MATH 2010E ADVANCED CALCULUS I
LECTURE 12
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14.8 — Lagrange multipliers

In Section 14.7, we try to find extrema of f over a domain D in the following way.

(1) Find all critical points of f in int(D).

(2) Classify the critical points of f using second derivative test if necessary.

(3) Find the extrema in (0D) N D.

(4) Compare the values found in (1) and (2) with those in (3) and decide the global
extrema.

In this section, we will focus on the case where D is a level surface (or level curve).
Since a level surface is expressed as g(x) = k for some constant k, we also call this type
of problems “finding extrema with constraints”.

Example 1. Find the minimal distance between the plane x — 2y + 62z = 4 and the point
(3,—2,4).

Solution. We are minimizing the function ¢(z,y,2) = /(z —3)2+ (y +2)2 + (z — 4)2,
which is equivalent to minimizing f(z,y,2) = (z — 3)*> + (y + 2)? + (2 — 4)?, subject to
the constraint x — 2y 4+ 62 = 4.

We may rewrite the constraint as z = 2y — 62 4+ 4. Substituting back to f(z,y, z), we

are minimizing f(y,z) = 2y — 62+ 4 —3)> + (y + 2)? 4+ (z — 4)%.

f=202y—62+1)(2)+2(y+2) =10y — 24z +8 =10 (1)
f:=2Qy—62+1)(—6)+2(z—4) = —24y+742—-20=0 (2)

2

(1) x12+(2) x5 —28824+96+370: ~100=0 = 82z =4 = z= .

48 28
Substitute back to (1), we get 10y — 1 +8=0 = y= 1

ﬁ/y = 1()’ f?;z == _24, and .ﬁz = 74, SO
=~ 10 —-24
bf= (—24 74 ) ‘
ince f, 3 2 2% 2\ .
Since fy, =10 > 0 and det(Df) = 10 x 74 — (—24)* =164 > 0, (y,2) = ST is a

~ 28 2 96
local minimum of f(y, z). As x =2 (_H) —6 (H) +4= ol is well-defined, and the

boundary of the plane x — 2y + 6z = 4 is empty, the point (z,y,2) = 5(48, —14,1) is
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the global minimum of f. The minimum distance is

F(Zesn) = ((2) - () () - - D

41 41 41

g

Example 2. Find the minimal distance between the surface 2% — 4yz — 422 = —1 and
the origin.

Attempt. Similar to Example 1, we need to minimize f(z,y,2) = 2* +y? + 22, subject to
the constraint z? — 4yz — 422 = —1.
We may rewrite the constraint as 2 = 4yz + 42% — 1. Substituting back to f(z,y, 2),

we are minimizing f(y,2) = v + 4yz + 52 — 1 = (y + 22)? + 2% — 1, which attains the
minimum value —1 at (y, z) = (0,0). However, (y, z) = (0,0) implies that 2> = —1 which
is impossible, so the global minimum value of fis not the global minimum value of f.
Attempt failed...

O

Lemma 3. Let D C R"™ be a domain. Let f : D — R be a differentiable real-valued
function, and let x : [ — D be a smooth curve, where I is an interval of R. If a € x(I) is
a local extremum relative to the values of f on the curve x(I), then V f(a) is orthogonal
to the tangent vector of the curve x(I) at a.

Solution. Let ty € I be such that x(ty) = a. Then g(t) = f(x(t)), t € I, attains a local
extremum at ty. By single-variable calculus, ¢'(tg) = 0. By chain rule,

0=4/(t) = SI0)| = DIy X(h0) = V()X (1)

t=to
Therefore, V f(a) is orthogonal to the tangent vector of the curve x(I) at a.
4

Let a be a local extremum of f subject to the level surface D = {x € R" : g(x) = k}.
Then for all smooth curves x : I — D such that x(t;) = a, a € x(I) is a local extremum
relative to the values of f on the curve x(/). By Lemma 3, V f(a) is orthogonal to all
these curves at a, and hence, orthogonal to the level surface g(x) = k at a. Recall that
Vg(a) is also orthogonal to the level surface g(x) = k at a (if Vg(a) # 0). Therefore,
Vf(a) and Vg(a) are parallel. This deduces the following result.

Theorem 4 (Lagrange multipliers). Let @ C R" be a domain. Let f,g: Q) — R be two
differentiable real-valued functions. Let D = {x € Q: g(x) = k} be a level surface of g.
Ifa € D is a local extremum of f over D, and if Vg(a) # 0, then there exists A € R such
that

Vf(a) = AVg(a).
(Please note that A can be 0.)

The Lagrange multiplier method can also be understood in the following manner. If
the level surface f(x) = ¢ and the level surface g(x) = k cut across each other instead
of tangent to each other, then if we make a small change from ¢ to ¢, the level surface
f(x) = ¢ should still have nonempty intersection with the level surface g(x) = k. This
means that ¢ is not a local extremum. Hence, if we f(x) attains a local extremum on the
level surface g(x) = k at x = a, then the level surfaces should be tangent to each other
at a. In other words, V f(a) should be parallel to Vg(a).

2



Solution to Example 2. Let a = (a,b.c) be a local extremum of f(z,y,2) = 2% + y* + 22
subject to the constraint g(z,y,2) = 2? — 4yz — 42> = —1. By Lagrange multiplier
method,

(2a,2b,2c) = A\(2a, —4c, —4b — 8c¢).
By 2a = 2)\a, we have a = 0 or A = 1. By 2b = —4\c¢, we have b = —2)\c. Substituting
into 2¢c = —4\b — 8¢, we have ¢ = 4\(\ — 1)c.
Case 1: X = 1. Then ¢ = 0, b = —2, and a is arbitrary. g(a,—2,0) = —1 implies that
a’? = —1, impossible.
Case 2: A # 1, and ¢ = 0. Then a =0, and b = 0. ¢(0,0,0) = 0 # —1, impossible.

4++/32
Case 3: X # 1, and ¢ # 0. Then a = 0, and 4A\(A — 1) = 1, implying \ = T\/— =
14+v2
2

. This futher implies b = (=1 F v/2)c. As g(a,b,c) = —1, we have

02 —4(—-1FV2)P? —4c? = —1
+4v2¢ = —1.

So the positive sign is rejected, and ¢ = + . Therefore,

1
2v/2
—1+\ﬁi 1
2V T o2 )’

(a,b,c) = (O, +

and the extreme value is

2
—1++2 +(i 1 )2_2—\/5_ v2-1
22 2w2) 22 2

To decide whether the local extreme value is a global maximum or minimum, we can

try to understand the geometry of the level surface g(z,y,z) = —1.
The matrix for the quadratic portion of the equation is

fla,b,c) = (i

1 0 0
0 0 =2
0 -2 —4
To find its eigenvalues,
1—-Xx 0 0
det| 0 =X =2 |=(1-NAN+)N—-4) =0,

0 -2 —4-A

implying A = 1 or —2 4 2v/2. Therefore, there are two positive eigenvalues and one neg-
ative eigenvalue. Since g(x,y,z) = —1 < 0, this surface is a nondegenerated hyperboloid
with two sheets.
Therefore, there is a global minimum for the distance between the surface and the
2—-1
origin, and there is no global maximum, and the desired minimum distance is \/_2 :

g

The geometric understanding at the end of the solution to Example 2 is crucial. This
is because the solutions solved by Langrange multiplier method may not be a global ex-
tremum at all.

Example 5. Find the extreme values of x + y subject to the constraint xy = 1.
3



Solution. Let a = (a,b) be a local extremum of f(x,y) = x + y subject to the constraint
g(x,y) = xy = 1. By Lagrange multiplier method,

(1,1) = A\(b,a),

1 1
implying a = b = 3 So g(a,b) = vi 1, i.e. A = £1. Therefore, (a,b) = (1,1) or
(a,b) = (—1,-1).

1
However, neither of them is a global extremum, since g(z,y) = 1 implies that y = —,
T

1

so  + y = x + — which can be arbitrary large (positive) and arbitrary small (negative).
x

O

Example 6. Maximize and minimize f(x,y) = zy subject to the constraint z2+2y? = 1.

Solution. Let a = (a,b) be a local extremum of f(z,y) = xy subject to the constraint
g(z,y) = 2? + 2y* = 1. By Lagrange multiplier method,

(b,a) = A\(2a,4b).
Substituting b = 2\a into a = 4\b, we have a = 8\%a. If a = 0, then b = 0, and

2
g(a,b) = 0 # 1, impossible. So a # 0 and 8)\? = 1, i.e. A\ = i\/T_' This means that

2
b= :i:ga.

2
2 2 2
g (a, i%a) =a’+2 (i%lz) = 1, which implies that a = i\/?—. So

; V2 1 V2 o1 V2 1 V2 o1
@O )\ g ) [T e

I -

To decide whether the local extreme values are global maxima or global minima, note
that the level surface g(z,y) = x? + 2y?> = 1 is an ellipse, which is closed and bounded
(i.e. compact). By the extreme value theorem (introduced in Lecture 11), there is a
global maximum and global minimum of f on this level surface. Therefore, the desired

2 2
maximum is R and the desired minimum is —i_.

4

g

If a is a local extremum of f subject to multiple constraints g;(x) = k1, g2(X) = ko,
.., gj(x) = k;, where gq,...,g; are differentiable, then

Vf(a) = )\1Vg1(a) +-+ )\ngj(a)
if Vgi(a),...,Vg;(a) are “linearly independent”.

This can be understood in the following manner. Let the common intersection of all
level surfaces ¢1(x) = k1, ..., gj(x) = k; be I', which is of dimension n — j. Due to
similar reasons mentioned in previous discussions, the level surface f(x) = c is tangent to
I' at x = a, where ¢ = f(a). In other words, V f(a) is orthogonal to I'. Recall that I is of
dimension n — j, so the orthogonal space of I is of dimension j, with Vgy(a), ..., Vg,(a)
as its basis. Therefore, V f(a) is spanned by Vg;(a),..., Vg;(a).

4



In a general Lagrange multiplier problem, we are solving the system of equations

Vf(a) = )\1Vgl(a) + -+ )ijgj(a)
91(x) =k

9i(x) =k;
The first equation yields n different equations, where n is the number of components.

Together with the other j equations, there are n + j equations. This matches perfectly
with the number of variables, namely ay, ..., a,, A\1,..., ;.

Example 7. The plane  +y + z = 1 cuts the cylinder 22 + y? = 1 in an ellipse. Find
the points on the ellipse that lie closest to and furthest from the origin.

Solution. Let a = (a,b, ¢) be a local extremum of f(z,y, z) = 22 + y* + 2% subject to the
constraints gi(z,y,2) = v +y+2z=1and go(z,y,2) =22 + y* = 1.

Since Vgi(a) = (1,1,1) and Vga(a) = (2a, 2b,0) are linearly independent when (a, b, ¢) #
(0,0,0), we can apply Lagrange multiplier method and have

(2a,2b,2¢) = Ay(1,1,1) + Ay(2a, 2b,0).

This implies A\; = 2¢, 2a = 2¢ + 2 2a, 2b = 2¢ + 2X9b, ie. ¢ = a(l — Ay) = b(1 — Ag).
Case 1. If Ay = 1, then ¢ = 0, g1(a,b,c) =a+b=1, and go(a,b,c) =a*+b* =1. As a
result,

1
ab=5[(a+b) = (@ + )] = 0,
implying that (a,b,c) = (1,0,0) or (a,b,c) = (0,1,0). In this case, f(a,b,c) = a® + b* +

=1

2 2 . . \/§
Case 2. If Ay # 1, then a = b. go(a,b,c) = a®* + b* = 1 implies that a = b = iT'
gi(a,b,¢c) = a+ b+ ¢ = 1 implies that (a,b,c) = (% % 1—\/5) or (a,b,c) =

2

correspondingly.

Note that the intersection of the level surfaces ¢;(z,y,2) = 1 and go(z,y,2) = 1 is an
ellipse. Similar to Example 6, since an ellipse is closed and bounded (i.e. compact), there
is a global maximum and global minimum of f on this ellipse.

Therefore, the points closest to the origin are (1,0,0) and (0,1,0) with minimum dis-

V2 V2

tance 1, and the point furthest from the origin is | —— 1+V2 > with maximum

2 2
<—£,—§,1+\/§>. In this case, f(a,b,c) = a®> + b+ = 4 — 22 or 4 + 2V/2

distance 4 + 2/2.
O

Example 8. Maximize f(z,y,z) = 2? + 3y — 2% subject to the constraints g;(z,y, z) =
20 —y =0and g(z,y,2) =y +2=0.

Solution. Let a = (a,b,c) be a local extremum of f(z,y,z) subject to the given con-
straints. Since Vg;(a) = (2,—1,0) and Vgo(a) = (0,1,1) are linearly independent, we
can apply Lagrange multiplier method and have

(2a,3,—2c) = A\1(2,—1,0) + X2(0,1,1).
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Hence, 2\, = 2a, i.e. Ay = a, and Ay = —2c¢. Substituting into —\; + Ay = 3, we have
—a — 2¢c = 3.

2 -1 010 -1 0 -2]3 10 2)-3
0 1 1o B0 1 1o {0 1 10
1 0 -2|3 2 -1 010 2 -10]0
1 0 2|-3 10 23\ ,, (1023

ms=2m [0 1 1 | fatle 101 1] 0 —= 101 1|0
0 —1 —4| 6 00 —3]|6 00 1]-2
1001

L2l o1 0] 2

fomfis N\ 0 0 1] -2

Therefore, (a,b,c) = (1,2,—2), and f(a,b,c) = 3.

The intersection of the level surfaces g;(x,y,2) = 2e—y = 0 and go(z,y,2) =y+2 =10
is a straight line. As there is only one local extremum, it has to be a global extremum
as well. Since (0,0,0) is in the intersection of the level surfaces, and f(0,0,0) = 0 < 3,
(a,b,c) = (1,2,-2) is a global maximum. Therefore, the desired maximum is 3.

O
Example 9 (AM-GM inequality). Show that if z1,xs,..., 2, > 0, then
o1+,
2L T S W T
n
Solution. If x; = 0 for some i, then the above inequality obviously hold.
Let a = (ay,...,a,) be a local extremum of f(zy,...,2,) = 1...x, subject to
x + st + xn . . .
g(xy, ..., x) = ZLT T — ) where a; # 0 for all i. By Lagrange multiplier
n
method,
1 1 1 1
ai...ay (—,...,—) :)\(—,...,—>.
ap ap n n
C . ay+---+ay
So a; = --- = a,. Substituting into g(ai,...,a,) = L N r, we have
n
(a1,...,a,) = (r,...,7r), and f(ai,...,a,) =r".
T+ -+ 1z, . . .
The level surface g(xy,...,x,) = ———— = r is an (n — 1)-dimensional plane.

n
As there is only one local extremum, it has to be a global extremum as well. Since
(nr,0,...,0) is on the level surface, and f(nr,0,...,0) =0 <7r", (a1,...,a,) = (r,...,7)

x .. mn
is a global maximum. Therefore, if x1,...,2, > 0, let Tt r. We have

n

wl---xn=f<x1,...,xn>sﬂr,.,.,r):w:(u) .
n



