## PROOF OF TAYLOR'S THEOREM

Here's some reflection on the proof(s) of Taylor's theorem. First we recall the (derivative form) of the theorem:

Theorem 1 (Taylor's theorem). Suppose $f:(a, b) \rightarrow \mathbb{R}$ is a function on $(a, b)$, where $a, b \in \mathbb{R}$ with $a<b$. Assume that for some positive integer $n, f$ is $n$-times differentiable on the open interval $(a, b)$, and that $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}$ all extend continuously to the closed interval $[a, b]$ (the extended functions will still be called $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}$ respectively). Then there exists $c \in(a, b)$ such that

$$
f(b)=\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}+\frac{f^{(n)}(c)}{n!}(b-a)^{n} .
$$

A key observation is that when $n=1$, this reduces to the ordinary mean-value theorem. This suggests that we may modify the proof of the mean value theorem, to give a proof of Taylor's theorem.

The proof of the mean-value theorem comes in two parts: first, by subtracting a linear (i.e. degree 1) polynomial, we reduce to the case where $f(a)=f(b)=0$. Next, the special case where $f(a)=f(b)=0$ follows from Rolle's theorem.

In the proof of the Taylor's theorem below, we mimic this strategy.
The key is to observe the following generalization of Rolle's theorem:
Proposition 2. Suppose $F:(a, b) \rightarrow \mathbb{R}$ is a function on $(a, b)$, where $a, b \in \mathbb{R}$ with $a<b$. Assume that for some positive integer $n, F$ is $n$-times differentiable on the open interval ( $a, b$ ), and that $F, F^{\prime}, F^{\prime \prime}, \ldots, F^{(n-1)}$ all extend continuously to the closed interval $[a, b]$ (the extended functions will still be called $F, F^{\prime}, F^{\prime \prime}, \ldots, F^{(n-1)}$ respectively). If in addition

$$
F(a)=F^{\prime}(a)=\cdots=F^{(n-1)}(a)=0, \quad \text { and } \quad F(b)=0
$$

then there exists $c \in(a, b)$ such that

$$
F^{(n)}(c)=0 .
$$

Proof. The proof of this proposition follows readily from an $n$-fold application of Rolle's theorem: Since $F(a)=F(b)=0$, by Rolle's theorem applied to $F$ on $[a, b]$, there exists $c_{1} \in(a, b)$ such that

$$
F^{\prime}\left(c_{1}\right)=0 .
$$

Next, since $F^{\prime}(a)=F^{\prime}\left(c_{1}\right)=0$, by Rolle's theorem applied to $F$ on $\left[a, c_{1}\right]$, there exists $c_{2} \in\left(a, c_{1}\right)$ such that

$$
F^{\prime \prime}\left(c_{2}\right)=0 .
$$

Repeat, then we get $c_{1}, \ldots, c_{n}$ such that

$$
a<c_{n}<c_{n-1}<\cdots<c_{1}<b
$$

with

$$
F^{(k)}\left(c_{k}\right)=0 \quad \text { for } k=1,2, \ldots, n
$$

In particular, setting $c=c_{n}$, we have $c \in(a, b)$, and

$$
F^{(n)}(c)=0
$$

First proof of Theorem 1. Now we apply the proposition to prove Theorem 1. The key is to construct a degree $n$ polynomial, that allows us to reduce to the case in Proposition 2. The fact that such polynomial exists follows by a dimension counting argument in linear algebra. But we will need the explicit expression of the polynomial, so let's construct the polynomial explicitly.

Indeed, let $f$ be as in Theorem 1. Let

$$
P(x)=\sum_{k=0}^{n} a_{k}(x-a)^{k}
$$

(This is a convenient form of expressing a polynomial of degree $k$, since we will need to compute high order derivatives of this polynomial at the point $a$.) We will find coefficients $a_{0}, a_{1}, \ldots, a_{n}$, such that $F(x):=f(x)-P(x)$ satisfies the conditions of Proposition 2. Indeed, for $k=0,1, \ldots, n-1$, we have

$$
F^{(k)}(a)=f^{(k)}(a)-k!a_{k}
$$

so in order for $F(a)=F^{\prime}(a)=\cdots=F^{(n-1)}(a)=0$, it suffices to set

$$
a_{k}=\frac{f^{(k)}(a)}{k!} \quad \text { for } k=0,1, \ldots, n-1
$$

It remains then to determine $a_{n}$. But this is determined by the equation $F(b)=0$ : indeed

$$
F(b)=f(b)-\sum_{k=0}^{n} a_{k}(b-a)^{k}=f(b)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}-a_{n}(b-a)^{n}
$$

so setting $F(b)=0$, we get

$$
a_{n}=\frac{1}{(b-a)^{n}}\left(f(b)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}\right)
$$

Now we have found a polynomial $P$ such that $F(x):=f(x)-P(x)$ satisfies the conditions of Proposition 2. Hence there exists $c \in(a, b)$ such that $F^{(n)}(c)=0$. But

$$
F^{(n)}(c)=f^{(n)}(c)-P^{(n)}(c)=f^{(n)}(c)-n!a_{n}=f^{(n)}(c)-\frac{n!}{(b-a)^{n}} \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}
$$

Since $F^{(n)}(c)=0$, it follows that

$$
0=f^{(n)}(c)-\frac{n!}{(b-a)^{n}}\left(f(b)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}\right)
$$

i.e.

$$
f(b)=\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}+\frac{f^{(n)}(c)}{n!}(b-a)^{n}
$$

as desired. This completes the proof of Taylor's theorem.
We can also give a second proof, based on the Cauchy mean-value theorem.

Second proof of Theorem 1. Let $f$ be as in Theorem 1, and

$$
F(x)=f(x)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Let also

$$
G(x)=(x-a)^{n}
$$

Then both $F$ and $G$ vanishes to order $(n-1)$ at $a$, in the sense that $F, F^{\prime}, F^{\prime \prime}, \ldots, F^{(n-1)}$ and $G, G^{\prime}, G^{\prime \prime}, \ldots, G^{(n-1)}$ all extends continuously to $[a, b]$, and the extended functions satisfy

$$
\begin{aligned}
& F(a)=F^{\prime}(a)=\cdots=F^{(n-1)}(a)=0 \\
& G(a)=G^{\prime}(a)=\cdots=G^{(n-1)}(a)=0
\end{aligned}
$$

Note also that $G^{\prime}, G^{\prime \prime}, \ldots, G^{(n)}$ all never vanishes on $(a, b)$. Hence we may apply Cauchy's meanvalue theorem $n$ times: the first time we obtain

$$
\frac{F(b)}{G(b)}=\frac{F(b)-F(a)}{G(b)-G(a)}=\frac{F^{\prime}\left(c_{1}\right)}{G^{\prime}\left(c_{1}\right)}
$$

for some $c_{1} \in(a, b)$. Next we can repeat this argument, on the interval $\left[a, c_{1}\right]$ instead of $[a, b]$ : we then obtain

$$
\frac{F^{\prime}\left(c_{1}\right)}{G^{\prime}\left(c_{1}\right)}=\frac{F^{\prime}\left(c_{1}\right)-F^{\prime}(a)}{G^{\prime}\left(c_{1}\right)-G^{\prime}(a)}=\frac{F^{\prime \prime}\left(c_{1}\right)}{G^{\prime \prime}\left(c_{1}\right)}
$$

for some $c_{2} \in\left(a, c_{1}\right)$. Repeating, we obtain $c_{1}, \ldots, c_{n}$ such that

$$
a<c_{n}<c_{n-1}<\cdots<c_{1}<b
$$

with

$$
\frac{F(b)}{G(b)}=\frac{F^{\prime}\left(c_{1}\right)}{G^{\prime}\left(c_{1}\right)}=\frac{F^{\prime \prime}\left(c_{2}\right)}{G^{\prime \prime}\left(c_{2}\right)}=\ldots \frac{F^{(n)}\left(c_{n}\right)}{G^{(n)}\left(c_{n}\right)}
$$

In particular, setting $c=c_{n}$, we have $c \in(a, b)$, and

$$
\frac{F(b)}{G(b)}=\frac{F^{(n)}(c)}{G^{(n)}(c)}
$$

This is equivalent to saying that

$$
\frac{f(b)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}}{(b-a)^{n}}=\frac{f^{(n)}(c)}{n!}
$$

which upon rearranging yields

$$
f(b)=\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(b-a)^{k}+\frac{f^{(n)}(c)}{n!}(b-a)^{n}
$$

as desired. This completes the second proof of Taylor's theorem.

