MATH2020A Advanced Calculus II, 2015-16

MIDTERM EXAM

Honesty in Academic Work: The Chinese University of Hong Kong places very high importance on honesty in academic work submitted by students, and adopts a policy of zero tolerance on cheating and plagiarism. Any related offence will lead to disciplinary action including termination of studies at the University.

Answer all SIX questions.

- **Q1.** (25 points) Point out TRUE or FALSE without any proof for each statement.
 - (a) The following identity is true:

$$\int_0^1 \int_{1+x}^{\sqrt{13-x^2}} dy \, dx = \int_1^3 \int_0^{y-1} dx \, dy + \int_3^{\sqrt{13}} \int_0^{\sqrt{13-y^2}} dx \, dy.$$

(b) Let R be the region enclosed by the curve

$$(2x - y)^{2} + (x + y - 1)^{2} = 4$$

Then Area $(R) = \frac{4\pi}{3}$.

- (c) The center of mass of the trapezoid region with vertices (1, 1), (-1, 1), (3, -3) and (-3, -3) of constant density is at (0, -1).
- (d) Let C be a smooth curve joining the point P_0 to the point P_1 in the plane and f be a smooth function with gradient $\vec{F} = \nabla f$, defined everywhere. Then

$$\int_{C} f \, ds = |\vec{F}(P_1)| - |\vec{F}(P_0)|.$$

(e) For the annulus region R: $1 \le x^2 + y^2 \le 4$, we have

$$\iint_{R} \frac{x^2 - y^2}{x^4 + y^4} \, dA = 0.$$

- **Q2.** (15 points) Find the mass of a thin plate $0 \le x \le 1, 0 \le y \le x$ of density $\delta(x, y) = \frac{\sin(1-y)}{1-y}$.
- **Q3.** (15 points) Let $\vec{F} = (ax^2y + y^3 + 1)\mathbf{i} + (2x^3 + bxy^2 + 2)\mathbf{j}$ be a vector field, where a and b are constants.
 - (a) Find the values of a and b for which \vec{F} is conservative.
 - (b) For these values of a and b, find f(x, y) such that $\vec{F} = \nabla f$.
 - (c) Still using the values of a and b from part (a), compute $\int_C \vec{F} \cdot d\vec{r}$ along the curve C such that $x = e^t \cos t$, $y = e^t \sin t$, $0 \le t \le \pi$.
- **Q4.** (15 points) Consider the rectangle R with vertices (0,0), (1,0), (1,4)and (0,4). The boundary of R is the curve C, consisting of C_1 the segment from (0,0) to $(1,0), C_2$ the segment from (1,0) to $(1,4), C_3$ the segment from (1,4) to (0,4), and C_4 the segment from (0,4) to (0,0). Consider the vector field

$$\vec{F} = (xy + \sin x \cos y)\mathbf{i} - (\cos x \sin y)\mathbf{j}$$

- (a) Find the flux of \vec{F} out of R through C.
- (b) Find the total flux of \vec{F} out of R through C_1 , C_2 and C_3 .
- **Q5.** (15 points) Find the volume of the solid enclosed by the plane z = 4 and the surface

$$z = (2x - y)^{2} + (x + y - 1)^{2}$$

- **Q6.** (15 points) Suppose \vec{F} is a vector field that is defined in the annulus $1/100 \le x^2 + y^2 \le 100$ with curl $\vec{F} = 0$. Suppose $\int_{C_1} \vec{F} \cdot d\vec{r} = 5$ along C_1 the upper half of the unit circle oriented from (1,0) to (-1,0), and $\int_{C_2} \vec{F} \cdot d\vec{r} = -4$ along C_2 the lower half of the unit circle oriented from (1,0) to (-1,0). Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$ along
 - (a) the curve C that is the upper half of the ellipse $x^2 + \frac{y^2}{16} = 1$ from (1,0) to (-1,0).
 - (b) the circle ${\cal C}$ of radius 2 centered at the origin, in counter-clockwise direction.
 - (c) the circle C of radius 2 centered at (3,0), in counter-clockwise direction.

-END-