MATH5011 Exercise 3

Standard notations are in force.

- (1) Prove the conclusion of Lebsegue's dominated convergence theorem still holds when the condition "{f_k} converges to f a.e." is replaced by the condition " {f_k} converges to f in measure".
- (2) Let $f_n, n \ge 1$, and f be real-valued measurable functions in a finite measure space. Show that $\{f_n\}$ converges to f in measure if and only if each subsequence of $\{f_n\}$ has a subsubsequence that converges to f a.e..
- (3) Let X be a metric space and \mathcal{C} be a subset of \mathcal{P}_X containing the empty set and X. Assume that there is a function $\rho : \mathcal{C} \to [0, \infty]$ satisfying $\rho(\phi) = 0$. For each $\delta > 0$, show that (a)

$$\mu_{\delta}(E) = \inf \left\{ \sum_{k} \rho(C_k) : E \subset \bigcup_{k} C_k, \quad \text{diameter}(C_k) \le \delta \right\}$$

is an outer measure on X, and (b) $\mu(E) = \lim_{\delta \to 0} \mu_{\delta}(E)$ exists and is also an outer measure on X.

(4) Here we consider an application of Caratheodory's construction. An algebra \mathcal{A} on a set X is a subset of \mathcal{P}_X that contains the empty set and is closed under taking complement and finite union. A premeasure $\mu : \mathcal{A} \to [0, \infty]$ is a finitely additive function which satisfies: $\mu(\phi) = 0$ and $\mu(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k)$ whenever E_k are disjoint and $\bigcup_{k=1}^{\infty} E_k \in \mathcal{A}$. Show that the premeasure μ can be extended to a measure on the σ -algebra generated by \mathcal{A} . Hint: Define the outer measure

$$\overline{\mu}(E) = \inf \left\{ \sum_{k} \mu(E_k) : E \subset \bigcup_{k} E_k, E_k \in \mathcal{A} \right\}.$$

This is called Hahn-Kolmogorov theorem.

- (5) Let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be the completion of (X, \mathcal{M}, μ) as described in Ex 1. Show that $\overline{\mathcal{M}}$ is the σ -algebra generated by \mathcal{M} and all subsets of measure zero sets in \mathcal{M} .
- (6) Find a complete measure space (X, \mathcal{M}, μ) in which $\mathcal{M} \subsetneq \mathcal{M}_C$. This problem is related to Theorem 2.2.
- (7) Let X be a metric space and C(X) the collection of all continuous real-valued functions in X. Let \mathcal{A} consist of all sets of the form $f^{-1}(G)$ which $f \in C(X)$ and G is open in \mathbb{R} . The "Baire σ -algebra" is the σ -algebra generated by \mathcal{A} . Show that the Baire σ -algebra coincides with the Borel σ -algebra \mathcal{B} .
- (8) Show that the open ball {(x, y) : x² + y² < 1} in ℝ² cannot be expressed as a disjoint union of open rectangles.
 Hint: What happens to the boundary of any of these rectangles? This is in contrast with the one-dimensional case.
- (9) Show that every open set in Rⁿ can be expressed as a countable almost disjoint union of rectangles. Here almost disjoint means the interiors of rectangles are mutually disjoint.

The following problems are concerned with the Lebesgue measure. Let $R = I_1 \times I_2 \times \cdots \times I_n$, I_j bounded intervals (open, closed or neither), be a rectangle in \mathbb{R}^n .

(9) For a rectangle R in \mathbb{R}^n , define its "volume" to be

$$|R| = (b_1 - a_1) \times (b_2 - a_2) \times \cdots \times (b_n - a_n)$$

where b_i , a_i are the right and left endpoints of I_j . Show that

(a) if $R = \bigcup_{k=1}^{N} R_k$ where R_k are almost disjoint (that's, their interiors are pairwise disjoint), then

$$|R| = \sum_{k=1}^{N} |R_k|$$

(b) If
$$R \subset \bigcup_{k=1}^{N} R_k$$
, then

$$|R| \le \sum_{k=1}^{N} |R_k|.$$

- (10) Let \mathcal{R} be the collection of all closed cubes in \mathbb{R}^n . A closed cube is of the form $I \times \cdots \times I$ where I is a closed, bounded interval.
 - (a) Show that $(\mathcal{R}, |\cdot|)$ forms a gauge, and thus it determines a complete measure \mathcal{L}^n on \mathbb{R}^n called the *Lebesgue measure*.
 - (b) $\mathcal{L}^n(R) = |R|$ where R is a cube, closed or open.
 - (c) For any set E and $x \in \mathbb{R}^n$, $\mathcal{L}^n(E+x) = \mathcal{L}^n(E)$. Thus the Lebsegue measure is translational invariant.
 - (d) Show that the Lebesgue measure is a Borel measure.Hint: Use Caratheodory's criterion.
 - (e) Show that for every $E \subset \mathbb{R}^n$,

$$\mathcal{L}^{n}(E) = \inf \left\{ \mathcal{L}^{n}(G) : E \subset G, G \text{ open} \right\}.$$

It means that the Lebsegue measure is outer regular.