are independent of ¢ € [0,7] and
convex. Let {T),(t)}, t > 0 for p > 0 be a family of mapping from X into itself satisfying

[T, (t)z — T,(t)yl < (1 +wp) |z —yl
for z, y € X, and
[Ap(t) — Ap(s)a| < L(|x)(1 + [Ap(s)x]) [£(E) — f(5)]
If A(t) Clim, o+ A,(t), or equivalently

(I—MZH%:EYMF+U—AWMQY%

forallz € X, ¢t >0 and some 0 < \g < w™!, then forx € X and t > s> 0

|HL; ]Tp(s +kp)x —U(t,s)x] =0 as p— 0%,

where U(t, s) is the nonlinear semigroup generated by A(t) and the convergence is uniform
on arbitrary bounded intervals.

Theorem 2.20 Let (A(t), X) be m-dissipative subsets of X x X and satisfy (A.1) with
Lipschitz continuous f and assume that dom (A(t)) are independent of ¢ € [0, 7] and convex.
Let Ax(t) = ANY(J\(t) — 1) for A > 0 and ¢ € [0,7] and u(t;s,x) = U(t,s; Ay)z be the

solution to d
—ult) = A\u(t), u(s) =« € dom (A(s))

Then, we have
BN E (5] _ .
Ul(t,s)x = )\h_f£1+ ILY (s + kX)) = ,\E%L Ul(t,s; Ay)x.

3.6 Operator Splitting

Theorem 3.1 Let X and X* be uniformly convex and let A,,, n > 1 and A be m-dissipative
subsets of X x X. If for all [z, y] € A there exists [z, y,] € A, such that |z, —z|+|y,—y| — 0
as n — 0o, then

Sp(t)x, = S(t)r as n— oo

for every sequence x, € dom (A,) satisfying =, — = € dom (A), where the convergence is
uniform on arbitrary bounded intevals.
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Proof: It follows from Theorem 1.4.2-1.4.3 that for # € dom (A), S(t)x € dom (AY),

4 S(t)x = A°S(t)x, and t — A°S(t)r € X is continuous except a countable number of

values ¢ > 0. Hence if we define 2 = S(t})z, t} =i\, then

) — ) ;
ZTH A% = = )\—1/ (A°(t)z(t) — A(t))x(t})) dt
tA

7—1
where

ZﬁMﬂSZHMﬂmHA%m;+UMﬁ

Since |A%S(t)x — A°S(([£] + 1)N)z| = 0 a.e. t € [0,T] as A — 0%, by Lebesgue dominated
convergence theorem S°M Ale}| — 0 as A — 0. Hence it follows from the proof of Theorem
2.3.2 that | S, (t)x, — S(t)x| — 0 as A — 0 for all x,, € dom (A) satisfying x, — x € dom (A).
The theorem follows from the fact that S(t) and S, (t) are of cotractions. [

Theorem 3.2 Let X and X* be uniformly convex and let A and B be two m-dissipative
subests of X x X. Assume that A + B is m-dissipative and let S(¢) be the semigroup
generated by A + B. Then we have

S(t)r = lim ((I—pA)y(I—pB)y e

p—0F

for x € dom (A) Ndom (B), uniformly in any ¢-bounded intervals. [J
Proof: Define T, = J;'J? and let 2, = 2 — pb where b € Bz. Then, since J(z — pb) =z

prp_xp:‘];lx_x
p p

Hence p~H(T,x, — x,) — A’z +bas p — 0. If we choose b € Bz such that A% + b =
(A + B)%z, then p~*(T,z, — x,) — (A+ B)%z as p — 0. Thus, the theorem follows from
Theorem 3.1 and Corollay 2.3.6. [J

+b.

Theorem 3.3 Let X and X* be uniformly convex and let A and B be two m-dissipative
subests of X x X. Assume that A + B is m-dissipative and let S(t) be the semigroup
generated by A 4+ B. Then we have

. P -1 p -1
S@x:1m1«m1—§A)-n@u—-B) —n> z

p—07t

for x € dom (A) N dom (B), uniformly in any ¢-bounded intervals.
Proof: Define Tj, = (2.J2' — [)(Z%B —I) and let z, = x — pb where b € Bz. Then, since
JP(x — pb) = x, it follows that 2J7(z,) — x, =z + pb and

Topwp — p _ 20+ pb) — (z+ pb) — (x — pb) _ JMx+pb) —
2p 2p P '

If we define the subset E of X x X by Ex = Ax+b, then F is m-dissipative and JpA(ac+,0 b) =
JPx. Thus, it follows from Theorem 1.6 that p~'(T,z, — x,) = (A + B)°z as p — 07 and
hence the theorem follows from Theorem 3.1 and Corollary 2.3.6. [J
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Theorem 3.4 Let X and X* be uniformly convex and let A and B be two m-dissipative
subests of X x X. Assume that A, B are single-valued and A + B is m-dissipative. Let
Sa(t), Sp(t) and S(t) be the semigroups generated by A, B and A + B, respectively. Then
we have

S(t)z = lim (Sa(p)Ss(p)7

p—0+t

for x € dom (A) Ndom (B), uniformly in any ¢-bounded intervals.

Proof: Clearly T, = Sa(p)Sg(p) is nonexpansive on C' = dom (A) Ndom (B). We show
that lim, ,o+ h ™' (T,z — z) = Ax + B for every dom (A) Ndom (B). Note that

Tyw—x _ Salp)r—x  Sa(p)Sulp)r = Salp)r

p p p

Since A is single-valued, it follows from Theorem 1.4.3 that lim, o+ A~ (Sa(p)z — ) = Ax.
Thus, it suffices to show that

g, — Sa(p)Sp(p)z = Salp)z | po = 0*

p

Since S4(p) is nonexpansive and B is dissipative, it follows from Theorem 1.4.3 that
S _
(3.1) ly,| < SEPT =T o o all p > 0,
P

On the other hand,

<SA(p)u —u Se(p)r—x _ Salp)r—=

(3.2) p p

= Yp, F'(u = Sp(p)x)) 2 0

since Sa(p) — I is dissipative and F' is singled-valued. We choose a subsequence {y,, } that
converges weakly to y in X. It thus follows from (3.2) that since A is single-valued

(Au+ B’r — Az —y, F(u —2)) > 0.

Since A is maximal dissipstive, this implies that y = B%z and thus y,, converges weakly
to B%z. Since X is uniformly convex, (3.2) implies that y,, converges strongly to Bz as
pn — 07, Now, since C' = A+ B is m-dissipative and C'z = Az + Bz, the theorem follows
from Corollary 2.3.6. J
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