MATH 2010E ADVANCED CALCULUS I
LECTURE 13

WING HONG TONY WONG

14.9 — Taylor’s formula

When we were estimating the error for the linearization of a function (Section 14.6),
or when we were classifying a critical point by second derivative test (Section 14.7), we
mentioned that Taylor’s formula is the supporting reason behind the actions.

Before we proceed, recall the Taylor’s formula for a single-variable function f that has
k + 1 continuous derivatives.

f*(a)
Kl

(x . a)kz + f(k+1)(£) (x . a)k—i—l7

(= a4+ (k+1)!

where 0 < ¢ < 1, and £ is a number between x and a.

Lemma 1. Let D C R" be an open domain. Let f : D — R be a C* real-valued function.
Leta+th € D. Let F(t) = f(a+th). Then

) o \"
F®(t) = <h18—x1+'--+hn%) f

a+th

Proof. By chain rule,
F'(t)=Vf(a+th)-h
0
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0 0

a+th
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In general, let G(t) = FY)(t) for some j > 1. If FU)(t) = (hla% +oeF hnai ) f
1 n

a+th
then
d 0 d Y’
G'(t)=—-FU) = b+ by ‘h
®) dt ®) V[< 18x1+ + &L’n) f]
a+th
o ) J+1
= h — ... h —
( laxl + + nal‘n> f
a-+th
By the principal of mathematical induction, we are done.
O
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Theorem 2 (Taylor’s formula). Let D C R™ be an open domain. Let f : D — R be a
C**L real-valued function. Let a+th € D for allt € [0,1]. Then

f(a+h)= +Z (h1—+ +hn8%n)f

a

h I N
T ( B T "axn) /

9

a+ch

where 0 < ¢ < 1.

Proof. Let F(t) = f(a+ th). Since F' is a composite function of infinitely differentiable
functions, it is also an infinitely differentiable function. Hence, by Taylor’s formula for
single-variable functions, we have

where 0 < ¢ < 1. By Lemma 1, we are done.

Another form of Taylor’s formula is

) o\’
+Z~(x1_ala_l‘1+ +(xn_an>a_mn>f

a

Frn (gt G )

This is obtained by substituting that x = a + h.

atc(x—a)

In particular, in R?,
f(x,y) = fla,b) + fula,b)(z — a) + f,(a,b)(y — b)
5 (Fl, D)@ — a)? + 2oy (0, 0)(x — @)y — ) + oy — )

(a,b)+c(z—a,y—0b)

Recall from Section 14.6 in Lecture 10 that the error of the linear approximation of f
at x =ais

Bx) = [7(0) ~ L] < 5M (1 —anl 4+ + oy — )

where L(x) = f(a) + Vf(a) - (x —a), and M is an upper bound of all |f,,.,;| over D,
1 < 4,7 < n, if it exists. This can be deduced directly from the Taylor’s formula as

follows.
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atc(x—a)

:f(a)+Vf(a).(x—a)+% Z fwixj(a—kc(x—a))(x,-—ai)(xj—aj)

1<i,j<n
1
FO) =L =5 | D2 fuww, (atelx —a)) (i = i) (x; — a))
1<i,5<n
1
§§ Z |fxixj(a+C(X—a))‘|:Ei—ai||:13j—aj|
1<i,j<n
<2 S Mlwi - al gy — gl = S My — @]+ [ — aa])?
— T —a| |l —a;] == T —a e 7 A
K 1<i,j<n ’ ! 2 ' : "

Also recall from Section 14.7 in Lecture 11 that the second derivative test says, if a is a
critical point of f,i.e. Vf(a) = 0, then let A\j, Ao, ..., A, be the n eigenvalues of D?f(a),
and

if A, A, ..., A, <0, then f(a) is a local maximum.

if Aj, Ag, ..., A, >0, then f(a) is a local minimum.

if \; <0 and \; > 0, then f(a) is a saddle point.

if \; =0, and all \’s are of the same sign, then there is no conclusion.

To see this, since V f(a) = 0, we have

F6) — F(@) = 5 3 s, (-t el — ) (o — ) — )

1 <ij<n
= (- o m—a)
Sz (a +c(x — a)) R (a +e(x — a)) T1— ay
Sz (a —I—‘c(x — a)) . fenan (a +.c(x — a)) Tn - an
= %(X—a)T -D’f(a+c(x—a)) - (x—a).

To determine the nature of the critical point a, we need to study the sign of f(x) — f(a)
for all x in a small neighbourhood of a. Let x = a+ tu, where ¢ > 0 and ||u|| = 1. Then

fx)— f(a) = %(tu)T -D*f(a+ctu) - (tu) = guT - D*f(a+ ctu) - u,

so the sign of f(x) — f(a) depends only on Qu(t) =u' - DQf(a + ctu) ‘.

Note that if f is a C? function, then all entries in D?f are continuous, implying that
Qu(t) is continuous in ¢. Now, we are going to conduct the following analysis.

o If A\, )Xo, ..., \, < 0, then D?f(a) is a negative-definite matrix. In other words,
Qu(0) < 0 for all u such that ||ul| = 1. Since Qy(t) is continuous, there exists
€u > 0 such that for all 0 < t < €4, Qu(t) share the same sign as Q4(0).
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Let ¢ = min{e, : ||ul| = 1} > 0 (the minimum exists since we are taking the
minimum over a compact set). For all x = a+ tu € B.(a), f(x) — f(a) have the
same sign as Qyu(t), which has the same sign as Q,(0) < 0.

Therefore, f(a) is a local maximum.

o If A\j, Ny, ..., A\, > 0, then D?f(a) is a positive-definite matrix. In other words,
Qu(0) > 0 for all u such that ||ul| = 1. With the same analysis as above, there
exists € > 0 such that for all x =a+tu € B.(a), f(x) — f(a) have the same sign
as Qu(t), which has the same sign as Q,,(0) > 0.

Therefore, f(a) is a local minimum.

o If \; < 0 and A\; > 0, then there exist u and u’ such that @,(0) < 0 and
Quw(0) > 0. Hence, there exists €, > 0 such that for all 0 < ¢t < €, Qu(t) share
the same sign as Qu(0) < 0, and there exists €, > 0 such that for all 0 < ¢ < €,
Qw (t) share the same sign as Quw(0) > 0. In other words, for all € > 0, there
exists x = a + tu € Bc(a) such that f(x) — f(a) have the same sign as Qu(t),
which has the same sign as Q4(0) < 0, and there exists X' = a + tu’ € B.(a)
such that f(x) — f(a) have the same sign as Q. (t), which has the same sign as

Qu/(O) > 0.
Therefore, f(a) is a saddle point.

e If \; = 0, then there exists u such that ,(0) = 0. As a result, we cannot deter-
mine the sign of Qy(t). Hence, there is no conclusion.

Example 3. Find a quadratic approximation to f(x,y) = sinzsiny near the origin.
Find the error of the approximation if |x| < 0.1 and |y| < 0.1.

Solution. By Taylor’s formula,
£ 9) = F(0.0) 4 £0,002 + £y(0,0)y + o5 (£2e(0, 002 + 22y (0,0)y + £, (0, 0)?)
+ %(fm(h, k)2 4 3 fry (B, k)22 + 3 fayy ()22 + Fy (B, K)y?)
=0+0+0+%®+2w+0)

1
+ 6 ((— cos hsin k)z® — 3(sin h cos k)x*y — 3(cos hsin k)zy® — (sin hcos k)y®),

where h is between 0 and x, and k is between 0 and y. The quadratic approximation of
f(z,y) is Q(z,y) = xy, and the error is

1
=5 |(— cos hsin k)x® — 3(sin h cos k)z*y — 3(cos hsin k)ay® — (sin hcos k)y’|
1
< 6| cos hsin k||z|* + 3| sin h cos k||z|?|y| + 3| cos hsin k||z||y|* + | sin h cos k||y|*
1
< S (el + 3lal*lyl + 3l llyl” + [y[*)
1
= 21l + Iy’
<1w1+0n&—1x0m8— !
—6 7 6 750
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14.10 — Partial derivatives with different independent and dependent
variables

As mentioned in Section 14.3 in Lecture 8 that when we take partial derivatives, we
may treat all independent variables as constants. However, all dependent variables must
not be treated as constants. Hence, using different independent and dependent variables
will lead to drastically different results.

0
Example 4. Let w = 22 + y? + 2% and 2z = 2% + y*. Find a—w if
T

(a) z and y are independent variables.
(b)  and z are independent variables.

Solution. (a) We can substitute z = 22 + y? into w to get
w:x2+y2+(m2+y2)2
ow

o 27 + 2(2% + y°)(27) = 2z + 42® + day?®.
x

(b) We can substitute y*> = z — 2% into w to get

w=1>+ (2 —2%) + 2

w=z+ 2*
ow

v 0.
ox

g

) ow . )
Note that in Example 4, the answers for — are drastically different, and we cannot

x
obtain one from the other using the relation z = 2 + 2. We can try to understand this
through the geometry.

w is the square of the distance from the point (z,y, z) to the origin. When = and y

w
are independent variables, — fixes y unchanged. The path traced when x moves is a

parabola parallel to the xz-plane, so w changes. However, when = and z are independent

w
variables, — fixes z unchanged. The path traced when x moves is a circle parallel to
x

the xy-plane, so w does not change.

2

= 0. Find 8_w if

Example 5. Let Inwx + sin vz _ 0 and ¥ 4
2 COS W ox

T
(a) x and y are independent variables.
(b) = and z are independent variables.

Solution. (a)
1 0 22y %z — 2pyz
- w_i_x_w +COS%'M:O
wx oz 2 x4

o, cosw 2292 4+ 22sinw - 42

61‘:0

zY 5
cos? w

From the first equation, we have

0z 1 x? n ow ) x n ow n 2z

—=—|-—— v+ rx— xyz| =—— w+x— —.

Or 2%y | wzcosi Ox Y wy cos 3 ox x
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Substituting this into the second equation, we have

= ow 2z 2.gj . ow
- cos W 22[ wyos (w—ira:ax) + x] + z7sinw - 57 .
x + =
cos? w
22z cosw ow 4z%cosw . dw y—l .2
EPeeETT] +r— |+ ——+z'smw-—=—r" cosTw
wy cos 43 ox x ox
2zzcosw  2r*zcosw Ow  4zfcosw o, ow vl .2
- v v a. t—————— ftzshw--— = -7 cosTw
ycos %5 wycos 5 Ox x ox
y—1 2 _ 2zzcosw 422 cosw
Z cos™ w ycosg—g + T ow
2 . -
2zizeosw _ »2ginw Oz
wy cos
(b)
1 ow yz 1229 — 2ryz
— |\wta - ) teos—  —F —— =
wx Ox x x
y oy y Zsinw Ow
\lne-=+=)+—5— =0
oxr =« cos?w  Ox
From the second equation, we have
dy 22sinw Oow oy
ox weos?wlnxe OJr xlnzx
Substituting this into the first equation, we have
2, | Z%sinw LOow Yy .
1 ow Yz -z |: zVcos?wlnz Oz xlnx] ZIyZ
— |\wt+xr5- | +cos— - 1 =0
wr ox T x
1+l~aw—cos%- 23 sinw .aw yz 2yz _0
r w Or x?2 |avt2cosfwlnx Ox 23lnz 23
3 yz
l . z SleCOSp @w
w z¥t2cos?wlnz —
yzcosg—; 2yzc0sz—§ 1 Ox
z3lnx 3 x



