
MATH 2010E ADVANCED CALCULUS I
LECTURE 13

WING HONG TONY WONG

14.9 — Taylor’s formula

When we were estimating the error for the linearization of a function (Section 14.6),
or when we were classifying a critical point by second derivative test (Section 14.7), we
mentioned that Taylor’s formula is the supporting reason behind the actions.

Before we proceed, recall the Taylor’s formula for a single-variable function f that has
k + 1 continuous derivatives.

f(x) = f(a) +
k∑
i=1

f (i)(a)

i!
(x− a)i +

f (k+1)
(
a+ c(x− a)

)
(k + 1)!

(x− a)k+1

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k +

f (k+1)(ξ)

(k + 1)!
(x− a)k+1,

where 0 < c < 1, and ξ is a number between x and a.

Lemma 1. Let D ⊆ Rn be an open domain. Let f : D → R be a Ck real-valued function.
Let a + th ∈ D. Let F (t) = f(a + th). Then

F (k)(t) =

(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)k
f

∣∣∣∣∣
a+th

.

Proof. By chain rule,

F ′(t) = ∇f(a + th) · h

=

(
∂

∂x1
f

∣∣∣∣
a+th

, . . . ,
∂

∂xn
f

∣∣∣∣
a+th

)
· (h1, . . . , hn)

=

(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)
f

∣∣∣∣
a+th

.

In general, letG(t) = F (j)(t) for some j ≥ 1. If F (j)(t) =

(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)j
f

∣∣∣∣∣
a+th

,

then

G′(t) =
d

dt
F (j)(t) = ∇

[(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)j
f

]
a+th

· h

=

(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)j+1

f

∣∣∣∣∣
a+th

.

By the principal of mathematical induction, we are done.
�
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Theorem 2 (Taylor’s formula). Let D ⊆ Rn be an open domain. Let f : D → R be a
Ck+1 real-valued function. Let a + th ∈ D for all t ∈ [0, 1]. Then

f(a + h) = f(a) +
k∑
i=1

1

i!

(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)i
f

∣∣∣∣∣
a

+
1

(k + 1)!

(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)k+1

f

∣∣∣∣∣
a+ch

,

where 0 < c < 1.

Proof. Let F (t) = f(a + th). Since F is a composite function of infinitely differentiable
functions, it is also an infinitely differentiable function. Hence, by Taylor’s formula for
single-variable functions, we have

F (1) = F (0) +
k∑
i=1

1

i!
F (i)(0) +

1

(k + 1)!
F (k+1)(c),

where 0 < c < 1. By Lemma 1, we are done.
�

Another form of Taylor’s formula is

f(x) = f(a) +
k∑
i=1

1

i!

(
(x1 − a1)

∂

∂x1
+ · · ·+ (xn − an)

∂

∂xn

)i
f

∣∣∣∣∣
a

+
1

(k + 1)!

(
(x1 − a1)

∂

∂x1
+ · · ·+ (xn − an)

∂

∂xn

)k+1

f

∣∣∣∣∣
a+c(x−a)

.

This is obtained by substituting that x = a + h.

In particular, in R2,

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2

(
fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(y − b)2

)
+

k∑
i=3

1

i!

(
(x− a)

∂

∂x
+ (y − b) ∂

∂y

)i
f

∣∣∣∣∣
(a,b)

+
1

(k + 1)!

(
(x− a)

∂

∂x
+ (y − b) ∂

∂y

)k+1

f

∣∣∣∣∣
(a,b)+c(x−a,y−b)

.

Recall from Section 14.6 in Lecture 10 that the error of the linear approximation of f
at x = a is

E(x) = |f(x)− L(x)| ≤ 1

2
M(|x1 − a1|+ · · ·+ |xn − an|)2,

where L(x) = f(a) + ∇f(a) · (x − a), and M is an upper bound of all |fxixj | over D,
1 ≤ i, j ≤ n, if it exists. This can be deduced directly from the Taylor’s formula as
follows.
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f(x) = f(a) +

(
(x1 − a1)

∂

∂x1
+ · · ·+ (xn − an)

∂

∂xn

)
f

∣∣∣∣
a

+
1

2!

(
(x1 − a1)

∂

∂x1
+ · · ·+ (xn − an)

∂

∂xn

)2

f

∣∣∣∣∣
a+c(x−a)

= f(a) +∇f(a) · (x− a) +
1

2

∑
1≤i,j≤n

fxixj
(
a + c(x− a)

)
(xi − ai)(xj − aj)

|f(x)− L(x)| = 1

2

∣∣∣∣∣ ∑
1≤i,j≤n

fxixj
(
a + c(x− a)

)
(xi − ai)(xj − aj)

∣∣∣∣∣
≤ 1

2

∑
1≤i,j≤n

∣∣fxixj(a + c(x− a)
)∣∣ |xi − ai| |xj − aj|

≤ 1

2

∑
1≤i,j≤n

M |xi − ai| |xj − aj| =
1

2
M(|x1 − a1|+ · · ·+ |xn − an|)2.

Also recall from Section 14.7 in Lecture 11 that the second derivative test says, if a is a
critical point of f , i.e. ∇f(a) = 0, then let λ1, λ2, . . . , λn be the n eigenvalues of D2f(a),
and

• if λ1, λ2, . . . , λn < 0, then f(a) is a local maximum.
• if λ1, λ2, . . . , λn > 0, then f(a) is a local minimum.
• if λi < 0 and λj > 0, then f(a) is a saddle point.
• if λi = 0, and all λ’s are of the same sign, then there is no conclusion.

To see this, since ∇f(a) = 0, we have

f(x)− f(a) =
1

2

∑
1≤i,j≤n

fxixj
(
a + c(x− a)

)
(xi − ai)(xj − aj)

=
1

2

(
x1 − a1 · · · xn − an

)
·

fx1x1
(
a + c(x− a)

)
· · · fx1xn

(
a + c(x− a)

)
...

. . .
...

fxnx1
(
a + c(x− a)

)
· · · fxnxn

(
a + c(x− a)

)

x1 − a1...
xn − an


=

1

2
(x− a)> ·D2f

(
a + c(x− a)

)
· (x− a).

To determine the nature of the critical point a, we need to study the sign of f(x)− f(a)
for all x in a small neighbourhood of a. Let x = a + tu, where t > 0 and ‖u‖ = 1. Then

f(x)− f(a) =
1

2
(tu)> ·D2f

(
a + ctu

)
· (tu) =

t2

2
u> ·D2f

(
a + ctu

)
· u,

so the sign of f(x)− f(a) depends only on Qu(t) = u> ·D2f
(
a + ctu

)
· u.

Note that if f is a C2 function, then all entries in D2f are continuous, implying that
Qu(t) is continuous in t. Now, we are going to conduct the following analysis.

• If λ1, λ2, . . . , λn < 0, then D2f(a) is a negative-definite matrix. In other words,
Qu(0) < 0 for all u such that ‖u‖ = 1. Since Qu(t) is continuous, there exists
εu > 0 such that for all 0 < t < εu, Qu(t) share the same sign as Qu(0).
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Let ε = min{εu : ‖u‖ = 1} > 0 (the minimum exists since we are taking the
minimum over a compact set). For all x = a + tu ∈ Bε(a), f(x)− f(a) have the
same sign as Qu(t), which has the same sign as Qu(0) < 0.

Therefore, f(a) is a local maximum.

• If λ1, λ2, . . . , λn > 0, then D2f(a) is a positive-definite matrix. In other words,
Qu(0) > 0 for all u such that ‖u‖ = 1. With the same analysis as above, there
exists ε > 0 such that for all x = a + tu ∈ Bε(a), f(x)− f(a) have the same sign
as Qu(t), which has the same sign as Qu(0) > 0.

Therefore, f(a) is a local minimum.

• If λi < 0 and λj > 0, then there exist u and u′ such that Qu(0) < 0 and
Qu′(0) > 0. Hence, there exists εu > 0 such that for all 0 < t < εu, Qu(t) share
the same sign as Qu(0) < 0, and there exists εu′ > 0 such that for all 0 < t < εu′ ,
Qu′(t) share the same sign as Qu′(0) > 0. In other words, for all ε > 0, there
exists x = a + tu ∈ Bε(a) such that f(x) − f(a) have the same sign as Qu(t),
which has the same sign as Qu(0) < 0, and there exists x′ = a + tu′ ∈ Bε(a)
such that f(x) − f(a) have the same sign as Qu′(t), which has the same sign as
Qu′(0) > 0.

Therefore, f(a) is a saddle point.

• If λi = 0, then there exists u such that Qu(0) = 0. As a result, we cannot deter-
mine the sign of Qu(t). Hence, there is no conclusion.

Example 3. Find a quadratic approximation to f(x, y) = sinx sin y near the origin.
Find the error of the approximation if |x| ≤ 0.1 and |y| ≤ 0.1.

Solution. By Taylor’s formula,

f(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2!

(
fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2

)
+

1

3!

(
fxxx(h, k)x3 + 3fxxy(h, k)x2y + 3fxyy(h, k)xy2 + fyyy(h, k)y3

)
= 0 + 0 + 0 +

1

2
(0 + 2xy + 0)

+
1

6

(
(− cosh sin k)x3 − 3(sinh cos k)x2y − 3(cosh sin k)xy2 − (sinh cos k)y3

)
,

where h is between 0 and x, and k is between 0 and y. The quadratic approximation of
f(x, y) is Q(x, y) = xy, and the error is

|E(x, y)| = |f(x, y)−Q(x, y)|

=
1

6

∣∣(− cosh sin k)x3 − 3(sinh cos k)x2y − 3(cosh sin k)xy2 − (sinh cos k)y3
∣∣

≤ 1

6
| cosh sin k||x|3 + 3| sinh cos k||x|2|y|+ 3| cosh sin k||x||y|2 + | sinh cos k||y|3

≤ 1

6
(|x|3 + 3|x|2|y|+ 3|x||y|2 + |y|3)

=
1

6
(|x|+ |y|)3

≤ 1

6
(0.1 + 0.1)3 =

1

6
× 0.008 =

1

750
.

�
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14.10 — Partial derivatives with different independent and dependent
variables

As mentioned in Section 14.3 in Lecture 8 that when we take partial derivatives, we
may treat all independent variables as constants. However, all dependent variables must
not be treated as constants. Hence, using different independent and dependent variables
will lead to drastically different results.

Example 4. Let w = x2 + y2 + z2 and z = x2 + y2. Find
∂w

∂x
if

(a) x and y are independent variables.
(b) x and z are independent variables.

Solution. (a) We can substitute z = x2 + y2 into w to get

w = x2 + y2 + (x2 + y2)2

∂w

∂x
= 2x+ 2(x2 + y2)(2x) = 2x+ 4x3 + 4xy2.

(b) We can substitute y2 = z − x2 into w to get

w = x2 + (z − x2) + z2

w = z + z2

∂w

∂x
= 0.

�

Note that in Example 4, the answers for
∂w

∂x
are drastically different, and we cannot

obtain one from the other using the relation z = x2 + y2. We can try to understand this
through the geometry.

w is the square of the distance from the point (x, y, z) to the origin. When x and y

are independent variables,
∂w

∂x
fixes y unchanged. The path traced when x moves is a

parabola parallel to the xz-plane, so w changes. However, when x and z are independent

variables,
∂w

∂x
fixes z unchanged. The path traced when x moves is a circle parallel to

the xy-plane, so w does not change.

Example 5. Let lnwx+ sin
yz

x2
= 0 and xy +

z2

cosw
= 0. Find

∂w

∂x
if

(a) x and y are independent variables.
(b) x and z are independent variables.

Solution. (a)

1

wx

(
w + x

∂w

∂x

)
+ cos

yz

x2
·
x2y ∂z

∂x
− 2xyz

x4
= 0

xy−1 +
cosw · 2z ∂z

∂x
+ z2 sinw · ∂w

∂x

cos2w
= 0

From the first equation, we have

∂z

∂x
=

1

x2y

[
− x4

wx cos yz
x2

(
w + x

∂w

∂x

)
+ 2xyz

]
= − x

wy cos yz
x2

(
w + x

∂w

∂x

)
+

2z

x
.
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Substituting this into the second equation, we have

xy−1 +
cosw · 2z

[
− x
wy cos yz

x2

(
w + x∂w

∂x

)
+ 2z

x

]
+ z2 sinw · ∂w

∂x

cos2w
= 0

−2xz cosw

wy cos yz
x2

(
w + x

∂w

∂x

)
+

4z2 cosw

x
+ z2 sinw · ∂w

∂x
= −xy−1 cos2w

−2xz cosw

y cos yz
x2

− 2x2z cosw

wy cos yz
x2

· ∂w
∂x

+
4z2 cosw

x
+ z2 sinw · ∂w

∂x
= −xy−1 cos2w

xy−1 cos2w − 2xz cosw
y cos yz

x2
+ 4z2 cosw

x

2x2z cosw
wy cos yz

x2
− z2 sinw

=
∂w

∂x

(b)

1

wx

(
w + x

∂w

∂x

)
+ cos

yz

x2
·
x2z ∂y

∂x
− 2xyz

x4
= 0

xy
(

lnx · ∂y
∂x

+
y

x

)
+
z2 sinw

cos2w
· ∂w
∂x

= 0

From the second equation, we have

∂y

∂x
= − z2 sinw

xy cos2w lnx
· ∂w
∂x
− y

x lnx
.

Substituting this into the first equation, we have

1

wx

(
w + x

∂w

∂x

)
+ cos

yz

x2
·
x2z

[
− z2 sinw
xy cos2 w lnx

· ∂w
∂x
− y

x lnx

]
− 2xyz

x4
= 0

1

x
+

1

w
· ∂w
∂x
− cos

yz

x2
·
[

z3 sinw

xy+2 cos2w lnx
· ∂w
∂x

+
yz

x3 lnx
+

2yz

x3

]
= 0

1
w
− z3 sinw cos yz

x2

xy+2 cos2 w lnx
yz cos yz

x2

x3 lnx
+

2yz cos yz

x2

x3
− 1

x

=
∂w

∂x

�
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