Here’s some reflection on the proof(s) of Taylor’s theorem. First we recall the (derivative form) of the theorem:

Theorem 1 (Taylor’s theorem). Suppose $f: (a, b) \to \mathbb{R}$ is a function on (a, b), where $a, b \in \mathbb{R}$ with $a < b$. Assume that for some positive integer n, f is n-times differentiable on the open interval (a, b), and that $f, f', f'', \ldots, f^{(n-1)}$ all extend continuously to the closed interval $[a, b]$ (the extended functions will still be called $f, f', f'', \ldots, f^{(n-1)}$ respectively). Then there exists $c \in (a, b)$ such that

$$f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b - a)^k + \frac{f^{(n)}(c)}{n!} (b - a)^n.$$

A key observation is that when $n = 1$, this reduces to the ordinary mean-value theorem. This suggests that we may modify the proof of the mean value theorem, to give a proof of Taylor’s theorem.

The proof of the mean-value theorem comes in two parts: first, by subtracting a linear (i.e. degree 1) polynomial, we reduce to the case where $f(a) = f(b) = 0$. Next, the special case where $f(a) = f(b) = 0$ follows from Rolle’s theorem.

In the proof of the Taylor’s theorem below, we mimic this strategy.

The key is to observe the following generalization of Rolle’s theorem:

Proposition 2. Suppose $F: (a, b) \to \mathbb{R}$ is a function on (a, b), where $a, b \in \mathbb{R}$ with $a < b$. Assume that for some positive integer n, F is n-times differentiable on the open interval (a, b), and that $F, F', F'', \ldots, F^{(n-1)}$ all extend continuously to the closed interval $[a, b]$ (the extended functions will still be called $F, F', F'', \ldots, F^{(n-1)}$ respectively). If in addition

$$F(a) = F'(a) = \cdots = F^{(n-1)}(a) = 0, \quad \text{and} \quad F(b) = 0,$$

then there exists $c \in (a, b)$ such that

$$F^{(n)}(c) = 0.$$

Proof. The proof of this proposition follows readily from an n-fold application of Rolle’s theorem: Since $F(a) = F(b) = 0$, by Rolle’s theorem applied to F on $[a, b]$, there exists $c_1 \in (a, b)$ such that

$$F'(c_1) = 0.$$

Next, since $F'(a) = F'(c_1) = 0$, by Rolle’s theorem applied to F on $[a, c_1]$, there exists $c_2 \in (a, c_1)$ such that

$$F''(c_2) = 0.$$

Repeat, then we get c_1, \ldots, c_n such that

$$a < c_n < c_{n-1} < \cdots < c_1 < b,$$

with

$$F^{(k)}(c_k) = 0 \quad \text{for } k = 1, 2, \ldots, n.$$
In particular, setting \(c = c_n \), we have \(c \in (a, b) \), and
\[
F^{(n)}(c) = 0.
\]

\(\square \)

First proof of Theorem 1. Now we apply the proposition to prove Theorem 1. The key is to construct a degree \(n \) polynomial, that allows us to reduce to the case in Proposition 2. The fact that such polynomial exists follows by a dimension counting argument in linear algebra. But we will need the explicit expression of the polynomial, so let’s construct the polynomial explicitly.

Indeed, let \(f \) be as in Theorem 1. Let
\[
P(x) = \sum_{k=0}^{n} a_k (x-a)^k.
\]
(This is a convenient form of expressing a polynomial of degree \(k \), since we will need to compute high order derivatives of this polynomial at the point \(a \).) We will find coefficients \(a_0, a_1, \ldots, a_n \), such that \(F(x) := f(x) - P(x) \) satisfies the conditions of Proposition 2. Indeed, for \(k = 0, 1, \ldots, n - 1 \), we have
\[
F^{(k)}(a) = f^{(k)}(a) - k! a_k,
\]
so in order for \(F(a) = F'(a) = \cdots = F^{(n-1)}(a) = 0 \), it suffices to set
\[
a_k = \frac{f^{(k)}(a)}{k!} \quad \text{for} \quad k = 0, 1, \ldots, n - 1.
\]

It remains then to determine \(a_n \). But this is determined by the equation \(F(b) = 0 \): indeed
\[
F(b) = f(b) - \sum_{k=0}^{n} a_k (b-a)^k = f(b) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k - a_n (b-a)^n,
\]
so setting \(F(b) = 0 \), we get
\[
a_n = \frac{1}{(b-a)^n} \left(f(b) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k \right).
\]

Now we have found a polynomial \(P \) such that \(F(x) := f(x) - P(x) \) satisfies the conditions of Proposition 2. Hence there exists \(c \in (a, b) \) such that \(F^{(n)}(c) = 0 \). But
\[
F^{(n)}(c) = f^{(n)}(c) - P^{(n)}(c) = f^{(n)}(c) - n! a_n = f^{(n)}(c) - \frac{n!}{(b-a)^n} \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k.
\]
Since \(F^{(n)}(c) = 0 \), it follows that
\[
0 = f^{(n)}(c) - \frac{n!}{(b-a)^n} \left(f(b) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k \right),
\]
i.e.
\[
f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{f^{(n)}(c)}{n!} (b-a)^n
\]
as desired. This completes the proof of Taylor’s theorem.

\(\square \)

We can also give a second proof, based on the Cauchy mean-value theorem.
Second proof of Theorem 1. Let f be as in Theorem 1, and
$$F(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

Let also
$$G(x) = (x-a)^n.$$

Then both F and G vanishes to order $(n-1)$ at a, in the sense that $F, F', F'', \ldots, F^{(n-1)}$ and $G, G', G'', \ldots, G^{(n-1)}$ all extends continuously to $[a,b]$, and the extended functions satisfy
$$F(a) = F'(a) = \cdots = F^{(n-1)}(a) = 0,$$
$$G(a) = G'(a) = \cdots = G^{(n-1)}(a) = 0.$$

Note also that $G', G'', \ldots, G^{(n)}$ all never vanishes on (a,b). Hence we may apply Cauchy’s mean-value theorem n times: the first time we obtain
$$F(b) = F'(c_1) = \frac{F(b) - F(a)}{G(b) - G(a)} \cdot \frac{G'(c_1)}{G'(c_1)}$$
for some $c_1 \in (a,b)$. Next we can repeat this argument, on the interval $[a,c_1]$ instead of $[a,b]$: we then obtain
$$F''(c_1) = \frac{F''(c_1) - F'(a)}{G''(c_1) - G'(a)} \cdot \frac{G''(c_1)}{G''(c_1)}$$
for some $c_2 \in (a,c_1)$. Repeating, we obtain c_1, \ldots, c_n such that
$$a < c_n < c_{n-1} < \cdots < c_1 < b,$$
with
$$F(b) = F'(c_1) = F''(c_2) = \cdots = F^{(n)}(c_n).$$

In particular, setting $c = c_n$, we have $c \in (a,b)$, and
$$\frac{F(b)}{G(b)} = \frac{F^{(n)}(c)}{G^{(n)}(c)}.$$

This is equivalent to saying that
$$f(b) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k = \frac{f^{(n)}(c)}{n!} (b-a)^n,$$
which upon rearranging yields
$$f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{f^{(n)}(c)}{n!} (b-a)^n$$
as desired. This completes the second proof of Taylor’s theorem. □