Solution 5

Section 7.1

- 1 (a) $\|\mathcal{P}_1\| = 2$.
- 2 (a) $S(x^2, \mathcal{P}_1) = 9.$
 - (b) $S(x^2, \mathcal{P}_1) = 37.$

14. (a)
$$\frac{1}{3}(x_{i-1}^2 + x_{i-1}x_{i-1} + x_{i-1}^2) \le q_i^2 := \frac{1}{3}(x_i^2 + x_ix_{i-1} + x_{i-1}^2) \le \frac{1}{3}(x_i^2 + x_ix_i + x_i^2)$$

 $\Rightarrow 0 \le x_{i-1}^2 \le q_i^2 \le x_i^2 \Rightarrow 0 \le x_{i-1} \le q_i \le x_i.$

(b) $Q(q_i)(x_i - x_{i-1}) = \frac{1}{3}(x_i^2 + x_i x_{i-1} + x_{i-1}^2)(x_i - x_{i-1}) = \frac{1}{3}(x_i^3 - x_{i-1}^3).$

(c)
$$S(Q; \dot{Q}) = \sum_{i=1}^{n} Q(q_i)(x_i - x_{i-1}) = \frac{1}{3} \sum_{i=1}^{n} (x_i^3 - x_{i-1}^3) = \frac{1}{3} (b^3 - a^3).$$

(d) Let $\varepsilon > 0$, and $\dot{\mathcal{P}} := \{([x_{i-1}, x_i], t_i)\}_{i=1}^n$ be a tagged partition of [a, b] with $|| \dot{\mathcal{P}} || < \delta$. By (a) and since $\dot{\mathcal{Q}}$ has the same partition points, $q_i, t_i \in [x_{i-1}, x_i] \Rightarrow |t_i - q_i| < \delta$. $| S(Q; \dot{\mathcal{P}}) - S(Q; \dot{\mathcal{Q}}) |$ $= \left| \sum_{i=1}^n Q(t_i) \Delta x_i - \sum_{i=1}^n Q(q_i) \Delta x_i \right| = \left| \sum_{i=1}^n (t_i^2 - q_i^2) \Delta x_i \right|$ $\leq \sum_{i=1}^n |t_i^2 - q_i^2| \Delta x_i = \sum_{i=1}^n |t_i - q_i| |t_i + q_i| \Delta x_i$ $< \delta \sum_{i=1}^n (|t_i| + |q_i|) \Delta x_i \le 2b\delta \sum_{i=1}^n \Delta x_i = 2b(b-a)\delta.$ Choose $\delta := \varepsilon/(2b(b-a))$. Then $| S(Q; \dot{\mathcal{P}}) - S(Q; \dot{\mathcal{Q}}) | < \varepsilon.$ Hence $Q \in \mathcal{R}[a, b]$ and $\int_a^b Q = \int_a^b x^2 dx = S(Q; \dot{\mathcal{Q}}) = \frac{1}{3}(b^3 - a^3).$

Section 7.2

- 2. Let $\mathcal{P}_n : x_0 = 0 < x_1 = \frac{1}{n} < x_2 = \frac{2}{n} < \dots < x_n = 1$ be partition of [0,1] and tag $t_i = x_i$. Then the Riemann sum $\mathcal{S}(h, \mathcal{P}_n) = \sum_{i=1}^n \frac{1}{n} (\frac{i}{n} + 1) = \frac{n+1}{2n} + 1$. Let $n \to \infty$, then $\lim_{n\to\infty} \mathcal{S}(h, \mathcal{P}_n) = \frac{3}{2}$. On the other hand, let $\mathcal{Q}_n : x_0 = 0 < x_1 = \frac{1}{n} < x_2 = \frac{2}{n} < \dots < x_n = 1$ be partition of [0,1] and tag t_i be irrational number $\in (x_{i-1}, x_{i+1})$. Then the Riemann sum $\mathcal{S}(h, \mathcal{Q}_n) = 0$, thus $\lim_{n\to\infty} \mathcal{S}(h, \mathcal{Q}_n) = 0$. Hence, $h \notin \mathcal{R}[0, 1]$.
- 12. Given $\varepsilon > 0$, let h_{ε} be the restriction of $g(x) = \sin 1/x$ on $[\varepsilon, 1]$. Then since h_{ε} is continuous on $[\varepsilon, 1]$ (which in particular implies h_{ε} is Riemann integrable on $[\varepsilon, 1]$), there exists a partition Q of $[\varepsilon, 1]$ such that

$$\overline{S}(h_{\varepsilon}, Q) - \underline{S}(h_{\varepsilon}, Q) < \varepsilon.$$

Now let P be the partition of [0, 1] defined by $P = \{0\} \cup Q$. Then

$$\overline{S}(g,P) - \underline{S}(g,P) = \left(\operatorname{osc}_{[0,\varepsilon]}g\right)\varepsilon + \overline{S}(h_{\varepsilon},Q) - \underline{S}(h_{\varepsilon},Q) < 1 \cdot \varepsilon + \varepsilon = 2\varepsilon.$$

Hence g is Riemann integrable on [0, 1].

Section 7.4

12. Let $f(x) = x^2$ for $x \in [0, 1]$, and $P_n = \{0, 1/n, 2/n, \dots, (n-1)/n, 1\}$. Then

$$L(f, P_n) = \sum_{i=1}^n \left(\frac{i-1}{n}\right)^2 \frac{1}{n} = \frac{1^2 + 2^2 + \dots + (n-1)^2}{n^3} = \frac{n(n-1)(2n-1)}{6n^3} = \frac{(n-1)(2n-1)}{6n^2}.$$

$$U(f, P_n) = \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \frac{1}{n} = \frac{1^2 + 2^2 + \dots + n^2}{n^3} = \frac{n(n+1)(2n+1)}{6n^3} = \frac{(n+1)(2n+1)}{6n^2}$$

Hence

$$L(f) \ge \sup_{n} L(f, P_n) = \frac{1}{3}$$

and

$$U(f) \le \inf_n U(f, P_n) = \frac{1}{3}$$

Since $U(f) \ge L(f)$, this forces $L(f) = U(f) = \frac{1}{3}$.

Supplementary Exercises

1. (a)
$$\overline{S}(f, \mathcal{P}) = \sum_{j=1}^{4} \sup_{I_j} f \Delta x_j$$

$$= \left(\sup_{x \in [-1, -1/2]} -x \right) \left(-\frac{1}{2} - (-1) \right) + \left(\sup_{x \in [-1/2, 0]} -x \right) \left(0 - \left(-\frac{1}{2} \right) \right) + \left(\sup_{x \in [0, 1/3]} -x + 1 \right) \left(1 - \frac{1}{3} \right) \right)$$

$$= (1) \left(-\frac{1}{2} - (-1) \right) + \left(\frac{1}{2} \right) \left(0 - \left(-\frac{1}{2} \right) \right) + (1) \left(\frac{1}{3} - 0 \right) + \left(\frac{2}{3} \right) \left(1 - \frac{1}{3} \right) \right)$$

$$= \frac{55}{36}$$

$$\underline{S}(f, \mathcal{P}) = \sum_{j=1}^{4} \inf_{I_j} f \Delta x_j$$

$$= \left(\inf_{x \in [-1, -1/2]} -x \right) \left(-\frac{1}{2} - (-1) \right) + \left(\inf_{x \in [-1/2, 0]} -x \right) \left(0 - \left(-\frac{1}{2} \right) \right) + \left(\inf_{x \in [0, 1/3]} -x + 1 \right) \left(1 - \frac{1}{3} \right) \right)$$

$$= \left(\frac{1}{2} \right) \left(-\frac{1}{2} - (-1) \right) + 0 \left(0 - \left(-\frac{1}{2} \right) \right) + \left(\frac{2}{3} \right) \left(\frac{1}{3} - 0 \right) + 0 \left(1 - \frac{1}{3} \right)$$

$$= \frac{17}{36}$$

The Darboux upper sum is not a Riemann sum because $\sup_{[0,1/3]} f = 1$ but we can't find any tag $z \in [0, 1/3]$ so that f(z) = 1, because of the definition of f.

(b) Take
$$\mathcal{P}_n := \left\{ x_i := -1 + \frac{i}{n} \right\}_{i=0}^{2n}$$
, hence $\|\mathcal{P}_n\| \to 0$.
Then $\overline{S}(f) = \lim \overline{S}(f, \mathcal{P}_n) = \lim \left(\sum_{i=1}^n (-x_{i-1}) \Delta x_i + \sum_{i=n+1}^{2n} (-x_{i-1}+1) \Delta x_i \right)$
 $= \lim \left(\sum_{i=1}^{2n} (-x_{i-1}) \Delta x_i + \sum_{i=n+1}^{2n} \Delta x_i \right)$
 $= \lim \left(\sum_{i=1}^{2n} \left(1 - \frac{i-1}{n} \right) \left(\frac{1}{n} \right) + \sum_{i=n+1}^{2n} \left(\frac{1}{n} \right) \right) = 2 - \lim \frac{1}{n^2} \sum_{i=1}^{2n} (i-1) + 1$
 $= 3 - \lim \frac{1}{n^2} \frac{(0 + (2n-1))2n}{2} = 3 - \lim \frac{2n-1}{n} = 3 - 2 = 1$

and
$$\underline{S}(f) = \lim \underline{S}(f, \mathcal{P}_n) = \lim \left(\sum_{i=1}^n (-x_i) \Delta x_i + \sum_{i=n+1}^{2n} (-x_i+1) \Delta x_i \right)$$

$$= \lim \left(\sum_{i=1}^{2n} (-x_i) \Delta x_i + \sum_{i=n+1}^{2n} \Delta x_i \right)$$

$$= \lim \left(\sum_{i=1}^{2n} \left(1 - \frac{i}{n} \right) \left(\frac{1}{n} \right) + \sum_{i=n+2}^{2n} \left(\frac{1}{n} \right) \right) = 2 - \lim \frac{1}{n^2} \sum_{i=1}^{2n} i + 1$$

$$= 3 - \lim \frac{1}{n^2} \frac{(1+2n)2n}{2} = 3 - \lim \frac{1+2n}{n} = 3 - 2 = 1$$
Hence $\overline{S}(f) = 1 = \underline{S}(f)$, by integrability criterion, $f \in \mathcal{R}[-1, 1]$ and $\int_{-1}^{1} f = 1$

2. Since f is Riemann integrable on [a, b], given $\varepsilon > 0$, there exist a partition P_0 of [a, b] such that

$$\overline{S}(f, P_0) - \underline{S}(f, P_0) < \varepsilon.$$

Let P_1 be a refinement of P_0 with $P_1 = P_0 \cup \{c, d\}$. Then

$$\overline{S}(f, P_1) - \underline{S}(f, P_1) \le \overline{S}(f, P_0) - \underline{S}(f, P_0) < \varepsilon.$$

Let P be a partition of [c, d] given by $P = P_1 \cap [c, d]$. Then

$$\overline{S}(f,P) - \underline{S}(f,P) \le \overline{S}(f,P_1) - \underline{S}(f,P_1) < \varepsilon;$$

here the first inequality follows, since if $P_1 = \{a = x_0 < \cdots < x_{i_0} = c < \cdots < x_{i_1} = d < \dots < x_n = b\}$, then

$$\overline{S}(f,P) - \underline{S}(f,P) = \sum_{i=1}^{n} \left(\operatorname{osc}_{[x_{i-1},x_i]} f \right) (x_i - x_{i-1})$$
$$\geq \sum_{i=i_0+1}^{i_1} \left(\operatorname{osc}_{[x_{i-1},x_i]} f \right) (x_i - x_{i-1})$$
$$= \overline{S}(f,P_1) - \underline{S}(f,P_1).$$

Since this is true for any $\varepsilon > 0$, we have $f \in \mathcal{R}[c, d]$.

3. Since f is integrable, given $\varepsilon > 0$, then there exists partition $\mathcal{P} = \{I_j\}$ of [a, b] such that

$$\sum_{j} osc_{I_j} f < \varepsilon$$

By triangle inequality, $osc_{I_j}|f| \leq osc_{I_j}f$, then

$$\sum_{j} osc_{I_{j}}|f| \leq \sum_{j} osc_{I_{j}}f < \varepsilon.$$

Hence |f| is Riemann integrable.

The converse is not true. For example, taking function f to be 1 when x is rational number in [0, 1] and be -1 when x is irrational number in [0, 1]. Then |f|(x) = 1 for each point, so |f| is integrable. However, f is not integrable for the following reason: Let $\mathcal{P}_n : x_0 = 0 < x_1 = \frac{1}{n} < x_2 = \frac{2}{n} < \cdots < x_n = 1$ be partition of [0,1] and tag $t_i = x_i$. Then the Riemann sum $\mathcal{S}(f, \mathcal{P}_n) = 1$.

However, let $Q_n : x_0 = 0 < x_1 = \frac{1}{n} < x_2 = \frac{2}{n} < \cdots < x_n = 1$ be partition of [0,1] and tag t_i be irrational number. Then the Riemann sum $S(f, Q_n) = -1$.

Hence, f is not integrable.

4. (a) Since f,g are Riemann integrable, given $\varepsilon > 0$, there exists $\delta > 0$ such that for any tagged partition \mathcal{P} with $\|\mathcal{P}\| \leq \delta$, then

$$\begin{split} & |\int_{a}^{b} f - \mathcal{S}(f, \mathcal{P})| < \varepsilon, \\ & |\int_{a}^{b} g - \mathcal{S}(g, \mathcal{P})| < \varepsilon. \end{split}$$

Since $f \leq g$, thus $\mathcal{S}(f, \mathcal{P}) \leq \mathcal{S}(g, \mathcal{P})$. Therefore,

$$\int_{a}^{b} f \leq \mathcal{S}(f, \mathcal{P}) + \varepsilon \leq \mathcal{S}(g, \mathcal{P}) + \varepsilon \leq \int_{a}^{b} g + 2\varepsilon.$$

Let $\varepsilon \to 0^+$, then $\int_a^b f \leq \int_a^b g$.

(b) Since $-|f| \le f \le |f|$, by (a), we have $-\int_a^b |f| \le \int_a^b f \le \int_a^b |f|$. Hence,

$$|\int_a^b f| \le \int_a^b |f|.$$

If $|f| \leq M$,

$$\int_{a}^{b} |f| \le \int_{a}^{b} M = M(b-a)$$

5. It suffices to show that $\frac{1}{g}$ is Riemann integrable. Since g is integrable, given $\varepsilon > 0$, then there exists partition $\mathcal{P} = I_j$ of [a, b] such that

$$\sum_{j} osc_{I_{j}}g < \varepsilon.$$

Since |g| > c, thus $osc_{I_j} \frac{1}{g} < \frac{1}{c^2} osc_{I_j} g < \frac{\varepsilon}{c^2}$. Hence, $\frac{1}{g}$ is Riemann integrable.

6. Since $\inf f + \inf g \leq \inf(f+g)$, thus the Darboux sum $\underline{S}(f, P) + \underline{S}(g, P) \leq \underline{S}(f+g, P)$ for any partition P. For any $\varepsilon > 0$, by definition of supermen, there exists partition P_1 and P_2 such that

$$\underline{S}(f) - \varepsilon \leq \underline{S}(f, P_1),$$

$$\underline{S}(g) - \varepsilon \leq \underline{S}(g, P_2).$$

Let P be the refinement of P_1 and P_2 , by Proposition 2.1 in lecture note, then

$$\underline{S}(f) - \varepsilon \leq \underline{S}(f, P),$$

$$\underline{S}(g) - \varepsilon \leq \underline{S}(g, P).$$

Therefore, we have

$$\underline{S}(f) + \underline{S}(g) - 2\varepsilon \leq \underline{S}(f, P) + \underline{S}(g, P) \leq \underline{S}(f + g, P) \leq \underline{S}(f + g).$$

Let $\varepsilon \to 0^+$, we obtain the result.

Taking function f to be 1 when x is rational number in [0, 1] and be -1 when x is irrational number in [0, 1] and g = -f. So $\underline{S}(f + g) = \underline{S}(0) = 0$. By the calculation in exercise 3, we know that $\underline{S}(f) = -1$. Using the same argument we can get $\underline{S}(g) = -1$. Hence,

$$0 = \underline{S}(f+g) > \underline{S}(f) + \underline{S}(g) = -2.$$