Linear programing

Tutorial 9

Dual Simplex method and Dual Problem

Dual Problem:

max	$\sum_{j=1}^{n} c_j x_j$	min	$\sum_{i=1}^{m} u_i b_i$
subject to	$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \ (i=1,2,\cdots,k)$	subject to	$u_i \geq 0$ $(i=1,2,\cdots,k)$
	$\sum_{j=1}^{n} a_{ij} x_j = b_i (i = k+1, \cdots, m)$		u_i free $(i = k + 1, \cdots, m)$
	$x_j \ge 0$ $(j = 1, 2, \cdots, \ell)$		$\sum_{i=1}^{m} u_j a_{ij} \ge c_j (j = 1, 2, \cdots, \ell)$
	x_j free $(j = \ell + 1, \cdots, n)$		$\sum_{i=1}^{m} u_i a_{ij} = c_j (j = \ell + 1, \cdots, n)$

Key Concepts:

1)	Number	of variables	in the	llp = number	of	constrains	in	the	dual
----	--------	--------------	--------	--------------	----	------------	----	-----	------

2) If the constrain matrix of the llp is A, the the constrain matrix of the dual is A^{T}

Theorem 5.2 (Weak Duality Theorem). If x is a feasible solution (not necessarily basic) to the primal and u is a feasible solution (not necessarily basic) to the dual, then

 $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{u}$.

Theorem 5.3. If x_0 and u_0 are feasible solutions to the primal and the dual respectively and if

$$\mathbf{c}^T \mathbf{x}_0 = \mathbf{b}^T \mathbf{u}_0,$$

then x_0 and u_0 are optimal solutions to the primal and the dual respectively.

(

Theorem 5.4 (The Strong Duality Theorem). A feasible solution x_0 to the primal is optimal if and only if there exists a feasible solution u_0 to the dual such that

$$\mathbf{c}^T \mathbf{x}_0 = \mathbf{b}^T \mathbf{u}_0 \ . \tag{5.2}$$

In particular, u_0 is an optimal solution to the dual.

Example 1: A case that is too good to be true

Consider the following LPP,

maximize $z = x_1 + 5x_2 + 3x_3$
subject to $x_1 + 2x_2 + x_3 = 3$
 $2x_1 - x_2 = 4$
 $x_1, x_2, x_3 \ge 0$

Given that the optimal basic variables are x_1 and x_3 , determine the associated optimal dual solution.

Theorem 5.7 (Complementary Slackness). Given any pair of optimal solutions to an LP problem and its dual, then

- (i) for each $i, i = 1, 2, \dots, m$, the product of the *i*th primal slack variable and *i*th dual variable is zero, and
- (ii) for each j, $j = 1, 2, \dots, n$, the product of the *j*th primal variable and *j*th surplus dual variable is zero.

Example 2:

Consider the following LPP.

minimize $3x_1 + 5x_2 - x_3 + 2x_4 - 4x_5$ subject to $x_1 + x_2 + x_3 + 3x_4 + x_5 \leq 6$ $-x_1 - x_2 + 2x_3 + x_4 - x_5 \geq 3$ $x_1, x_2, x_3, x_4, x_5 \geq 0$

(a) Write down the dual problem.

The dual problem is :		-1779
Max		
	$6u_1 + 3u_2$	
subject to		
	$u_1 - u_2 \le 3$,	
	$u_1 - u_2 \le 5$	
	$u_1 + 2u_2 \le -1$	
	$3u_1 + u_1 \le 2$	
	$u_1 - u_2 \leq -4$	
	$u_1 \le 0, u_2 \ge 0$	

(b) If the point (-3,1) is the optimal solution to the dual problem, find the optimal solution to the initial problem.

Since x_1 and x_3 are basic variables then in equalities in the first and it the second constraint hold. Solving them, we get $u_1 = 3$ and $u_2 = -1$. 3rd and ς^{th} contrainty holds, i.e. χ_{3} , χ_{5} in the primal problem are posic, i.e. $\chi_{3} = \chi_{5} = 3$.

Example 3:

Consider the following LPP

maximize
$$6x_1 + 7x_2 + 3x_3 + 2x_4 + x_5$$

subject to $x_1 + x_2 + x_3 + x_4 = 6$
 $2x_1 + 3x_2 + 4x_2 + x_5 = 14$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

(a) Find the corresponding dual problem

(b) If x_1 and x_5 are basic in the optimal solution of the lpp, then find the optimal solutino for the dual

The dual problem is : Min

 $6u_1 + 14u_2$

subject to

$$u_{1} + 2u_{2} \ge 6$$

$$u_{1} + 3u_{2} \ge 7$$

$$u_{1} + 4u_{2} \ge 3$$

$$u_{1} \ge 2$$

$$u_{2} \ge 1$$

$$u_{1}, u_{2} is free$$

Using constraint 1 and 5 in the dual problem, that is

$$u_1 + 2u_2 = 6$$
$$u_2 = 1$$

we have $u_1 = 4, u_2 = 1$

Dual Simplex method:

Algorithm for the dual simplex method

- 1. Given a dual BFS \mathbf{x}_B , if $\mathbf{x}_B \ge 0$, then the current solution is optimal; otherwise select an index r such that the component x_r of \mathbf{x}_B is negative.
- 2. If $y_{rj} \ge 0$ for all $j = 1, 2, \dots, n$, then the dual is unbounded; otherwise determine an index s such that

$$-\frac{y_{0s}}{y_{rs}} = \min_{j} \left\{ -\frac{y_{0j}}{y_{rj}} | y_{rj} < 0 \right\} .$$

3. Pivot at element y_{rs} and return to step 1.

Theorem 5.5. If B is the basis matrix for the primal corresponding to an optimal solution and c_B contains the prices of the variables in the basis, then an optimal solution to the dual is given by $(B^{-1})^T c_B$, i.e., the entries in the x_0 row under the columns corresponding to the slack variables give the values of the dual structural variables. Moreover, the entries in the x_0 row under the columns for the structural variables will give the optimal values of the dual surplus variables.

Recall example from lecture:

$$\begin{array}{lll} \max & x_0 = 4x_1 + 3x_2 \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 0 & -1 \\ x_1, x_2 \ge 0. \end{array} & \begin{array}{lll} \mathcal{G} & \mathcal{H}_0(\mathcal{L}) \\ \mathcal{H}_0(\mathcal$$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
x_3	0	0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	2
x_2	0	1	0	0	$\frac{3}{2}$	$-\frac{1}{2}$	0	3
x_4	0	0	0	1	$\frac{3}{2}$	$\frac{1}{2}$	0	5
x_1	1	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	4
x_7	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	4
x_0	0	0	Ĩ0	0	$\frac{5}{2}$	$\frac{1}{2}$	0	25

Thus the optimal solution is $[x_1, x_2] = [4, 3]$ with $[x_3, x_4, x_5, x_6, x_7] = [2, 5, 0, 0, 4]$. From the x_0 row, we see that the optimal solution to the dual is given by

$$[u_1, u_2, u_3, u_4, u_5, u_6, u_7] = \left[0, 0, \frac{5}{2}, \frac{1}{2}, 0, 0, 0\right].$$

Example 4:

Solve the following LPPs by dual simplex method and find out the optimal values of all the primal and dual variables

min $2x_1 + x_2 + x_3$

 $x_1 + x_2 \le 3$ $x_1 - 2x_2 \ge 1$ $x_2 + x_3 \ge 4$ $x_1, x_2, x_3 \ge 0$

	×							
(a)								
(1)	x_1	x_2	x_3	x_{\cdot}	$4 x_{i}$	$5 \mid x_0$	b b	
x_4	1	1	0	1	0	0	3	
x_5	-1	2	0	0	1	0	-1	
x_6	0	-1	$ -1^*$	0	0	1	-4	
x_0	2	1	1	0	0	0	0	
(2)	x_1	x_{1}	$x_2 \mid x_3$	x_{4}	$ x_1 $	x_0	; b	
x_4	1	1	0	1	.0	0	3	5
x_5	$ -1^{\circ}$	* 2	0	0	1	0	-1	
x_3	0	1	1	0	0	-1	4	ж.
x_0	2	0	0	0	0	1	-4	
(3)	x_1	x_2	x_3	x_4	x_5	x_6	b	
x_4	0	3	0	1	1	0	2	
x_1	1	-2	0	0	-1	0	1	
x_3	0	1	1	0	0	-1	4	
x_0	0	4	0	0 -	2	0	-6	
Thus	s opti	mal s	soluti	on is	s (1,0),4) v	vith	the dual solution $(0,2,0)$

Example 5:

 $\min 2x_1 + x_2$

$$x_1 + x_2 \le 5$$

$$7x_1 - x_2 \ge 21$$

$$x_1 \ge 4$$

$$x_1, x_2 \ge 0$$

		• · · · · · · · · · · · · · · · · · · ·				_
(1)	x_1	x_2	x_3	x_4	x_5	Ь
x_3	. 1	1	1	0	0	5
x_4	-7	1	0	1	0	-21
x_5	1	0	0	0	1	-4
x_0	2	1	0	0	0	0

Since the row of x_5 has no negative element except in the column of b, thus the dual is unbounded which means that the primal problem has no feasible solution.