Sample Solutions of Assignment 2 for
MATH3270B:2.5-2.6,3.1-3.2
Note: Any problems to the sample solutions, email Ms. Zhang

Rong(rzhang@math.cuhk.edu.hk) directly.

Section 2.5:2,4,6,8,12
2.Answer:
Since f(y) = ay + by?, the critical points are zeros of f(y).
Then we get y =0 or y = —%. From the graph, we can see that
y = 0 is asymptotically unstable; y = —% is asymptotically stable.
4.Answer:
Since f(y) = e¥ — 1, the critical points are zeros of f(y).
Then we get y = 0 From the graph, we can see that
y = 0 is asymptotically unstable.
6.Answer:
Since f(y) = —4(arctany)/(1 + y?), the critical points are zeros of
f).
Then we get y = 0 From the graph, we can see that
y = 0 is asymptotically stable;
8.Answer:
Since f(y) = —k(y — 1)?,the critical points are zeros of f(y).
Then we get y = 1. From the graph,we can see that y = 1 is semistable.
12. Answer:
Since f(y) = y*(4 — y?), the critical points are zeros of f(y).
Then we get y = 0 or y = +2. From the graph, we can see that
y = 0, asymptotically semi-stable;
y = 2, asymptotically stable;
y = —2, asymptotically unstable.



FIGURE 1. 2:(a)f(y) versus y;(b)phase line;(c)graphs of solution

FIGURE 2. 4:(a)f(y) versus y;(b)phase line;(c)graphs of solution

FIGURE 3. 6:(a)f(y) versus y;(b)phase line;(c)graphs of solution

Section 2.6:1,2,4,8,10,11,18,20,22,25,27,32

1.Answer:



FIGURE 4. 8:(a)f(y) versus y;(b)phase line;(c)graphs of solution

FIGURE 5. 12:(a)f(y) versus y;(b)phase line;(c)graphs
of solution

M, = 0 = N,hence it’s exact;

d(x* + 3z +1y* —2y) =0
P34y —2y=0C
2.Answer:
M, =4,N, = 2,M, # N, hence it’s not exact.
4.Answer:
M, = 4zy + 2 = N, hence it’s exact.
d(z*y* +2zy) = 0

22y 42y = C



8.Answer:
M, = e*cosy + 3, N, = =3 + e*siny,M, # N,,hence it’s not exact.
10.Answer:
M, = i, N, = i,My = N,,hence it’s exact.
dlylnz +32° —2y) =0

ylnz + 32> -2y =C

11.Answer:

M, = z +z, N, = y +y,M, # N, hence it’s not exact.
y T

18.Answer:

Since M, = 0 = N,,hence it’s exact;

20.Answer:
M- cosy sirzy’Nx _ —2e "cosx — 2e Fsinx

Y y y

M, # N, hence
it’s not exact.

(Mp), = cosye® — 2sinx = (Np),.hence it’s exact now.

(sinye® — 2ysinx)dx + (cosye” +2cosz)dy = 0
d(sinye” + 2ycosz) = 0
sinye® +2ycosx = C
22.Answer:
M, = (x +2) cosy,N, = cosy,M, # N, so it’s not exact.
(Mp)y = ze*(x 4+ 2) cosy = (Np),,hence it’s exact now.
(ze*(x + 2)siny)dz + (2%e” cosy)dy = 0
d(sinyz’e®) = 0
?e"siny = C

25.Answer:

M, — N, .
Since M, = 3z%+ 2z +3y?, N, = 2z,and yT = 3, then there is

an integrating factor that depends only on z, suppose u(z,y) = p(z),



—Y _~ %, = 3u. Hence

and it satisfies p, = N

L=e
Multiply @ on both sides of the equation,
(3z%y + 2xy + )€™ + (¢ + y*)e*y' =0
d(zy + 16395 3 =0

3
Hence the solutions are given by

1
e3xx2y 4 §€3xy3 =C
27.Answer:
1 N, — M, 1 ) )
—~ Y% — Z then there is an inte-

Since M, = 0, N, = —,and
Y
grating factor that depends only on y, suppose pu(z,y) = u(y), and it

N,— M, 1

satisfies p, = N M= ;u. Hence

p=y
Multiply @ on both sides of the equation,
y+ (v —sinyy)y =0
d(xy +ycosy —siny) =0
Hence the solutions are given by
xy +ycosy —siny = C

32.Answer:
Multiplying equation by pu,
3 +y r+y

Tae ) T yRey)
Since (upM), = (1N), so it is exact now. Thus there is a ¢ (x, y) such
that

Yy = pM

%ZMN
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Integrating second equation,we obtain

P = %ln ly? + 22y| + h(z)
By the first equation,we have

1 /
Tz = h
¥ y+2x+

1
Thus b/ (x) = - and h(z) = In|z|,then we have

1 1
= 5 In |y? 4 2zy| +In |z| = 5 In 22|y 4 2zy|
Hence the solutions are given by

2} (y* + 2zy) = C

Section 3.1:1,4,6,8,10,12,15,17,20,22

Find the general solution of the given differential equation

(). y"+2y =3y =0
(4). 2y" =3y +y=0
(6). 4" — 9y =0
(8).y —2y =2y =0
Answer:

(2)The characteristic equation is :
P +2r—3=0

Thus r = —3,r5 = 1.
The general solution is y = c;e™3t + cyel.

(4)The characteristic equation is :
2 —3r+1=0

1
Thus r = §,r2 =1.

L 1
The general solution is y = cie2! + cyel.



(6)The characteristic equation is :

42 —9=0
3

3
Thus r = g2 ="5

. _3 3
The general solution is y = cie” 2! + cpe2?.

(8)The characteristic equation is :
rP—2r—2=0

Thusrlzl—l—\/g,r’g:l—\/g.
The general solution is y = c;e(1 V3t 4 cye(1=V3),

(10). The characteristic equation is
r+4r+3=0

Thus the possible values of r are r = —1 and r = —3, and the general

solution of the equation is

y(t) = cre" + e

From the initial value, we have

c1+cy = 2
— C1 — 362 = —1,
5 1 . .
hence ¢; = = and ¢y = —3 The solution of the equation is
5 1
o= 2t L 2Bt
ylt) = 5 — 5e

y(t) — 0, as t — oc.

(12).The characteristic equation is :
2 4+3r=0

The roots are r = 0, —3.Hence the general solution is

y = c1 + cpe



FIGURE 6. Question 10:graph of solution

According to the initial condition,the specific solution is

y:_l_e—3t

y(t) — —1, as t — oc.

(15). The characteristic equation is
48 —9=0
The roots are r = —9, 1. Hence the general solution is
Y = cle_gt + 02et

Accounting for the initial conditions, the specific solution is
1 9
£ = 01 | 7 -1
ylt) = 1p¢ T 10°

y(t) — o0, as t —» 0.

17.Find a differential equation whose general solution is y = c;e? +
cpe 3

Answer: The the characteristic equation is

(r=2)(r+3)=r*4+r—-6=0



FIGURE 7. Question 12:graph of solution

FIGURE 8. Question 15:graph of solution

So the equation is
y//+y/ —6y=0
20. Find the solution of the initial value problem

2y" =3y +y =0, y(0) =2, y'(0) =

N | —

Then determine the maximum value of the solution and also find the

point where the solution is zero.
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Answer: The characteristic equation is
2r = 3r+1=2r—-1)(r—-1)=0

Thus the possible values of r are r; = % and o = 1, and the general

solution of the equation is
y(t) = cre?’ + cpel,
Using the first initial condition, we obtain
c1+co = 2.

Using the second initial condition, we obtain
N 1
=1+ ==
2t T2

Solving above equations we find that ¢; = 3 and ¢, = —1. Hence,

y(t) = ezt — ¢,

Since
1 9 1, 3 9
—3e2t —et =2 —(e2t — )2 < 2
o) =sedt — et =0 (it T <
when ¢ = 2In3, y(t) reach the maximum value §. Solving y(t) =

3e3! — et = 0, we know that the zero point of solution is ¢ = 21In 3.

22. Solve the initial value problem 4y —y = 0, y(0) = 2, v (0) = .
Then find S so that the solution approaches zero as t — oc.

Answer: The the characteristic equation is
4 —1=(2r+1)(2r—1) =0

Thus the possible values of r are r; = % and ry = ’71, and the general
solution of the equation is

y(t) = cre?t & cpe 3.
Using the first initial condition, we obtain

Cl+02:2.
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Using the second initial condition, we obtain
Cl1 — Cy = 2@

By solving above equations we find that ¢; = 8+ 1 and ¢o = 1 — (.

Hence,
y(t) = (8 + Dex' + (1 - p)e 2"

From y(t) — 0 as t — oo, we find f = —1.

Section 3.2:2,4,5,7,9,12,15,16,17,20,23,25,28,31,33,38,39
Find the Wronskian of the given pair of functions.

(2). cost, sint

(4). z,xe®

(5). e'sint, e cost

Answer: The computation is easy, so we just give the final result.

(2). W=1
(4). W = z%e”
(5). W = —e?

In the following problems determine the longest interval in which the
given initial value problem is certain to have a unique twice differen-

tiable solution. Do not attempt to find the solution.

Tt +3y=t, y(l)=1, y(1)=2.

9. t(t —4)y" + 3ty +4y =2, y(3) =0, y(3) = -1

12. (x = 2)y" + ¢ + (x — 2)(tanx)y = 0,y(3) = 1,¥/(3) = 2
Answer: (7). The original solution can written as

3
y' oy =1,
t
hence the longest interval is ¢ > 0. Then the points of discontinuity

of the coefficients are ¢ = 0. Therefore, the longest open interval,
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containing the initial point ¢ = 1, in which all the coefficients are
continuous, is 0 < t < oo.
(9).The original solution can written as

s, 42
=0 Tw—aY "=

y// +

3t 4 2
dp(t) = —— t) = —— t) = ————. Then th int
and p(t) 1) q(t) =) g(t) =1 en the points

of discontinuity of the coefficients are ¢t = 0 and ¢t = 4. Therefore, the
longest open interval, containing the initial point ¢ = 3, in which all

the coefficients are continuous, is 0 < t < 4.

(12). The original solution can written as

/

Y

y' + 5+ (tanx)y =0

Then the only points of discontinuity of the coefficients are x = 2, and x =
km + 57?, k € 7Z. Therefore, the longest open interval, containing the
initial point = 3, in which all the coefficients are continuous, is
2<z< ;ﬂ'.

15. Show that if y = ¢(t) is a solution of the differential equation
y 4+ p(t)y 4+ q(t)y = g(t), where g(t) is not always zero, the y = c¢(t),
where ¢ is any constant other than 1, is not a solution. Explain why

this result does not contradict the remark following Theorem 3.2.2.

Answer:
[eo()] + p(t)[eo(t)] + q(t)[co(t)]
= clp(t) +pt)o(t) + q(t)p(t)]
= cq(t) # g(t)

if ¢ is a constant other than 1, and g(¢) is not always zero.
This result does not contradict Theorem 3.2.2 because this equation is

not homogeneous.
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16. Can y = sint? be a solution on an interval containing ¢ = 0 of an
equation y” + p(t)y’ + q(t)y = 0 with continuous coefficients? Explain
your answer.

Answer: By direct computing, we have
y=sint?, y =2tcost?, y" = —4t’sint® + 2cost?
we have
(—4t? + q(t)) sint? + (2tp(t) + 2) cost* = 0 (%)
Assume that y = sin#? is a solution on an interval containing ¢ = 0 and

coefficients are continuous, substitute ¢ = 0 into (*), we get 2cos0 = 0

which is not true. So y = sint? can not satisfy all the requirements.

17. If the Wronskian W of f and g is 3e*, and if f(t) = €%, find
g(t).
Answer:
W = f(t)g (t) = [ (t)g(t) = e*g'(t) — 2¢™g(t)
Let W = 3¢, we get the following equation
g —2g(t) = 3¢*.

From the above equation, g(t) = 3te? + ce*.

20. If the Wronskian of f and g istcost—sint and if u = f+3g, v =
f — g, find the Wronskian of u and v.

Answer:

/ !/

W(u,v) = w —uv
= (f+39)(f —9)—(f +39)(f - 9)
= —Afg +4fg
= —4W(f,9)
— _4(tcost —sint).
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23. Find the fundamental set of solutions specified by Thm 3.2.5 for

the given differential equation and initial point.
V' +4y +3y=0, to=1.
Answer: The characteristic equation is
r?+4r+3=0,

we have r = —1 and r = —3. The general solution is y(t) = c;e™ +
coe 3L,
If the initial condition y(1) = 1,¢'(1) = 0 is satisfied ,then y =
—Lem30-1) 4 Se=(t-D)
If the initial condition y(1) = 0,¢y'(1) = 1 is satisfied ,then y =
—Lem30-1) 4 Le=(t-D)
So the set of fundamental solutions is {—1e 3D 3e=(= _Le=30-1)4
!
25.Answer:

Y =2y iy = e —2e'+e =0

yh —2uh+ys = 2e' +tet —2te’ —2e' +te! =0
Hence y; 1y are the solutions of the ODE.

Wy, 12) = 1Yy — 1y
= e #0

Hence they constitute the fundamental set of solutions.

28.Answer:

(a) Since the Wronskian W = 3e’, they form a fundamental set of
solutions.
(b) Since they are all linear combinations of y; and ys, they are also
solutions of the given equation.
(c) By calculating the respective Wronskians, we see that [y1,ys] and

[y1, y4] are fundamental set of solutions while the others are not.
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31.Answer:
1
Divide by z? on both sides: y” + —y' + (1 — —)y=0
T x
By Abel’s theorem:

Wy, ) = cexp[—/édx]

34.Answer:

2
y//_i_;y/_i_ety:()

W (y1,y2)(t) cexp|— / %dt]

= cexp[—2In[t[]
c
B
2

Since W(y1,92)(1) = c =2, W(y1,y2)(5) = %

38.Answer:

Since W(y1,42)(t) = w15 — viye.suppose that yi(te) = wa(te) =
0,then W (yy,y2)(to) = 0.
By Abel’s Theorem, W (y1,ys)(to) = cexp|— [ p(t)dt] = 0,thus ¢ =
0,hence W = 0.
Thus they cannot constitute the fundamental set of solutions.

39.Answer:

If so then exist a point ¢y such that y;(to) = y2(to)’ = 0, hence
W (y1,y2)(to) = 0.
By Abel’s Theorem,W (y1,y2)(to) = cexp[— [ p(t)dt] = 0,thus ¢ =
0,hence W = 0.

Thus they cannot constitute the fundamental set of solutions.



