
PROOF OF TAYLOR’S THEOREM

Here’s some reflection on the proof(s) of Taylor’s theorem. First we recall the (derivative form)
of the theorem:

Theorem 1 (Taylor’s theorem). Suppose f : (a, b)→ R is a function on (a, b), where a, b ∈ R with
a < b. Assume that for some positive integer n, f is n-times differentiable on the open interval
(a, b), and that f, f ′, f ′′, . . . , f (n−1) all extend continuously to the closed interval [a, b] (the extended

functions will still be called f, f ′, f ′′, . . . , f (n−1) respectively). Then there exists c ∈ (a, b) such that

f(b) =
n−1∑
k=0

f (k)(a)

k!
(b− a)k +

f (n)(c)

n!
(b− a)n.

A key observation is that when n = 1, this reduces to the ordinary mean-value theorem. This
suggests that we may modify the proof of the mean value theorem, to give a proof of Taylor’s
theorem.

The proof of the mean-value theorem comes in two parts: first, by subtracting a linear (i.e.
degree 1) polynomial, we reduce to the case where f(a) = f(b) = 0. Next, the special case where
f(a) = f(b) = 0 follows from Rolle’s theorem.

In the proof of the Taylor’s theorem below, we mimic this strategy.

The key is to observe the following generalization of Rolle’s theorem:

Proposition 2. Suppose F : (a, b)→ R is a function on (a, b), where a, b ∈ R with a < b. Assume
that for some positive integer n, F is n-times differentiable on the open interval (a, b), and that

F, F ′, F ′′, . . . , F (n−1) all extend continuously to the closed interval [a, b] (the extended functions will

still be called F, F ′, F ′′, . . . , F (n−1) respectively). If in addition

F (a) = F ′(a) = · · · = F (n−1)(a) = 0, and F (b) = 0,

then there exists c ∈ (a, b) such that

F (n)(c) = 0.

Proof. The proof of this proposition follows readily from an n-fold application of Rolle’s theorem:
Since F (a) = F (b) = 0, by Rolle’s theorem applied to F on [a, b], there exists c1 ∈ (a, b) such that

F ′(c1) = 0.

Next, since F ′(a) = F ′(c1) = 0, by Rolle’s theorem applied to F on [a, c1], there exists c2 ∈ (a, c1)
such that

F ′′(c2) = 0.

Repeat, then we get c1, . . . , cn such that

a < cn < cn−1 < · · · < c1 < b,

with

F (k)(ck) = 0 for k = 1, 2, . . . , n.
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In particular, setting c = cn, we have c ∈ (a, b), and

F (n)(c) = 0.

�

First proof of Theorem 1. Now we apply the proposition to prove Theorem 1. The key is to con-
struct a degree n polynomial, that allows us to reduce to the case in Proposition 2. The fact that
such polynomial exists follows by a dimension counting argument in linear algebra. But we will
need the explicit expression of the polynomial, so let’s construct the polynomial explicitly.

Indeed, let f be as in Theorem 1. Let

P (x) =
n∑

k=0

ak(x− a)k.

(This is a convenient form of expressing a polynomial of degree k, since we will need to compute
high order derivatives of this polynomial at the point a.) We will find coefficients a0, a1, . . . , an, such
that F (x) := f(x)− P (x) satisfies the conditions of Proposition 2. Indeed, for k = 0, 1, . . . , n− 1,
we have

F (k)(a) = f (k)(a)− k!ak,

so in order for F (a) = F ′(a) = · · · = F (n−1)(a) = 0, it suffices to set

ak =
f (k)(a)

k!
for k = 0, 1, . . . , n− 1.

It remains then to determine an. But this is determined by the equation F (b) = 0: indeed

F (b) = f(b)−
n∑

k=0

ak(b− a)k = f(b)−
n−1∑
k=0

f (k)(a)

k!
(b− a)k − an(b− a)n,

so setting F (b) = 0, we get

an =
1

(b− a)n

(
f(b)−

n−1∑
k=0

f (k)(a)

k!
(b− a)k

)
.

Now we have found a polynomial P such that F (x) := f(x) − P (x) satisfies the conditions of

Proposition 2. Hence there exists c ∈ (a, b) such that F (n)(c) = 0. But

F (n)(c) = f (n)(c)− P (n)(c) = f (n)(c)− n!an = f (n)(c)− n!

(b− a)n

n−1∑
k=0

f (k)(a)

k!
(b− a)k.

Since F (n)(c) = 0, it follows that

0 = f (n)(c)− n!

(b− a)n

(
f(b)−

n−1∑
k=0

f (k)(a)

k!
(b− a)k

)
,

i.e.

f(b) =
n−1∑
k=0

f (k)(a)

k!
(b− a)k +

f (n)(c)

n!
(b− a)n

as desired. This completes the proof of Taylor’s theorem. �

We can also give a second proof, based on the Cauchy mean-value theorem.
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Second proof of Theorem 1. Let f be as in Theorem 1, and

F (x) = f(x)−
n−1∑
k=0

f (k)(a)

k!
(x− a)k.

Let also
G(x) = (x− a)n.

Then both F and G vanishes to order (n − 1) at a, in the sense that F, F ′, F ′′, . . . , F (n−1) and

G,G′, G′′, . . . , G(n−1) all extends continuously to [a, b], and the extended functions satisfy

F (a) = F ′(a) = · · · = F (n−1)(a) = 0,

G(a) = G′(a) = · · · = G(n−1)(a) = 0.

Note also that G′, G′′, . . . , G(n) all never vanishes on (a, b). Hence we may apply Cauchy’s mean-
value theorem n times: the first time we obtain

F (b)

G(b)
=

F (b)− F (a)

G(b)−G(a)
=

F ′(c1)

G′(c1)

for some c1 ∈ (a, b). Next we can repeat this argument, on the interval [a, c1] instead of [a, b]: we
then obtain

F ′(c1)

G′(c1)
=

F ′(c1)− F ′(a)

G′(c1)−G′(a)
=

F ′′(c1)

G′′(c1)

for some c2 ∈ (a, c1). Repeating, we obtain c1, . . . , cn such that

a < cn < cn−1 < · · · < c1 < b,

with
F (b)

G(b)
=

F ′(c1)

G′(c1)
=

F ′′(c2)

G′′(c2)
= . . .

F (n)(cn)

G(n)(cn)
.

In particular, setting c = cn, we have c ∈ (a, b), and

F (b)

G(b)
=

F (n)(c)

G(n)(c)
.

This is equivalent to saying that

f(b)−
∑n−1

k=0
f (k)(a)

k! (b− a)k

(b− a)n
=

f (n)(c)

n!
,

which upon rearranging yields

f(b) =

n−1∑
k=0

f (k)(a)

k!
(b− a)k +

f (n)(c)

n!
(b− a)n

as desired. This completes the second proof of Taylor’s theorem. �
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