
Chapter 1

Fourier Series
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In this chapter we study Fourier series. Basic definitions and examples are given in Section
1. In Section 2 we prove the fundamental Riemann-Lebesgue lemma and discuss the
Fourier series from the mapping point of view. Pointwise and uniform convergence of the
Fourier series of a function to the function itself under various regularity assumptions are
studied in Section 3. In Section 1.5 we establish the L2-convergence of the Fourier series
without any additional regularity assumption. There are two applications. In Section
1.4 it is shown that every continuous function can be approximated by polynomials in a
uniform manner. In Section 1.6 a proof of the classical isoperimetric problem for plane
curves is presented.

1.1 Definition and Examples

The concept of series of functions and their pointwise and uniform convergence were
discussed in Mathematical Analysis II. Power series and trigonometric series are the most
important classes of series of functions. We learned power series in Mathematical Analysis
II and now we discuss Fourier series.

First of all, a trigonometric series on [−π, π] is a series of functions of the form

∞∑
n=0

(an cosnx+ bn sinnx), an, bn ∈ R.

1
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As cos 0x = 1 and sin 0x = 0, we always set b0 = 0 and express the series as

a0 +
∞∑
n=1

(an cosnx+ bn sinnx).

It is called a cosine series if all bn vanish and sine series if all an vanish. We learned
before that the most common tool in the study of the convergence of series of functions
is Weierstrass M -test. Observing that

|an cosnx+ bn sinnx| ≤ |an|+ |bn|, ∀x ∈ R,

we conclude from this test that the trigonometric series converges uniformly on R if there
exist some s > 1 and C such that

|an|+ |bn| ≤
C

ns
,

for all n. Denoting the limit function by f , by uniform convergence we also have

f(x+ 2π) = lim
n→∞

n∑
k=0

(
ak cos(kx+ 2kπ) + bk sin(kx+ 2kπ)

)
= lim

n→∞

n∑
k=0

(ak cos kx+ bk sin kx)

= f(x),

hence f is a 2π-periodic, continuous function. Many delicate convergence results are avail-
able when further assumptions are imposed on the coefficients. For instance, when an and
bn decreasing to 0, as a consequence of the Dirichlet test, we learned in MATH2070 that
the trigonometric series converges uniformly on any bounded, closed interval disjointing
from the set {2nπ, n ∈ Z}. We will not go into this direction further. Here our main
concern is how to represent a function in a trigonometric series.

Given a 2π-periodic function which is Riemann integrable function f on [−π, π], its
Fourier series or Fourier expansion is the trigonometric series given by

an =
1

π

ˆ π

−π
f(y) cosny dy, n ≥ 1

bn =
1

π

ˆ π

−π
f(y) sinny dy, n ≥ 1 and

a0 =
1

2π

ˆ π

−π
f(y) dy.

(1.1)

Note that a0 is the average of the function over the interval. From this definition we gather
two basic information. First, the Fourier series of a function involves the integration of
the function over an interval, hence any modification of the values of the function over
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a subinterval, not matter how small it is, may change the Fourier coefficients an and bn.
This is unlike power series which only depend on the local properties (derivatives of all
order at a designated point). We may say Fourier series depend on the global information
but power series only depend on local information. Second, recalling from the theory of
Riemann integral, we know that two integrable functions which differ at finitely many
points have the same integral. Therefore, the Fourier series of two such functions are the
same. In particular, the Fourier series of a function is completely determined with its
value on the open interval (−π, π), regardless its values at the endpoints.

The motivation of the Fourier series comes from the belief that for a “nice function”
of period 2π, its Fourier series converges to the function itself. In other words, we have

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx). (1.2)

When this holds, the coefficients an, bn are given by (1.1). To see this, we multiply (1.2)
by cosmx and then integrate over [−π, π]. Using the relations

ˆ π

−π
cosnx cosmxdx =

{
π, n = m
0, n 6= m

,

ˆ π

−π
cosnx sinmxdx = 0 (n,m ≥ 1), and

ˆ π

−π
cosnx dx =

{
2π, n = 0
0, n 6= 0

,

we formally arrive at the expression of an, n ≥ 0, in (1.2). Similarly, by multiplying (1.2)
by sinmx and then integrate over [−π, π], one obtain the expression of bn, n ≥ 1, in (1.2)
after using ˆ π

−π
sinnx sinmxdx =

{
π, n = m
0, n 6= m

.

Of course, (1.2) arises from the hypothesis that every sufficiently nice function of period
2π is equal to its Fourier expansion. The study of under which “nice conditions” this
could happen is one of the main objects in the theory of Fourier series.

Trigonometric series are periodic functions of period 2π. When we compute the Fourier
series of a given function which is defined only on [−π, π], it is necessary to regard this
function as a 2π-periodic function. For a function f defined on (−π, π], the extension
is straightforward. We simply let f̃(x) = f(x − (n + 1)π) where n is the unique integer
satisfying nπ < x ≤ (n+2)π. It is clear that f̃ is equal to f on (−π, π]. When the function
is defined on [−π, π], apparently the extension is possible only if f(−π) = f(π). Since
the value at a point does not change the Fourier series, from now on it will be understood
that the extension of a function to a 2π-periodic function refers to the extension for the
restriction of this function on (−π, π]. Note that for a continuous function f on [−π, π]
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its extension f̃ is continuous on R if and only if f(−π) = f(π). In the following we will
not distinguish f with its extension f̃ .

We will use

f(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

to denote the fact that the right hand side of this expression is the Fourier series of f .

Example 1.1 We consider the function f1(x) = x. Its extension is a piecewise smooth
function with jump discontinuities at (2n+ 1)π, n ∈ Z. As f1 is odd and cosnx is even,

πan =

ˆ π

−π
x cosnx dx = 0, n ≥ 0,

and

πbn =

ˆ π

−π
x sinnx dx

= −x cosnx

n

∣∣∣π
−π

+

ˆ π

−π

cosnx

n
dx

= (−1)n+12π

n
.

Therefore,

f1(x) ∼ 2
∞∑
n=1

(−1)n+1

n
sinnx.

Since f1 is an odd function, it is reasonable to see that no cosine functions are involved in
its Fourier series. How about the convergence of this Fourier series? Although the terms
decay like O(1/n) as n → ∞, its convergence is not clear at this moment. On the other
hand, this Fourier series is equal to 0 at x = ±π but f1(±π) = π, so f1 is not equal to its
Fourier series at ±π. It is worthwhile to observe that ±π are the discontinuity points of f1.

Notation The big O and small ◦ notations are very convenient in analysis. We say
a sequence {xn} satisfies xn = O(ns) means that there exists a constant C such that
|xn| ≤ Cns as n → ∞, in other words, the growth (resp. decay s ≥ 0) of {xn} is not
faster (resp. slower s < 0) the s-th power of n. On the other hand, xn = ◦(ns) means
|xn|n−s → 0 as n→∞.

Example 1.2 Next consider the function f2(x) = x2. Unlike the previous example,
its 2π-periodic extension is continuous on R. After performing integration by parts, the
Fourier series of f2 is seen to be

f2(x) ≡ x2 ∼ π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx.
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As f2 is an even function, this is a cosine series. The rate of decay of the Fourier series
is like O(1/n2). Using Weierstrass M -test (I hope you still remember it), this series
converges uniformly to a continuous function. In fact, due to the following result, it
converges uniformly to f2. Note that f2 is smooth on (nπ, (n+ 1)π), n ∈ Z.

Convergence Criterion. The Fourier series of a continuous, 2π-periodic function which
is C1-piecewise on [−π, π] converges to the function uniformly.

A function is called C1-piecewise on some interval I = [a, b] if there exists a partition
of I into subintervals {Ij}Nj=1 and there are C1-function fj defined on Ij such that f = fj
on each (aj, aj+1) where Ij = [aj, aj+1]. This convergence criterion is the special case of a
theorem proved in Section 3.

We list more examples of Fourier series and leave them for you to verify.

(a) f3(x) ≡ |x| ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x,

(b) f4(x) =

{
1, x ∈ [0, π]
−1, x ∈ (−π, 0)

∼ 4

π

∞∑
n=1

1

2n− 1
sin(2n− 1)x,

(c) f5(x) =

{
x(π − x), x ∈ [0, π)
x(π + x), x ∈ (−π, 0)

∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x.

The convergence criterion is contained in a more general theorem we are going to prove
in Section 3..

A Fourier series can also be associated to a complex-valued function. Let f be a 2π-
periodic complex-valued function which is integrable on [−π, π]. Its Fourier series is given
by the series

f(x) ∼
∞∑

n=−∞

cne
inx,

where the Fourier coefficients cn are given by

cn =
1

2π

ˆ π

−π
f(x)dx, n ∈ Z.

Here for a complex function f , its integration over some [a, b] is defined to be

ˆ b

a

f(x)dx =

ˆ b

a

f1(x)dx+ i

ˆ b

a

f2(x)dx,
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where f1 and f2 are respectively the real and imaginary parts of f . It is called integrable
if both real and imaginary parts are integrable. The expression of cn is obtained as in the
real case by first multiplying the relation

f(x) =
∞∑

n=−∞

cne
inx

with eimx and then integrating over [−π, π] with the help from the relationˆ π

−π
eimxeinx dx =

{
2π, n = −m
0, n 6= −m .

When f is of real-valued, we plug the relations 2 cosnx = einx + e−inx and 2i sinnx =
einx − e−inx into the Fourier series of f and regroup the terms. By comparing it with the
Fourier series for the complex-valued function, we see that

cn =
1

2
(an − ibn), n ≥ 1,

cn =
1

2
(a−n + ib−n), n ≤ −1,

and c0 = a0. Note that we have c−n = cn. In fact, it is easy to see that a complex Fourier
series is the Fourier series of a real-valued function if and only if cn = cn holds for all n.
The complex form of Fourier series sometimes makes expressions and computations more
elegant. We will use it whenever it makes things simpler.

We have been working on the Fourier series of 2π-periodic functions. For functions
of 2T -period, their Fourier series are not the same. They can be found by a scaling
argument. Let f be 2T -periodic. The function g(x) = f(Tx/π) is a 2π-periodic function.
Thus,

f(Tx/π) = g(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx),

where a0, an, bn, n ≥ 1 are the Fourier coefficients of g. By a change of variables, we can
express everything inside the coefficients in terms of f , cosnπx/T and sinnπx/T . The
result is

f(x) ∼ a0 +
∞∑
n=1

(
an cos

nπ

T
x+ bn sin

nπ

T
x
)
,

where

an =
1

T

ˆ T

−T
f(y) cos

nπ

T
y dy,

bn =
1

T

ˆ T

−T
f(y) sin

nπ

T
y dy, n ≥ 1, and

a0 =
1

2T

ˆ T

−T
f(y) dy.
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It reduces to (1.1) when T is equal to π.

1.2 Riemann-Lebesgue Lemma

From the examples of Fourier series in the previous section we see that the coefficients
decay to 0 eventually. We will show that this is generally true. This is the content of the
following result.

Theorem 1.1 (Riemann-Lebesgue Lemma). The Fourier coefficients of a 2π-periodic
function integrable on [−π, π] converge to 0 as n→∞.

We point out this theorem still holds when [−π, π] is replaced by [a, b]. The proof is
essentially the same.

We will use R[−π, π] to denote the vector space of all integrable functions. To prepare
for the proof we study how to approximate an integrable function by step functions. Let
a0 = −π < a1 < · · · < aN = π be a partition of [−π, π]. A step function s satisfies
s(x) = sj, ∀x ∈ (aj, aj+1], ∀j ≥ 0. The value of s at −π is not important, but for
definiteness let’s set s(−π) = s0. We can express a step function in a better form by
introducing the characteristic function χE for a set E ⊂ R:

χE =

{
1, x ∈ E,
0, x /∈ E.

Then,

s(x) =
N−1∑
j=0

sjχIj , Ij = (aj, aj+1], j ≥ 1, I0 = [a0, a1].

Lemma 1.2. For every step function in R[−π, π], there exists some constant C such that

|an|, |bn| ≤
C

n
, ∀n ≥ 1,

where an, bn are the Fourier coefficients of s.

Proof. Let s(x) =
∑N−1

j=0 sjχIj . We have

πan =

ˆ π

−π

N−1∑
j=0

sjχIj cosnx dx

=
N−1∑
j=0

sj

ˆ aj+1

aj

cosnx dx

=
1

n

N−1∑
j=0

sj(sinnaj+1 − sinnaj).
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It follows that

|an| ≤
C

n
, ∀n ≥ 1, C =

2

π

N−1∑
j=0

|sj|.

Clearly a similar estimate holds for bn.

Lemma 1.3. Let f ∈ R[−π, π]. Given ε > 0, there exists a step function s such that
s ≤ f on [−π, π] and ˆ π

−π
(f − s) < ε.

Proof. As f is integrable, it can be approximated from below by its Darboux lower sums.
In other words, for ε > 0, we can find a partition −π = a0 < a1 < · · · < aN = π such that∣∣∣∣∣

ˆ π

−π
f −

N−1∑
j=0

mj(aj+1 − aj)

∣∣∣∣∣ < ε,

where mj = inf {f(x) : x ∈ [aj, aj+1]}. It follows that∣∣∣∣ˆ π

−π
(f − s)

∣∣∣∣ < ε

after setting

s(x) =
N−1∑
j=0

mjχIj , Ij = [aj, aj+1), j ≥ 1, I0 = [a0, a1].

Now we prove Theorem 1.1.

Proof. For ε > 0, we can find s as constructed in Lemma 1.3 such that 0 ≤ f − s andˆ π

−π
(f − s) < ε

2
.

Let a′n be the n-th Fourier coefficient of s. By Lemma 1.2,

|a′n| <
ε

2
,

for all n ≥ n0 = [2C/ε] + 1.

|π(an − a′n)| =

∣∣∣∣ˆ π

−π
(f − s) cosnx dx

∣∣∣∣
≤
ˆ π

−π
|f − s|

=

ˆ π

−π
(f − s)

<
ε

2
.
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It follows that for all n ≥ n0,

|an| ≤ |an − a′n|+ |a′n| <
ε

2π
+
ε

2
< ε.

The same argument applies to bn too.

It is useful to bring in a “mapping” point of view between the functions and its Fourier
series. Let R2π be the collection of all 2π-periodic complex-valued functions integrable
on [−π, π] and C consisting of all complex-valued bisequences {cn} satisfying cn → 0 as
n → ∞. The Fourier series sets up a mapping Φ from R2π to C by sending f to {f̂(n)}
where, to make things clear, we have let f̂(n) = cn, the n-th Fourier coefficient of f . When
real-functions are considered, restricting to the subspace of C given by those satisfying
cn = −cn, Φ maps all real functions into this subspace. Perhaps the first question we ask
is: Is Φ one-to-one? Clearly the answer is no, for two functions which differ on a set of
measure zero have the same Fourier coefficients. However, we have the following result,
to be proved in Section 5,

Uniqueness Theorem. The Fourier series of two functions in R2π coincide if and only
if they are equal except possibly at a set of measure zero.

Thus Φ is essentially one-to-one. We may study how various structures on R2π and C
are associated under Φ. Observe that both R2π and C form vector spaces over C. In fact,
there are obvious and surprising ones. Some of them are listed below and more can be
found in the exercise.

Property 1. Φ is a linear map. Observe that both R2π and C form vector spaces over
R or C. The linearity of Φ is clear from its definition.

Property 2. When f ∈ R2π is k-th differentiable and all derivatives up to k-th order

belong to R2π, f̂
k(n) = (in)kf̂(n) for all n ∈ Z. See Proposition 1.4 below for a proof.

This property shows that differentiation turns into the multiplication of a factor (in)k

under Φ. This is amazing!

Property 3. For a ∈ R, set fa(x) = f(x + a), x ∈ R. Clearly fa belongs to R2π. We
have f̂a(n) = einaf̂(n). This property follows directly from the definition. It shows that a
translation in R2π turns into the multiplication of a factor eina under Φ.

Proposition 1.4. Let f be a differentiable, 2π-periodic function whose derivative f ′ ∈
R2π. Letting

f ′(x) ∼ c0 +
∞∑
n=1

(
cn cosnx+ dn sinnx

)
,

we have

cn = nbn

dn = −nan, ∀n ≥ 1

and c0 = 0. In complex notations, f̂ ′(n) = inf̂(n).
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Proof. We compute

πcn =

ˆ π

−π
f ′(y) cosny dy

= f(y) cosny|π−π −
ˆ π

−π
f(y)(−n sinny) dy

= n

ˆ π

−π
f(y) sinny dy

= πnan.

Similarly,

πdn =

ˆ π

−π
f ′(y) sinny dy

= f(y) sinny|π−π −
ˆ π

−π
f(y)n cosny dy

= −n
ˆ π

−π
f(y) cosny dy

= −πnan.

Property 2 links the regularity of the function to the rate of decay of its Fourier
coefficients. This is an extremely important property. When f is a 2π-periodic function
whose derivatives up to k-th order belong to R2π, applying Riemann-Lebesgue lemma to

f (k) we know that ˆf (k)(n) = ◦(1) as n→∞. By Property 2 it follows that f̂(n) = ◦(n−k),
that is, the Fourier coefficients of f decay faster that n−k. Since

∑∞
n=1 n

−2 < ∞, an
application of M-test establishes the following result: The Fourier series of f converges
uniformly provided f, f ′ and f ′′ belong to R2π. (Be careful we cannot conclude it converges
to f here. This fact will be proved in the next section.)

1.3 Convergence of Fourier Series

In this section we study the convergence of the Fourier series of a function to itself. Recall
that the series a0 +

∑∞
n=1(an cosnx+ bn sinnx), or

∑∞
n=−∞ cne

inx, where an, bn, cn are the
Fourier coefficients of a function f converges to f at x means that the n-th partial sum

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

or

(Snf)(x) =
n∑

k=−n

cke
ikx
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converges to f(x) as n→∞.

We start by expressing the partial sums in closed form. Indeed,

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

=
1

2π

ˆ π

−π
f +

n∑
k=1

1

π

ˆ π

−π
f(y)(cos ky cos kx+ sin ky sin ky) dy

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos k(y − x)
)
f(y) dy

=
1

π

ˆ x+π

x−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz

where in the last step we have used the fact that the integrals over any two periods are
the same. Using the elementary formula

cos θ + cos 2θ + · · ·+ cosnθ =
sin
(
n+ 1

2

)
θ − sin 1

2
θ

2 sin θ
2

, θ 6= 0,

we obtain

(Snf)(x) =
1

π

ˆ π

−π

sin
(
n+ 1

2

)
z

2 sin 1
2
z

f(x+ z) dz .

We express it in the form

(Snf)(x) =

ˆ π

−π
Dn(z)f(x+ z) dy,

where Dn is the Dirichlet kernel

Dn(z) =


sin
(
n+ 1

2

)
z

2π sin 1
2
z

, z 6= 0

2n+ 1

2π
, z = 0.

Using sin θ/θ → 1 as θ → 0, we see that Dn is continuous on [−π, π].

Taking f ≡ 1, Snf = 1 for all n. Hence

1 =

ˆ π

−π
Dn(z) dz.

Using it we can write

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz. (3.1)
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In order to show Snf(x)→ f(x), it suffices to show the right hand side of (3.1) tends to
0 as n→∞.

Thus, the Dirichlet kernel plays a crucial role in the study of the convergence of Fourier
series. We list some of its properties as follows.

Property I. Dn(z) is an even, continuous, 2π-periodic function vanishing at z =
2kπ/(2n+ 1),−n ≤ k ≤ n, on [−π, π].

Property II. Dn attains its maximum value (2n+ 1)/2 at 0.

Property III. ˆ π

−π
Dn(z)dz = 1

.

Property IV. For every δ > 0,

ˆ δ

0

|Dn(z)|dz →∞, as n→∞.

Only the last property needs a proof. Indeed, for each n we can fix an N such that
πN ≤ (2n+ 1)δ/2 ≤ (N + 1)π, so N →∞ as n→∞. We compute

ˆ δ

0

|Dn(z)|dz =

ˆ δ

0

| sin(n+ 1
2
)z|

2π| sin z
2
|

dz

≥ 1

π

ˆ (n+ 1
2
)δ

0

| sin t|
t

dt

≥ 1

π

ˆ Nπ

0

| sin t|
t

dt

=
1

π

N∑
k=1

ˆ kπ

(k−1)π

| sin t|
t

dt

=
1

π

N∑
k=1

ˆ π

0

| sin s|
s+ (k − 1)π

ds

≥ 1

π

N∑
k=1

ˆ π

0

| sin s|
πk

ds

= c0

N∑
k=1

1

k
, c0 =

1

π2

ˆ π

0

| sin s|ds > 0,

→ ∞,

as N →∞.
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To elucidate the effect of the kernel, we fix a small δ > 0 and split the integral into
two parts: ˆ π

−π
χA(z)Dn(z)(f(x+ z)− f(x)) dz,

and ˆ π

−π
χB(z)Dn(z)(f(x+ z)− f(x)) dz,

where A = (−δ, δ) and B = [−π, π] \ A. The second integral can be written as

ˆ π

−π

χB(z)(f(x+ z)− f(x))

2π sin z
2

sin
(
n+

1

2

)
z dz.

As |sin z/2| has a positive lower bound on B, the function

χB(z)(f(x+ z)− f(x))

2π sin z
2

belongs to R[−π, π] and the second integral tends to 0 as n → ∞ in view of Riemann-
Lebesgue lemma. The trouble lies on the first integral. It can be estimated by

ˆ δ

−δ
|Dn(z)||f(x+ z)− f(x)|dz.

In view of Property IV, No matter how small δ is, this term may go to ∞ so it is not
clear how to estimate this integral.

Rescue comes from a further regularity assumption on the function. First a definition.
For a function f defined on [a, b] and some x ∈ [a, b]. we call f Lipschitz continuous
at x if there exist C and δ such that

|f(y)− f(x)| ≤ C |y − x| , ∀y ∈ [a, b], |y − x| ≤ δ. (3.2)

Here both C and δ depend on x. The function f is called Lipschitz continuous on [a, b]
when (3.2) holds for all x ∈ [a, b] with the same C and δ. It is better to be understood
as uniformly Lipschitz continuous. Every continuously differentiable function on [a, b] is
Lipschitz continuous. In fact, by the fundamental theorem of calculus, for x, y ∈ [a, b],

|f(y)− f(x)| =
∣∣∣ ˆ y

x

f ′(t)dt
∣∣∣

≤ M |y − x|,

where M = sup{|f ′(t)| : t ∈ [a, b]}.

Theorem 1.5. Let f be a 2π-periodic function integrable on [−π, π]. Suppose that f is
Lipschitz continuous at x. Then {Snf(x)} converges to f(x) as n→∞.
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Proof. Let Φδ be a cut-off function satisfying (a) Φδ ∈ C(R), Φδ ≡ 0 outside (−δ, δ), (b)
Φδ ≥ 0 and (c) Φδ = 1 on (−δ/2, δ/2). We write

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π
Φδ(z)

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

+
1

π

ˆ π

−π
(1− Φδ(z))

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

≡ I + II .

By our assumption on f , there exists δ0 > 0 such that

|f(x+ z)− f(x)| ≤ C0 |z| , ∀ |z| < δ0.

Using sin θ/θ → 1 as θ → 0, there exists δ1 such that 2| sin z/2| ≥ |z/2| for all z, |z| < δ1.
For z, |z| < δ ≡ min {δ0, δ1}, we have |f(x+ z)− f(x)|/| sin z/2| ≤ 4C0 and

|I| ≤ 1

2π

ˆ δ

−δ
Φδ(z)

∣∣sin(n+ 1
2
)z
∣∣∣∣sin z

2

∣∣ |f(x+ z)− f(x)| dz

≤ 1

2π

ˆ δ

−δ
4C0 dz

=
4δC0

π
.

(3.3)

For ε > 0, we fix δ so that
4δC0

π
<
ε

2
. (3.4)

After fixing δ, we turn to the second integral

II =
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

sin
(
n+

1

2

)
z dz

=
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

(
cos

z

2
sinnz + sin

z

2
cosnz

)
dz

≡
ˆ π

−π
F1(x, z) sinnz dz +

ˆ π

−π
F2(x, z) cosnz dz.

As 1−Φδ(z) = 0, for z ∈ (−δ/2, δ/2), | sin z/2| has a positive lower bound on (−π,−δ/2)∪
(δ/2, π), and so F1 and F2 are integrable on [−π, π]. By Riemann-Lebesgue lemma, for
ε > 0, there is some n0 such that∣∣∣∣ˆ π

−π
F1 sinnz dz

∣∣∣∣ , ∣∣∣∣ˆ π

−π
F2 cosnz dz

∣∣∣∣ < ε

4
, ∀n ≥ n0. (3.5)
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Putting (3.3), (3.4) and (3.5) together,

|Snf(x)− f(x)| < ε

2
+
ε

4
+
ε

4
= ε, ∀n ≥ n0.

We have shown that Snf(x) tends to f(x) when f is Lipschitz continuous at x.

We leave some remarks concerning this proof. First, the cut-off function Φδ can be
replaced by χ[−δ,δ] without affecting the proof. Second, the Lipschitz condition is used to
kill off the growth of the kernel at x. Third, this proof is a standard one in the sense that
its arguments will be used in many other places. For instance, a careful examination of it
reveals a convergence result for functions with jump discontinuity after using the evenness
of the Dirichlet kernel.

Theorem 1.6. Let f be a 2π-periodic function integrable on [−π, π]. Suppose at some
x ∈ [−π, π], limy→x+ f(y) and limy→x− f(y) exist and there are δ > 0 and constant C such
that

|f(y)− f(x+)| ≤ C(y − x), ∀y, 0 < y − x < δ,

and

|f(y)− f(x−)| ≤ C(x− y), ∀y, 0 < x− y < δ.

Then {Snf(x)} converges to (f(x+) + f(x−))/2 as n→∞.

Here f(x+) and f(x−) stand for limy→x+ f(y) and limy→x− f(y) respectively. We leave the
proof of this theorem as an exercise.

Finally, we have

Theorem 1.7. Let f be a Lipschitz continuous, 2π-periodic function. Then {Snf} con-
verges to f uniformly as n→∞.

Proof. Observe that when f is Lipschitz continuous on [−π, π], δ0 and δ1 can be chosen
independent of x and (3.3), (3.4) hold uniformly in x. In fact, δ0 only depends on C0, the
constant appearing in the Lipschitz condition. Thus the theorem follows if n0 in (3.5) can
be chosen uniformly in x. This is the content of the lemma below. We apply it by taking
f(x, y) to be F1(x, z) or F2(x, z).

Lemma 1.8. Let f(x, y) be periodic in y and f ∈ C([−π, π]× [−π, π]). For any fixed x,

c(n, x) =
1

2π

ˆ π

−π
f(x, y)e−iny dy → 0

uniformly in x as n→∞.
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Proof. We need to show that for every ε > 0, there exists some n0 independent of x such
that

|c(n, x)| < ε, ∀n ≥ n0.

Observe that

2πc(n, x) =

ˆ π

−π
f(x, y)e−iny dy

=

ˆ π−π
n

−π−π
n

f
(
x, z +

π

n

)
e−in(z+

π
n
) dz y = z +

π

n
,

= −
ˆ π

−π
f
(
x, z +

π

n

)
e−inz dz (f is 2π-periodic).

We have

c(n, x) =
1

4π

ˆ π

−π

(
f(x, y)− f

(
x, y +

π

n

))
e−iny dy.

As f ∈ C([−π, π] × [−π, π]), it is uniformly continuous in [−π, π] × [−π, π]. For ε > 0,
there exists a δ such that

|f(x, y)− f(x′, y′)| < ε if |x− x′| , |y − y′| < δ.

We take n0 so large that π/n0 < δ. Then, using |e−iny| = 1,

|c(n, x)| ≤ 1

4π

ˆ π

−π

∣∣∣f(x, y)− f
(
x, y +

π

n

)∣∣∣ dy
≤ ε

4π

ˆ π

−π
dy =

ε

2

< ε, ∀n ≥ n0.

Example 1.3. We return to the functions discussed in Examples 1.1 and 1.2 Indeed, f1
is smooth except at nπ. According to Theorem 1.5, the series

2
∞∑
n=1

(−1)n+1

n
sinnx

converges to x for every x ∈ (−π, π). On the other hand, we observed before that the series
tend to 0 at x = ±π. As f1(π+) = −π and f(π−) = π, we have f1(π+)+f(π−) = 0, which
is in consistency with Theorem 1.5. In the second example, f2 is continuous, 2π-periodic.
By Theorem 1.7, its Fourier series

π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx
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converges to x2 uniformly on [−π, π].

Theorems 1.5–1.7 in fact applies to a larger class of continuous functions. A function
f on [a, b] is called Hölder continuous at x ∈ [a, b] if there exist α ∈ (0, 1), a constant
C, and δ such that

|f(y)− f(x)| ≤ C |y − x|α , ∀y ∈ [a, b], |y − x| ≤ δ. (3.6)

The number α is called the Hölder exponent of f . A function is Hölder continuous on
[a, b] if (3.6) holds for all x ∈ [a, b]. We will denote the collection of all Hölder continuous,
2π-periodic functions with Hölder exponent α by C0,α2π , α ∈ (0, 1). Also, denote C0,12π the
collection of all Lipschitz continuous, 2π-periodic functions. These are vector spaces. A
straightforward modification the proofs in Theorems 1.5, 1.6 and 1.7 shows that they still
hold when the Lipschitz continuity condition is replaced by a Hölder continuity condition.

If we let Ck2π be the vector space of all k-times continuously differentiable, 2π-periodic
functions, we have the following scale of regularity

C02π ⊂ C
0,α
2π ⊂ C

0,β
2π ⊂ · · · ⊂ C12π ⊂ C22π ⊂ · · · , α < β ≤ 1.

(Very often we write C2π instead of C02π.) It is not hard to show that all these inclusions
are proper. This scale of regularity of functions is useful in many occasions.

So far we have been working on the Fourier series of 2π-periodic functions. It is clear
that the same results apply to the Fourier series of 2T -periodic functions for arbitrary
positive T .

We have shown the convergence of the Fourier series under some additional regularity
assumptions on the function. But the basic question remains, that is, is the Fourier
series of a continuous, 2π-periodic function converges to itself? It turns out the answer
is negative. An example can be found in Stein-Shakarchi. In fact, using the uniform
boundedness principle in functional analysis, one can even show that most continuous
functions have divergent Fourier series. The situation is very much like in the case of
the real number system where transcendental numbers are uncountable while algebraic
numbers are countable despite the fact that it is difficult to establish a specific number is
transcendental.

Theorem 1.9 and Proposition 1.10 are for optional reading.

We present another convergence result where is concerned with pointwise convergence.
It replaces regularity by monotonicity in the function under consideration.

Theorem 1.9. Let f be a 2π-periodic function integrable on [−π, π]. Suppose that it is
piecewise continuous and increasing near some point x. Its Fourier series converges to(
f(x+) + f(x−)

)
/2 at x.
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Proof. In the following proof we will take x = 0 for simplicity. We first write, using the
evenness of Dn,

(Snf)(0) =

ˆ π

−π
Dn(z)f(z) dz

=

ˆ π

0

(f(z) + f(−z))Dn(z) dz.

So,

(Snf)(0)− 1

2
(f(0+) + f(0−)) =

ˆ π

0

(f(z)− f(0+) + f(−z)− f(0−))Dn(z) dz.

We will show that ˆ π

0

(f(z)− f(0+))Dn(z) dz → 0 (3.7)

and ˆ π

0

(f(−z)− f(0−))Dn(z) dz → 0 (3.8)

as n→∞. Indeed, for a small h > 0, we consider

ˆ h

0

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz =

ˆ h

0

(f(z)− f(0+))
sin 2n+1

2
z

z
2

dz

+

ˆ h

0

(f(z)− f(0+))

(
sin 2n+1

2
z

sin z
2

−
sin 2n+1

2
z

z
2

)
dz.

Using L’Hospital’s rule,

1

sin z
2

− 1
z
2

=
z − 2 sin z

2

z sin z
2

→ 0 as z → 0.

Therefore, for ε > 0, we can find h1 such that

ˆ h1

0

∣∣f(z)− f(0+)
∣∣ ∣∣∣∣ 1

sin z
2

− 1
z
2

∣∣∣∣ ∣∣∣∣sin 2n+ 1

2
z

∣∣∣∣ dz
≤
ˆ h1

0

∣∣f(z)− f(0+)
∣∣ ∣∣∣∣ 1

sin z
2

− 1
z
2

∣∣∣∣ dz < ε

3
,

where h1 is independent of n. Next, by the second mean-value theorem for integral (see
below), ˆ h

0

(f(z)− f(0+))
sin 2n+1

2
z

z
2

dz = (f(h)− f(0+))

ˆ h

k

sin 2n+1
2
z

z
2

dz
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for some k ∈ (0, h). As∣∣∣∣ˆ h

k

sin 2n+1
2
z

z
2

dz

∣∣∣∣ =

∣∣∣∣2 ˆ `h

`k

sin t

t
dt

∣∣∣∣ , ` =
2n+ 1

2

≤ 2

∣∣∣∣ˆ `h

0

sin t

t
dt

∣∣∣∣+ 2

∣∣∣∣ˆ `k

0

sin t

t
dt

∣∣∣∣
≤ 4 sup

T

∣∣∣∣ˆ T

0

sin t

t
dt

∣∣∣∣ ≡ 4L,

and we can find h2 ≤ h1 such that

4L
∣∣f(h)− f(0+)

∣∣ < ε

3
, ∀0 < h ≤ h2,

we have ∣∣∣∣ˆ h2

0

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz

∣∣∣∣ < ε

3
+
ε

3
=

2ε

3
.

Now, by Riemann-Lebesgue lemma, there exists some n0 such that∣∣∣∣ˆ π

h2

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz

∣∣∣∣ < ε

3
, ∀n ≥ n0.

Putting things together,∣∣∣∣ˆ π

0

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz

∣∣∣∣ < 2ε

3
+
ε

3
= ε, ∀n ≥ n0.

We have shown that (3.7) holds. To prove (3.8), it suffices to apply (3.7) to the function
g(z) = f(−z).

Proposition 1.10 (Second Mean-Value Theorem). Let f ∈ R[a, b] and g be mono-
tone on [a, b] and satisfy g(a) = 0. There exists some c ∈ (a, b) such that

ˆ b

a

f(x)g(x) dx = g(b)

ˆ b

c

f(x) dx.

Proof. Without loss of generality, we assume g is increasing. Let

a = x0 < x1 < · · · < xn = b

be a partition P on [a, b].

ˆ b

a

fg =
n∑
j=1

g(xj)

ˆ xj

xj−1

f +
n∑
j=1

ˆ xj

xj−1

f(x)(g(x)− g(xj)) dy.
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In case ‖P‖ → 0, it is not hard to show that the second integral tends to zero, so

ˆ b

a

fg = lim
‖P‖→0

n∑
j=1

g(xj)

ˆ xj

xj−1

f.

Letting F (x) =
´ b
x
f and using F (xn) = F (b) = 0, we have

n∑
j=1

g(xj)

ˆ xj

xj−1

f =
n∑
j=1

g(xj)(F (xj)− F (xj−1))

= g(x1)F (x0) +
n−1∑
j=1

(g(xj+1)− g(xj))F (xj).

Let m = inf [a,b] F and M = sup[a,b] F . As g is increasing,

mg(b) ≤ g(x1)F (x0) +
n−1∑
j=1

(g(xj+1)− g(xj))F (xj) ≤Mg(b).

Letting ‖P‖ → 0, we conclude that

mg(b) ≤
ˆ b

a

fg ≤Mg(b).

As c 7→
´ b
c
f is continuous and bounded between m and M , there is some c such that

1

g(b)

ˆ b

a

fg =

ˆ b

c

f.

1.4 Weierstrass Approximation Theorem

As an application of Theorem 1.7, we prove a theorem of Weierstrass concerning the
approximation of continuous functions by polynomials. First we consider how to ap-
proximate a continuous function by continuous, piecewise linear functions. A continuous
function defined on [a, b] is piecewise linear if there exists a partition a = a0 < a1 <
· · · < an = b such that f is linear on each subinterval [aj, aj−1].

Proposition 1.11. Let f be a continuous function on [a, b]. For every ε > 0, there exists
a continuous, piecewise linear function g such that ‖f − g‖∞ < ε.

Recall that ‖f − g‖∞ = sup{|f(x)− g(x)| : x ∈ [a, b]}.
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Proof. As f is uniformly continuous on [a, b], for every ε > 0, there exists some δ such
that |f(x)− f(y)| < ε/2 for x, y ∈ [a, b], |x− y| < δ. We partition [a, b] into subintervals
Ij = [aj, aj+1] whose length is less than δ and define g to be the piecewise linear function
satisfying g(aj) = f(aj) for all j. For x ∈ [aj, aj+1], g is given by

g(x) =
f(aj+1)− f(aj)

aj+1 − aj
(x− aj) + f(aj).

We have

|f(x)− g(x)| = |f(x)− f(aj+1)− f(aj)

aj+1 − aj
(x− aj) + f(aj)|

≤ |f(x)− f(aj)|+ |
f(aj+1)− f(aj)

aj+1 − aj
(x− aj)|

≤ |f(x)− f(aj)|+ |f(aj+1)− f(aj)|
< ε,

the result follows.

Next we study how to approximate a continuous function by trigonometric polynomials
(or, equivalently, finite Fourier series).

Proposition 1.12. Let f be a continuous function on [0, π]. For ε > 0, there exists a
trigonometric polynomial h such that ‖f − h‖∞ < ε.

Proof. First we extend f to [−π, π] by setting f(x) = f(−x) (using the same notation) to
obtain a continuous function on [−π, π] with f(−π) = f(π). By the previous proposition,
we can find a continuous, piecewise linear function g such that ‖f − g‖∞ < ε/2. Since
g(−π) = f(−π) = f(π) = g(π), g can be extended as a Lipschitz continuous, 2π-periodic
function. By Theorem 1.7, there exists some N such that ‖g − SNg‖∞ < ε/2. Therefore,
‖f − SNg‖∞ ≤ ‖f − g‖∞ + ‖g − SNg‖∞ < ε/2 + ε/2 = ε. The proposition follows after
noting that every finite Fourier series is a trigonometric polynomial (see Exercise 1).

Theorem 1.13 (Weierstrass Approximation Theorem). Let f ∈ C[a, b]. Given
ε > 0, there exists a polynomial p such that ‖f − p‖∞ < ε.

Proof. Consider [a, b] = [0, π] first. Extend f to [−π, π] as before and, for ε > 0, fix a
trigonometric polynomial h such that ‖f−h‖∞ < ε/2. This is possible due to the previous
proposition. Now, we express h as a finite Fourier series a0 +

∑N
n=1(an cosnx+ bn sinnx).

Using the fact that

cos θ =
∞∑
n=0

(−1)nθ2n

(2n)!
, and sin θ =

∞∑
n=1

(−1)n−1θ2n−1

(2n− 1)!
,
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where the convergence is uniform on [−π, π], each cosnx and sinnx, n = 1, · · · , N, can
be approximated by polynomials. Putting all these polynomials together we obtain a
polynomial p(x) satisfying ‖h− p‖∞ < ε/2. It follows that ‖f − p‖∞ ≤ ‖f − h‖∞ + ‖h−
p‖∞ < ε/2 + ε/2 = ε.

When f is continuous on [a, b], the function ϕ(t) = f( b−a
π
t+ a) is continuous on [0, π].

From the last paragraph, we can find a polynomial p(t) such that ‖ϕ− p‖∞ < ε on [0, π].
But then the polynomial q(x) = p( π

b−a(x − a)) satisfies ‖f − q‖∞ = ‖ϕ − p‖∞ < ε on
[a, b].

1.5 Mean Convergence of Fourier Series

In Section 2 we studied the uniform convergence of Fourier series. Since the limit of a
uniformly convergent series of continuous functions is again continuous, we do not expect
results like Theorem 1.6 applies to functions with jumps. In this section we will measure
the distance between functions by a measurement weaker than the uniform norm. Under
the new L2-distance, every integrable function is equal to its Fourier expansion.

Recall that there is an inner product defined on the n-dimensional Euclidean space
called the Euclidean metric

〈x, y〉2 =
n∑
j=1

xjyj, x, y ∈ Rn.

With this inner product, one can define the concept of orthogonality and angle between
two vectors. Likewise, we can also introduce a similar product on the space of integrable
functions. Specifically, for f, g ∈ R[−π, π], the L2-product is given by

〈f, g〉2 =

ˆ π

−π
f(x)g(x) dx.

The L2-product behaves like the Euclidean metric on Rn except at one point, namely,
the condition 〈f, f〉2 = 0 does not imply f ≡ 0. This is easy to see. In fact, when f is
equal to zero except at finitely many points, then 〈f, f〉2 = 0. A result of Lebesgue which
characterizes this situation asserts that 〈f, f〉2 = 0 if and only if f is equal to zero except
on a set of measure zero. This minor difference with the Euclidean inner product will not
affect our discussion much. Parallel to the Euclidean case, we define the L2-norm of an
integrable function f to be

‖f‖2 =
√
〈f, f〉2,

and the L2-distance between two integrable functions f and g by ‖f −g‖2. Then we can
talk about fn → f in L2-sense, i.e.,

lim
n→∞

ˆ π

−π
|f − fn|2 = 0.
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This is a convergence in an average sense. It is not hard to see that when {fn} tends
to f uniformly, {fn} must tend to f in L2-sense. A moment’s reflection will show that
the converse is not always true. Hence convergence in L2-sense is weaker than uniform
convergence. Our aim is to show that the Fourier series of every integrable function
converges to the function in L2-sense.

Just like the canonical basis {e1, . . . , en} in Rn, the functions{
1√
2π
,

1√
π

cosnx,
1√
π

sinnx

}∞
n=1

forms an orthonormal basis in R[−π, π], see Section 1.1. In the following we denote by

En =

〈
1√
2π
,

1√
π

cosnx,
1√
π

sinnx

〉n
j=1

the (2n+1)-dimensional vector space spanned by the first 2n+1 trigonometric functions.

We start with a general result. Let {φn}∞n=1 be an orthonormal set (or orthonormal
family) in R[−π, π], i.e., ˆ π

−π
φnφm = δnm, ∀n,m ≥ 1.

Let
Sn = 〈φ1, . . . , φn〉

be the n-dimensional subspace spanned by φ1, . . . , φn. For a general f ∈ R[−π, π], we
consider the minimization problem

inf {‖f − g‖2 : g ∈ Sn} . (5.1)

From a geometric point of view, this infimum gives the L2-distance from f to the finite
dimensional subspace Sn.

Proposition 1.14. The unique minimizer of (5.1) is attained at the function g =
∑n

j=1 αjφj,
where αj = 〈f, φj〉.

Proof. To minimize ‖f − g‖2 is the same as to minimize ‖f − g‖22. Every g in Sn can be
written as g =

∑n
j=1 βjφj, βj ∈ R. Let

Φ(β1, . . . , βn) =

ˆ π

−π
|f − g|2

=

ˆ π

−π

(
f −

n∑
j=1

βjφj

)2
=

ˆ π

−π
f 2 − 2

n∑
j=1

βjαj +
n∑
j=1

β2
j .
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be a function from Rn to R. We use elementary inequality 2ab ≤ a2 + b2 in a tricky way,

2
n∑
j=1

βjαj = 2
n∑
j=1

βj√
2

√
2αj

≤
n∑
j=1

β2
j

2
+ 2

n∑
j=1

α2
j .

Therefore,

Φ(β) ≥
ˆ π

−π
f 2 − 1

2

n∑
j=1

β2
j − 2

n∑
j=1

α2
j +

n∑
j=1

β2
j

=

ˆ π

−π
f 2 − 2

n∑
j=1

α2
j +

1

2
|β|2

→∞,

as |β| → ∞. It implies that Φ must attain a minimum at some finite point γ. At this
point γ, ∇Φ(γ) = (0, . . . , 0). We compute

∂Φ

∂βi
= −2αi + 2βi.

Hence, β = α. As there is only one critical point, it must be the minimum of Φ.

Given an orthonormal family {φn}∞n=1, one may define the Fourier series of an L2-
function f with respect to the orthnormal family {φn} to be the series

∑∞
n=1 〈f, φn〉 φn and

set Snf =
∑n

k=1 〈f, φk〉 φk as before. This proposition asserts that the distance between
f and Sn is realized at ‖f − Snf‖2. The function Snf is sometimes called the orthogonal
projection of f on Sn. As a special case, taking {φn} =

{
1/
√

2π, cosnx/
√
π, sinnx/

√
π
}

and S2n+1 = En, we get

Corollary 1.15. For f ∈ R[−π, π], for each n ≥ 1,

‖f − Snf‖2 ≤ ‖f − g‖2

for all g of the form

g = c0 +
n∑
k=1

(cj cos kx+ dj sin kx), c0, ck, dk ∈ R.

Here is the main result of this section.

Theorem 1.16. For every f ∈ R[−π, π],

lim
n→∞

‖Snf − f‖2 = 0.
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Proof. Let f ∈ R[−π, π]. For ε > 0, we can find a 2π-periodic, Lipschitz continuous
function g such that

‖f − g‖2 <
ε

2
.

Indeed, g can be obtained by first approximating f by a step function and then modifying
the step function at its jumps. By Theorem 1.7, we can fix an N so that in sup-norm

‖g − SNg‖∞ <
ε

2
√

2π
.

Thus

‖g − SNg‖2 =

√ˆ π

−π
(g − SNg)2 ≤ ‖g − SNg‖∞

√
2π <

ε

2
.

It follows from Corollary 1.15 that

‖f − SNf‖2 ≤ ‖f − SNg‖2
≤ ‖f − g‖2 + ‖g − SNg‖2
<
ε

2
+
ε

2
= ε.

As SN ⊂ Sn for all n ≥ N , by Corollary 1.15 again, we have

‖f − Snf‖2 ≤ ‖f − SNf‖2 < ε.

We have the following result concerning the uniqueness of the Fourier expansion.

Corollary 1.17. (a) Suppose that f1 and f2 in R2π have the same Fourier series. Then
f1 and f2 are equal almost everywhere.

(b) Suppose that f1 and f2 in C2π have the same Fourier series. Then f1 ≡ f2.

Proof. Let f = f2 − f1. The Fourier coefficients of f all vanish, hence Snf = 0, for all
n. By Theorem 1.16, ‖f‖2 = 0. From the theory of Riemann integral we know that f 2,
hence f , must vanish except on a set of measure zero. In other words, f2 is equal to f1
almost everywhere. (a) holds. To prove (b), letting f be continuous and assuming f(x)
is not equal to zero at some x, by continuity it is non-zero for all points near x. Hence we
may assume x belongs to (−π, π) and |f(y)| > 0 for all y ∈ (x− δ, x+ δ) for some δ > 0.
But then ‖f‖2 would be greater or equal to the integral of |f | over (x − δ, x + δ), which
is positive. This contradiction shows that f ≡ 0.

Another interesting consequence of Theorem 1.16 is the Parseval’s identity. In fact,
this identity is equivalent to Theorem 1.16.
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Corollary 1.18 (Parseval’s Identity). For every f ∈ R[−π, π],

‖f‖22 = 2πa20 + π
∞∑
n=1

(
a2n + b2n

)
,

where an and bn are the Fourier coefficients of f .

Proof. Making use of the relations such as 〈f, cosnx/
√
π〉2 =

√
πan, n ≥ 1, we have

〈f, Snf〉2 = ‖Snf‖22 = 2πa20 + π
∑n

k=1(a
2
k + b2k). By Theorem 1.15,

0 = lim
n→∞

‖f − Snf‖22 = lim
n→∞

(
‖f‖22 − 2〈f, Snf〉2 + ‖Snf‖22

)
= lim

n→∞

(
‖f‖22 − ‖Snf‖22

)
= ‖f‖22 −

[
2πa20 + π

∞∑
n=1

(
a2n + b2n

)]
.

The norm of f can be regarded as the length of the “vector” f . Parseval’s identity
shows that the square of the length of f is equal to the sum of the square of the length of
the orthogonal projection of f onto each one-dimensional subspace spanned by the sine
and cosine functions. This is an infinite dimensional version of the ancient Pythagoras
theorem. It is curious to see what really comes out when you plug in some specific
functions. For instance, we take f(x) = x and recall that its Fourier series is given by∑

2(−1)n+1/n sinnx. Therefore, an = 0, n ≥ 0 and bn = 2(−1)n+1
√
π/n and Parseval’s

identity yields Euler’s summation formula

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

You could find more interesting identities by applying the same idea to other functions.

The following result will be used in the next section.

Corollary 1.19 (Poincaré’s Inequality). For every f ∈ C12π,ˆ π

−π
(f(x)− f)2dx ≤

ˆ π

−π
f ′2(x)dx ,

and equality holds if and only if an = bn = 0 for all n ≥ 2.

Here

f =
1

2π

ˆ π

−π
f

is the average or mean of f over [−π, π].
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Proof. Noting that

f =
1

2π

ˆ π

−π
f(x) cos 0xdx = a0,

f(x)− f =
∞∑
n=1

(an cosnx+ bn sinnx),

by Theorem 1.6. By Parseval’s identity,

ˆ π

−π
(f(x)− f)2dx = π

∞∑
n=1

(a2n + b2n) ,

and ˆ π

−π
(f(x)− f)′2dx =

ˆ π

−π
f ′(x)2dx = π

∞∑
n=1

n2(a2n + b2n).

Therefore, we have

ˆ π

−π
f ′(x)2dx−

ˆ π

−π
(f(x)− f)2dx = π

∞∑
n=1

(n2 − 1)(a2n + b2n) ,

and the result follows.

This inequality is also known as Wirtinger’s inequality.

1.6 The Isoperimetric Problem

The classical isoperimetric problem known to the ancient Greeks asserts that only the
circle maximizes the enclosed area among all simple, closed curves of the same perimeter.
In this section we will present a proof of this inequality by Fourier series. To formulate
this geometric problem in analytic terms, we need to recall some facts from advanced
calculus.

Indeed, a parametric C1-curve is a map γ from some interval [a, b] to R2 such that x
and y belong to C1[a, b] where γ(t) = (x(t), y(t)) and x

′2(t) + y
′2(t) > 0 for all t ∈ [a, b].

In the following a curve is always refereed to a parametric C1-curve. For such a curve, its
length is defined to be

L[γ] =

ˆ b

a

√
x′(t)2 + y′(t)2dt, γ = (x, y).

A curve is closed if γ(a) = γ(b) and simple if γ(t) 6= γ(s), ∀t 6= s in [a, b). The length of
a closed curve is called the perimeter of the curve.
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When a closed, simple curve is given, the area it encloses is also fixed. Hence one
should be able to express this enclosed area by a formula involving γ only. Indeed, this
can be accomplished by the Green’s theorem. Recalling that the Green’s theorem states
that for every pair of C1-functions P and Q defined on the curve γ and the region enclosed
by the curve, we haveˆ

γ

Pdx+Qdy =

¨
D

(∂Q
∂x

(x, y)− ∂P

∂y
(x, y)

)
dxdy ,

where the left hand side is the line integral along γ and D is the domain enclosed by γ
(see Fritzpatrick, p.543). Taking P ≡ 0 and Q = x, we obtain¨

D

(∂Q
∂x
− ∂P

∂y

)
dxdy =

¨
D

1 = area of D,

so

A[γ] =

¨
D

1dxdy =

ˆ
γ

xdy =

ˆ 1

0

x(t)y′(t)dt .

The classical isoperimetric problem is: Among all simple, closed curves with a fixed
perimeter, find the one whose enclosed area is the largest. We will see that the circle is
the only solution to this problem.

To proceed further, let us recall the concept of reparametrization. Indeed, a curve γ1
on [a1, b1] is called a reparametrization of the curve γ on [a, b] if there exists a C1-map ξ
from [a1, b1] to [a, b] with non-vanishing derivative so that γ1(t) = γ(ξ(t)), ∀t ∈ [a1, b1].
It is known that the length remains invariant under reparametrizations.

Another useful concept is the parametrization by arc-length. A curve γ = (x, y)
on [a, b] is called in arc-length parametrization if x

′2(t) + y
′2(t) = 1, ∀t ∈ [a, b]. We

know that every curve can be reparametrized in arc-length parametrization. Let γ(t) =
(x(t), y(t)), t ∈ [a, b], be a parametrization of a curve. We define a function ϕ by setting

ϕ(z) =

ˆ z

a

(
x
′2(t) + y

′2(t)
)1/2

dt,

it is readily checked that ϕ is a C1-map from [a, b] to [0, L] with positive derivative, and
γ1(s) = γ(ξ(s)), ξ = ϕ−1, is an arc-length reparametrization of γ on [0, L] where L is the
length of γ.

We now apply the Poincaré’s inequality to give a proof of the classical isoperimetric
problem.

Let γ : [a, b]→ R2 be a closed, simple C1-curve bounding a region D. Without loss of
generality we may assume that it is parametrized by arc-length. Assuming the perimeter
of γ is equal to 2π, we want to find the region that encloses the maximal area. The
perimeter is given by

L[γ] =

ˆ 2π

0

√
x′2(s) + y′2(s)ds = 2π ,
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and the area is given by

A[γ] =

ˆ 2π

0

x(s)y′(s)ds .

We compute

2A[γ] =

ˆ π

−π
2x(s)y′(s)ds

=

ˆ π

−π
2(x(s)− x)y′(s)ds

≤
ˆ π

−π
(x(s)− x)2ds+

ˆ π

−π
y
′2(s)ds (by 2ab ≤ a2 + b2)

≤
ˆ π

−π
x
′2(s)ds+

ˆ π

−π
y
′2(s)ds (by Poincaré’s inequality)

=

ˆ π

−π

(
x
′2(s) + y

′2(s)
)
ds

= 2π, (use x′2(s) + y′2(s) = 1)

whence A[γ] ≤ π. We have shown that the enclosed area of a simple, closed C1-curve
with perimeter 2π cannot exceed π. As π is the area of the unit circle, the unit circle
solves the isoperimetric problem.

Now the uniqueness case. We need to examine the equality signs in our derivation.
We observe that the equality holds if and only if an = bn = 0 for all n ≥ 2 in the Fourier
series of x(s). So, x(s) = a0 + a1 cos s+ b1 sin s, or

x(s) = a0 + r cos(s− x0),

where

r =
√
a21 + b21, cosx0 =

a1
r
.

(Note that (a1, b1) 6= (0, 0). For if a1 = b1 = 0, x(s) is constant and x
′2

+ y
′2 = 1 implies

y
′2(s) = ±s + b, and y can never be periodic.) Now we determine y. From the above

calculation, when the equality holds,

x− x− y′ = 0.

So y′(s) = x(s)− x = r cos(s− x0), which gives

y(s) = r sin(s− x0) + c0 , c0 constant.

It follows that γ describes a circle of radius r centered at (a0, c0). Using the fact that the
perimeter is 2π, we conclude that r = 1, so the maximum must be a unit circle.

Summarizing, we have the following solution to the classical isoperimetric problem.
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Theorem 1.20. Among all closed, simple C1-curves of the same perimeter, only the circle
encloses the largest area.

The same proof also produces a dual statement, namely, among all regions which en-
close the same area, only the circle has the shortest perimeter.

1.7 Fourier Series and Power Series

Power series and Fourier series are the most common types of series of functions. We
would like to make a comparison between these two series.

First of all, a power series is of the form

∞∑
k=0

ak(x− x0)k,

while a trigonometric series is of the form

a0 +
∞∑
k=1

(ak cos kx+ sin kx).

The convergence of the power series is completely determined by its radius of convergence
R which is given by

R = lim inf
k→∞

1

|ak|1/k
.

It is uniformly convergent on any closed subinterval of (x0 −R, x0 +R) and divergent at
any point lying outside of this open interval. On the other hand, there is no such simple
characterization of convergence for the Fourier series. As a consequence of the M-test,
the Fourier series converges uniformly when the coefficients satisfy ak, bk = O(k−s) for
any s > 1. In MATH2060 we also learned that for any cosine or sine sequence with
decreasing coefficients, the Fourier series converges pointwisely and, in fact, uniformly on
any subinterval of [−π, π] not containing the origin. This follows from an application of
the Dirichlet test.

For a function one may associate it with a special series called its Taylor series or
a Fourier series. Since the Taylor series is determined by the derivatives of all order
of the function at a prescribed point, it is completely determined when the function is
defined and smooth in an open interval containing this point. We may say that the
Taylor series relies on the local property of the function. On the other hand, the Fourier
series is well-defined whenever the function is integrable on [−π, π]. It is global as the
Fourier coefficients depend on the integral of the function over [−π, π]. We do not need
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the function to be differentiable to define the series, let alone smoothness. It shows that
Fourier series representation is more feasible than Taylor series expansion.

When it comes to the question of representing a function by its Taylor series or Fourier
series, we first recall the Taylor’s expansion theorem, under certain regularity conditions
which will not be recalled here, we have the formula

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +R

where the remainder term R is given by

R =
1

n!

ˆ x

x0

f (n+1)(t)(t− x0)ndt.

You should compare this formula with (3.1), the corresponding formula for Fourier ex-
pansion.

We learned in MATH2060 that not every smooth function is equal to its Taylor series.
However, there is a simple way to characterize those functions which do; we call it analytic.
In other words, every function f is analytic at x0 if f is equal to its Taylor series at x0 in
an open interval containing x0, that is, for some r > 0,

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k, ∀x ∈ (x0 − r, x0 + r).

Observing the power series on the right hand side is in fact convergent for all complex
values z, |z − x0| < r, this power series defines a complex analytic function in {z ∈ C :
|z−x0| < r}. We conclude that a smooth function is analytic in an open interval containing
x0 if and only if it is the restriction of a complex analytic function defined locally at x0. On
the other hand, despite the effort of mathematicians of many generations and numerous
results, a complete characterization of the class of functions whose Fourier series converge
has not settled. Sufficient conditions are discussed in Section 1.3. Of course, when we
relax the convergence to L2-convergence, every function is equal to its Fourier series.

Comments on Chapter 1. Historically, the relation (1.2) comes from a study on the
one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2

where u(x, t) denote the displacement of a string at the position-time (x, t). Around 1750,
D’Alembert and Euler found that a general solution of this equation is given by

f(x− ct) + g(x+ ct)

where f and g are two arbitrary twice differentiable functions. However, D. Bernoulli
found that the solution could be represented by a trigonometric series. These two different
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ways of representing the solutions led to a dispute among the mathematicians at that
time, and it was not settled until Fourier gave many convincing examples of representing
functions by trigonometric series in 1822. His motivation came from heat conduction.
After that, trigonometric series have been studied extensively and people call it Fourier
series in honor of the contribution of Fourier. Nowadays, the study of Fourier series has
matured into a branch of mathematics called harmonic analysis. It has equal importance
in theoretical and applied mathematics, as well as other branches of natural sciences and
engineering.

The book by R.T. Seely, “An Introduction to Fourier Series and Integrals”, W.A.
Benjamin, New York, 1966, is good for a further reading.

Concerning the convergence of a Fourier series to its function, we point out that an
example of a continuous function whose Fourier series diverges at some point can be
found in Stein-Sharachi. More examples are available by googling. The classical book
by A. Zygmund, “Trigonometric Series” (1959) reprinted in 1993, contains most results
before 1960. After 1960, one could not miss to mention Carleson’s sensational work in
1966. His result in particular implies that the Fourier series of every function in R2π

converges to the function itself almost everywhere.

There are several standard proofs of the Weierstrass approximation theorem, among
them Rudin’s proof in “Principles” by expanding an integral kernel and Bernstein’s proof
based on binomial expansion are both worth reading. Recently the original proof of
Weierstrass by the heat kernel is available on the web. It is nice to take a look too. In
Chapter 3 we will reproduce Rudin’s proof and then discuss Stone-Weierstrass theorem,
a far reaching generalization of Weierstrass approximation theorem.

The elegant proof of the isoperimetric inequality by Fourier series presented here is due
to Hurwitz (1859-1919). You may google under “proofs of the isoperimetric inequality” to
find several different proofs in the same spirit. The isoperimetric inequality has a higher
dimensional version which asserts that the ball has the largest volume among all domains
having the same surface area. However, the proof is much more complicated.

The aim of this chapter is to give an introduction to Fourier series. It will serve the
purpose if your interest is aroused and now you consider to take our course on Fourier
analysis next year. Not expecting a thorough study, I name Stein-Shakarchi as the only
reference.


