Lecture 2 Integer Programming Formulations

MATH3220 Operations Research and Logistics Jan. 8, 2015

Integer Programming Formulations

Integer Programming Logical constraints

Nonlinear Functions

Pan Li
The Chinese University of Hong Kong

Agenda

Integer Programming Formulations

(1) Integer Programming

Integer Programming
Logical constraints
Nonlinear Functions

(2) Logical constraints

(3) Nonlinear Functions

Integer Programming

Integer Programming: a linear program plus the additional constraints that some or all of the variables must be integer valued.

We also permit " $x_{j} \in\{0,1\}$ ", or equivalently, " x_{j} is binary".
This is a shortcut for writing the constraints:

$$
0 \leq x_{j} \leq 1 \text { and } x_{j} \text { is integer. }
$$

Simple logical constraints

Here, we address different logical constraints that can be transformed into integer programming constraints.

- selection of items from a subset

Logical constraint	IP constraint
If item i is selected constrants	
Either item i is selected or item j is also selected. but not both.	$x_{i}-x_{j} \leq 0$
Notlinear fennctions	
Item i is selected or item j is selected or both.	$x_{i}+x_{j}=1$
If item i is selected, then item j is not selected.	$x_{i}+x_{j} \geq 1$
If item i is not selected, then item j is not selected.	$-x_{i}+x_{j} \leq 0$
At most one of item i, j and k are selected.	$x_{i}+x_{j}+x_{k} \leq 1$
At most two of items i, j and k are selected.	$x_{i}+x_{j}+x_{k} \leq 2$
Exactly one of items i, j and k are selected.	$x_{i}+x_{j}+x_{k}=1$
At least one of items i, j and k are selected.	$x_{i}+x_{j}+x_{k} \geq 1$

Simple logical constraints - con't

Restricting a variable to take on one of several values.

Suppose that we want to restrict x to be one of the elements $\{4,8,13\}$. This is accomplished as follows.

$$
\begin{array}{r}
x=4 w_{1}+8 w_{2}+13 w_{3} \\
w_{1}+w_{2}+w_{3}=1 \\
w_{i} \in\{0,1\} \text { for } i=1 \text { to } 3 .
\end{array}
$$

Question: If we want to restrict x to be one of the elements $\{0$, $4,8,13\}$, how should we model it?

Integer Programming

Simple logical constraints - con't

Restricting a variable to take on one of several values.

Suppose that we want to restrict x to be one of the elements $\{4,8,13\}$. This is accomplished as follows.

$$
\begin{array}{r}
x=4 w_{1}+8 w_{2}+13 w_{3} \\
w_{1}+w_{2}+w_{3}=1 \\
w_{i} \in\{0,1\} \text { for } i=1 \text { to } 3 .
\end{array}
$$

Question: If we want to restrict x to be one of the elements $\{0$, $4,8,13\}$, how should we model it?

Answer: It suffices to use the above formulation with the equality constraint changed to " $w_{1}+w_{2}+w_{3} \leq 1$ ".

Integer Programming

Simple logical constraints - con't

Restricting a variable to take on discontinuous values.

Suppose that we want to restrict x must be either 0 or between particular positive bounds. In algebraic notation:

$$
x=0 \quad \text { or } \quad l \leq x \leq u
$$

Define:

$$
y= \begin{cases}0 & \text { for } x=0 \\ 1 & \text { for } l \leq x \leq u\end{cases}
$$

Then, the logical constraints can be modeled by:

$$
\begin{array}{r}
l y \leq x \leq u y \\
y \in\{0,1\}
\end{array}
$$

Other logical constraints, and the big M method.

Big-M method for IP formulations

- Assume that all variables are integer valued.
- Assume a bound u^{*} on coefficients and variables;

Integer Programming

$$
\begin{aligned}
& \text { e.g. } x_{j} \leq 1,000 \text { for all } j . \\
& \qquad\left|a_{i j}\right| \leq 1,000 \text { for all } i, j
\end{aligned}
$$

- Choose M really large so that for every constraint i,

$$
\left|a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n}-b_{i}\right| \leq M
$$

That is, we will be able to satisfy any " \leq " constraint by adding M to the RHS.
And we can satisfy any " \geq " constraint by subtracting M from the RHS.

Logical constraint - Constraint feasibility

Binary variables that are 1 when a constraint is satisfied.

$$
w= \begin{cases}1 & \text { if } f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Here we assume that $f(x)$ is bounded.
Equivalent constraints:

$$
\begin{array}{r}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b+M(1-w) . \\
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq b-M w . \\
w \in\{0,1\}
\end{array}
$$

where the constant M is chosen to be large enough so that the constraint is always satisfied if $w=0$. Whenever $w=1$ gives a feasible solution to IP constraint, the logical constraint must be satisfied.

Logical constraint - Alternative constraint

We formulate the logical constraint, " $x \leq 2$ or $x \geq 6$ " as follows.
Choose a binary variable w so that

- if $w=1$, then $x \leq 2$
- if $w=0$, then $x \geq 6$

$$
\begin{aligned}
& x \leq 2+M(1-w) \\
& x \geq 6-M w \\
& \quad w \in\{0,1\}
\end{aligned}
$$

To validate the formulation one needs to show:
The logical constraints are equivalent to the IP constraints.

The logical constraint - Alternative constraint (con't)

$$
\begin{array}{ll}
\text { Logical constraint } & \\
\begin{array}{ll}
\text { IP constraints } \\
x \leq 2 \text { or } x \geq 6
\end{array} & x \leq 2+M(1-w) \\
& \\
& w \geq 6-M w \\
& w \in 0,1\}
\end{array}
$$

Integer Programming

Suppose (x, w) is feasible for the IP,

$$
\begin{aligned}
& \text { if } w=1 \text {, then } x \leq 2 \text {. } \\
& \text { if } w=0 \text {, then } x \geq 6 \text {. }
\end{aligned}
$$

In both cases, the logical constraints are satisfied.
Suppose that x satisfies the logical constraints.

$$
\begin{aligned}
& \text { If } x \leq 2 \text {, then let } w=1 \quad \Rightarrow \quad x \leq 2 \quad \text { and } \quad x \geq 6-M \\
& \text { If } x \geq 6 \text {, then let } w=0 \quad \Rightarrow \quad x \leq 2+M \quad \text { and } \quad x \geq 6
\end{aligned}
$$

In both cases, the IP constraints are satisfied.

The logical constraint - Alternative constraint (con’t)

Logical constraint	IP constraints
$2 x_{1}+3 x_{2} \geq 14$ or	$2 x_{1}+3 x_{2} \geq 14-M(1-w)$
$5 x_{2}-7 x_{3} \leq 3$	$5 x_{2}-7 x_{3} \leq 3+M w$
	$w \in\{0,1\}$

Integer Programming

Suppose x_{i} is Suppose that M is very large.
bounded for all i.
To show:
The logical constraints are equivalent to the IP constraints.
Suppose (x, w) is feasible for the IP,

$$
\begin{aligned}
& \text { if } w=1 \text {, then } 2 x_{1}+3 x_{2} \geq 14 . \\
& \text { if } w=0 \text {, then } 5 x_{2}-7 x_{3} \leq 3 .
\end{aligned}
$$

Therefore, the logical constraints are satisfied.

The logical constraint - Alternative constraint (con’t)

$$
\begin{array}{ll}
\frac{\text { Logical constraint }}{2 x_{1}+3 x_{2} \geq 14 \text { or }} & \\
5 x_{2}-7 x_{3} \leq 3 & \\
& 5 x_{1}+3 x_{2} \geq 14-M(1-w) \\
& w \in\{0,1\}
\end{array}
$$

Integer Programming

To show:
The logical constraints are equivalent to the IP constraints.
Suppose that x satisfies the logical constraints.

$$
\begin{aligned}
\text { If } 2 x_{1}+3 x_{2} \geq 14, \text { then let } w=1 \Rightarrow & 2 x_{1}+3 x_{2} \geq 14 \text { and } \\
& 5 x_{2}-7 x_{3} \leq 3+M
\end{aligned} \quad \begin{aligned}
& \text { If } 5 x_{2}-7 x_{3} \leq 3, \text { then let } w=0 \Rightarrow \quad 2 x_{1}+3 x_{2} \geq 14-M \quad \text { and } \\
& \\
& 5 x_{2}-7 x_{3} \leq 3
\end{aligned}
$$

In both cases, the IP constraints are satisfied.

Logical constraint - Conditional constraints

These constraints have the form:

$$
\text { if } f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)>b_{1} \text {, then } f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{2}
$$

Since this implication is not satisfied only when both $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)>b_{1}$ and $f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)>b_{2}$, the conditional constraint is logically equivalent to the alternate constraints

$$
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{1} \text { and/or } f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{2}
$$

where at least one must be satisfied. Hence, this situation can be modeled by alternative constraints:

$$
\begin{array}{r}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{1}+B_{1} y, \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{2}+B_{2}(1-y), \\
y \in\{0,1\}
\end{array}
$$

At least one of three inequalities is satisfied.

$$
x_{1}+4 x_{2}+2 x_{4} \geq 7 \text { or } 3 x_{1}-5 x_{2} \leq 12 \text { or } 2 x_{2}+x_{3} \geq 6
$$

Create three binary variables w_{1}, w_{2}, and w_{3} and reformulate the above constraint as the following system of logical, linear and integer constraints.

$$
\begin{aligned}
& \text { If } w_{1}=1 \text {, then } x_{1}+4 x_{2}+2 x_{4} \geq 7 \\
& \text { If } w_{2}=1 \text {, then } 3 x_{1}-5 x_{2} \leq 12 \\
& \text { If } w_{3}=1 \text {, then } 2 x_{2}+x_{3} \geq 6 \\
& w_{1}+w_{2}+w_{3} \geq 1 \\
& w_{i} \in\{0,1\} \text { for } i=1 \text { to } 3 .
\end{aligned}
$$

This above system of constraints is equivalent to the following.

$$
\begin{array}{ll}
x_{1}+4 x_{2}+2 x_{4} & \geq 7-M\left(1-w_{1}\right) \\
3 x_{1}-5 x_{2} & \leq 12+M\left(1-w_{2}\right) \\
2 x_{2}+x_{3} & \geq 6-M\left(1-w_{3}\right) \\
w_{1}+w_{2}+w_{3} & \geq 1 \\
w_{i} \in\{0,1\} \text { for } i=1 \text { to } 3
\end{array} .
$$

Logical constraint - k-Fold alternative

Suppose we must satisfy at least k of the constraints:

$$
f_{i}(x) \leq b_{i} \quad(j=1,2, \ldots, m)
$$

Assuming that B_{i} are chosen so that the ignored constraints will not be binding, the general problem can be formulated as follows:

$$
\begin{aligned}
& f_{i}(x) \leq b_{i}+B_{i}\left(1-y_{i}\right) \\
& \sum_{i=1}^{m} y_{i} \geq k \\
& y_{i} \in\{0,1\} \quad(i=1,2, \ldots, m)
\end{aligned}
$$

Nonlinear Functions

Integer Programming Formulations

- Nonlinear functions can be represented by integer programming formulations.

Integer Programming

Fixed costs

In a typical production planning problem involving N products, the production cost for product j may consist of a fixed cost d_{j} independent of the amount produced and a variable $\operatorname{cost} c_{j}$ per unit. Thus if x_{j} is the production level of product j, its production cost function may be written as

$$
f_{j}\left(x_{j}\right)= \begin{cases}d_{j}+c_{j} x_{j} & x_{j}>0 \\ 0 & x_{j}=0\end{cases}
$$

This is nonlinear in x_{j} because of the discontinuity of $f_{j}\left(x_{j}\right)$ at the origin. Consequently, the following minimum cost problem is also nonlinear:

$$
\begin{array}{ll}
\text { Min } & z=\sum_{j=1}^{N} f_{j}\left(x_{j}\right) \\
\text { s.t. } & A x=b, x \geq 0 .
\end{array}
$$

Fixed costs (con't)

If it is known that $0 \leq x_{j} \leq u_{j}$ and $d_{j}>0$ then we can define a binary variable y_{j} that indicates when the fixed cost is incurred, so that

$$
\begin{aligned}
& y_{j}=1, \text { if } x_{j}>0 \\
& y_{j}=0, \text { if } x_{j}=0
\end{aligned}
$$

Then the contribution to cost due to x_{j} may be written as

$$
f_{j}\left(x_{j}\right)=d_{j} y_{j}+c_{j} x_{j}
$$

with the constraints:

$$
\begin{aligned}
x_{j} & \leq u_{j} y_{j} \\
x_{j} & \geq 0 \\
y & =0 \text { or } 1 .
\end{aligned}
$$

Fixed costs (con't)

In a typical production planning problem involving N products, the production cost for product j may consist of a fixed cost d_{j} independent of the amount produced and a variable $\operatorname{cost} c_{j}$ per unit. Thus if x_{j} is the production level of product j, its production cost function may be written as

$$
f_{j}\left(x_{j}\right)= \begin{cases}d_{j}+c_{j} x_{j} & x_{j}>0 \\ 0 & x_{j}=0\end{cases}
$$

This is nonlinear in x_{j} because of the discontinuity of $f_{j}\left(x_{j}\right)$ at the origin. Consequently, the following minimum cost problem is also nonlinear:

$$
\begin{array}{ll}
\text { Min } & z=\sum_{j=1}^{N}\left(c_{j} x_{j}+d_{j} y_{j}\right) \\
\text { s.t. } & A x=b \\
& 0 \leq x_{j} \leq u_{j} y_{j}, \quad j=1,2, \ldots, N \\
& y_{j} \in\{0,1\}, \quad j=1,2, \ldots, N
\end{array}
$$

Piecewise linear representation

Define integral variables δ_{1}, δ_{2} and δ_{3} so that:

- δ_{1} corresponds to the amount by which x exceeds 0 , but is less than or equal to 4;
- δ_{2} is the amount by which x exceeds 4 , but is less than or equal to 10; and
- δ_{3} is the amount by which x exceeds 10 , but is less than or equal to 15 .

Piecewise linear representation

Integer Programming Logical constraints

Hence,

$$
x=\delta_{1}+\delta_{2}+\delta_{3},
$$

where

$$
\begin{equation*}
0 \leq \delta_{1} \leq 4, \quad 0 \leq \delta_{2} \leq 6, \quad 0 \leq \delta_{3} \leq 5, \tag{1}
\end{equation*}
$$

and the total variable cost is given by:

$$
\text { Cost }=5 \delta_{1}+\delta_{2}+3 \delta_{3}
$$

Piecewise linear representation

However, we should have the following conditional constraints:

- $\delta_{1}=4$, if $\delta_{2}>0$
- $\delta_{2}=6$, if $\delta_{3}>0$

Integer Programming Logical constraints

Hence,

$$
x=\delta_{1}+\delta_{2}+\delta_{3},
$$

where

$$
\begin{equation*}
0 \leq \delta_{1} \leq 4, \quad 0 \leq \delta_{2} \leq 6, \quad 0 \leq \delta_{3} \leq 5, \tag{2}
\end{equation*}
$$

and the total variable cost is given by:

$$
\text { Cost }=5 \delta_{1}+\delta_{2}+3 \delta_{3}
$$

Piecewise linear representation (I)

Logical constraints:

$$
\begin{aligned}
& 0 \leq \delta_{1} \leq 4, \quad 0 \leq \delta_{2} \leq 6, \quad 0 \leq \delta_{3} \leq 5, \\
& \delta_{1}=4, \text { if } \delta_{2}>0 \\
& \delta_{2}=6, \text { if } \delta_{3}>0
\end{aligned}
$$

Define

$$
w_{1}= \begin{cases}1 & \text { if } \delta_{1} \text { is at its upper bound } \\ 0 & \text { otherwise }\end{cases}
$$

$$
w_{2}= \begin{cases}1 & \text { if } \delta_{2} \text { is at its upper bound } \\ 0 & \text { otherwise }\end{cases}
$$

Piecewise linear representation (I) (con't)

Logical constraints:

$$
\begin{aligned}
& 0 \leq \delta_{1} \leq 4, \quad 0 \leq \delta_{2} \leq 6, \quad 0 \leq \delta_{3} \leq 5, \\
& \delta_{1}=4, \text { if } \delta_{2}>0 \\
& \delta_{2}=6, \text { if } \delta_{3}>0
\end{aligned}
$$

Then the constraints above can be replaced by:

$$
\begin{aligned}
4 w_{1} & \leq \delta_{1} \leq 4 \\
6 w_{2} & \leq \delta_{2} \leq 6 w_{1} \\
0 & \leq \delta_{3} \leq 5 w_{2} \\
w_{1} & \text { and } w_{2} \text { binary. }
\end{aligned}
$$

Piecewise linear representation (I) (con't)

Logical constraints:

$$
\begin{aligned}
& 0 \leq \delta_{1} \leq 4, \quad 0 \leq \delta_{2} \leq 6, \quad 0 \leq \delta_{3} \leq 5, \\
& \delta_{1}=4, \text { if } \delta_{2}>0 \\
& \delta_{2}=6, \text { if } \delta_{3}>0
\end{aligned}
$$

Then the constraints above can be replaced by:

$$
\begin{array}{cl}
4 w_{1} & \leq \delta_{1} \leq 4 \\
6 w_{2} & \leq \delta_{2} \leq 6 w_{1} \\
0 & \leq \delta_{3} \leq 5 w_{2} \\
w_{1} & \text { and } w_{2} \text { binary. }
\end{array}
$$

There are three feasible combinations for the values of w_{1} and w_{2} :

- $w_{1}=0, w_{2}=0 \quad$ corresponding to $0 \leq x \leq 4$
- $w_{1}=1, w_{2}=0 \quad$ corresponding to $4 \leq x \leq 10$
- $w_{1}=1, w_{2}=1 \quad$ corresponding to $10 \leq x \leq 15$

Piecewise linear representation (I) (con't)

The same general technique can be applied to piecewise linear curves with any number of segments.

The general constraint imposed upon the variable δ_{j} for the j th segment will be:

$$
L_{j} w_{j} \leq \delta_{j} \leq L_{j} w_{j-1}
$$

where L_{j} is the length of the segment.

Approximation of Nonlinear Functions

One of the most useful applications of the piecewise linear representation is for approximating nonlinear function.

Suppose the expansion cost in our previous example is given by the heavy curve in the figure below.

Approximation of Nonlinear Functions (con't)

If we draw linear segments joining selected points on the curve, we obtain a piecewise linear approximation, which can be used of the curve in the model. The piecewise approximation is represented by introducing integer variables as indicated before.

By using more points on the curve, we can make the approximation as close as we desire.

Piecewise linear representation (II)

$$
\begin{aligned}
& w_{1}= \begin{cases}1 & \text { if } 0 \leq x \leq 3 \\
0 & \text { otherwise } .\end{cases}
\end{aligned} x_{1}=\left\{\begin{array}{ll}
x & \text { if } 0 \leq x \leq 3 \\
0 & \text { otherwise } .
\end{array}\right\}
$$

If the variables are defined as above, then

$$
y=2 x_{1}+\left(9 w_{2}-x_{2}\right)+\left(-5 w_{3}+x_{3}\right)
$$

Piecewise linear representation (II) (con’t)

Add constraints

Constraints

Definitions of the variables.
$w_{1}=\left\{\begin{array}{cc}1 & \text { if } 0 \leq x \leq 3 \\ 0 & \text { otherwise. }\end{array} \quad x_{1}=\left\{\begin{array}{cl}x & \text { if } 0 \leq x \leq 3 \\ 0 & \text { otherwise. }\end{array}\right.\right.$
$w_{2}=\left\{\begin{array}{ll}1 & \text { if } 4 \leq x \leq 7 \\ 0 & \text { otherwise } .\end{array} \quad x_{2}= \begin{cases}x & \text { if } 4 \leq x \leq 7 \\ 0 & \text { otherwise. }\end{cases}\right.$

$$
\begin{array}{r}
0 \leq x_{1} \leq 3 w_{1} \\
w_{1} \in\{0,1\} \\
4 w_{2} \leq x_{2} \leq 7 w_{2} \\
w_{2} \in\{0,1\} \\
8 w_{3} \leq x_{3} \leq 9 w_{3} \\
w_{3} \in\{0,1\}
\end{array}
$$

Integer Programming

Suppose that $0 \leq x \leq 9, x$ integer.
If (x, w) satisfies the definitions, then it also satisfies the constraints.
If (x, w) satisfies the constraints, then it also satisfies the definitions.

Exercise

Construct integer programming formulations to represent the following piecewise linear function.

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } 1 \leq x \leq 2 \\ 2 & \text { if } 3 \leq x \leq 4\end{cases}
$$

Integer Programming Formulations

Summary

- IPs can model almost any combinatorial optimization problem.
- lots of transformation techniques.
- Next lecture: how to solve integer programs.

Integer Programming Formulations

Integer Programming
Logical constraints

