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Solution to Assignment 2

1.
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2. Let R1, R2, R3 be the event that she receives a weak, moderate and strong recommendation
respectively and let O be the event that she receives an offer.

(a)

P (O) = P (O|R1)P (R1)+P (O|R2)P (R2)+P (O|R3)P (R3) = (0.1)(0.1)+(0.4)(0.2)+(0.8)(0.7)

(b)

P (R1|O) =
P (O|R1)P (R1)

P (O|R1)P (R1) + P (O|R2)P (R2) + P (O|R3)P (R3)

P (R2|O) =
P (O|R2)P (R2)

P (O|R1)P (R1) + P (O|R2)P (R2) + P (O|R3)P (R3)

P (R3|O) =
P (O|R3)P (R3)

P (O|R1)P (R1) + P (O|R2)P (R2) + P (O|R3)P (R3)

(c)

P (R1|Oc) =
P (OcR1)

P (Oc)
=

P (R1)− P (OR1)

1− P (O)
=

P (R1)(1− P (O|R1))

1− P (O)

Similarly for the other 2.

3. Let Ai be the event that player A wins the ith game.

(a) The required probability is
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4) = 2p3(1− p) + 2p(1− p)3

(b) Let A be the event that player A wins the game. Note that player A can only win
the game when even number of games are played and player A must win a game and
then lose a game or lose a game and then win a game for the game to continue (and
hence the factor 2p(1 − p) = p(1 − p) + (1 − p)p in the following calculation). The
required probability is

P (A) = p2 + 2p(1− p)p2 + (2p(1− p)2p2 + · · ·

= p2
∞∑
i=0

(2p(1− p))i

=
p2

1− 2p(1− p)
.

4.

P

(
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)
= 1− P

(
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i=1

P (Ec
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n∏
i=1

(1− P (Ei))

5. The trials are not independent.
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6.

P (E|E ∪ F ) =
P (E)

P (E ∪ F )

=
P (E|F )P (F ) + P (EF c)

P (E ∪ F )

= P (E|F ) +
P (E|F )(P (EF )− P (E)) + P (EF c)

P (E ∪ F )

= P (E|F ) +
P (EF c)(1− P (E|F ))

P (E ∪ F )

≥ P (E|F )


