Name (in print): \qquad (Student ID: \qquad

- Answer ALL questions.
- Provide steps in your calculations and/or give appropriate justification for your answers.

1. (6 marks)

Consider the curve $\exp (2 x) y-2 x \ln (y)-1=0$. Note that $(0,1)$ is a point on this curve.
Consider the function y of x implicitly defined by this curve at and near the point $(0,1)$.
(a) Show that $\left(\exp (A x)+\frac{B x^{C}}{y^{D}}+E\right) \frac{d y}{d x}+\left(F \exp (G x) y^{H}+K \ln (y)+L\right)=0$.

Here $A, B, C, D, E, F, G, H, K, L$ are rational numbers, whose respective values you have to determine.
(b) Compute $\left.\frac{d y}{d x}\right|_{x=0, y=1}$ and $\left.\frac{d x}{d y}\right|_{x=0, y=1}$.
(c) Compute $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{\pi}{2}, y=\pi}$.
2. (6 marks)

Define the function $f:[0,+\infty) \longrightarrow \mathbb{R}$ by $f(x)=\left(x^{2}-5 x+5\right) \exp (-x)$ for any $x \in[0,+\infty)$. Note that f is continuous on $[0,+\infty)$ and is differentiable on $(0,+\infty)$.
(a) Determine the value of $\lim _{x \rightarrow+\infty} f(x)$ if the limit exists.
(b) Compute $f^{\prime}(x)$ on $(0,+\infty)$.
(c) Determine all local extrema and all absolute extrema, if any, of f on $[0,+\infty)$.
3. (8 marks)

Evaluate each of the limits below. Where appropriate and necessary, you may apply L'Hôpital's Rule. Mark (H) under the equality signs where you apply L'Hôpital's Rule.
(a) $\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin (3 x))}{\ln (\sin (2 x))}$
(b) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sin (x)}-\frac{1}{x-x^{2}}\right)$
(c) $\lim _{x \rightarrow 0^{+}}(x+\sin (x))^{x}$
(d) $\lim _{x \rightarrow+\infty} \frac{x^{2}+\cos \left(e^{x}\right)}{x^{2}+\cos \left(e^{2 x}\right)}$

