
MATH3280B, Introductory Probability 1

Solution to Assignment 3

1. Let X be the random variable of the number of defective items.

P [X] = 1 · C
4
1C

16
2

C20
3

+ 2 · C
4
2C

16
1

C20
3

+ 3 · C
4
3

C20
3

=
3

5

If you want to use the fact that it is a Bernoulli trial, you need to show that it is indeed
one since it is not entirely apparent.

2. Let X be the random variable of the amount of winning.
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3. (a)
E[(2 +X)2] = E[X2] + 4E[X] + 4 = Var(X) + 5E[X] + 4 = 14

(b)
Var(4 + 3X) = Var(3X) = 32Var(X) = 45
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6.

P (X = n+ k|X > n) =
P (X = n+ k)

P (X > n)
=

(1− p)n+k−1p∑∞
i=n+1(1− p)i−1p

= (1− p)k−1p = P (X = k)

Since all trials are independent, if we are given that the first n trials are failed, to get a
success in the (n+ k)-th trial is same as getting a success in the upcoming k-th trial.


