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14.8 — Lagrange multipliers

In Section 14.7, we try to find extrema of f over a domain D in the following way.

(1) Find all critical points of f in int(D).
(2) Classify the critical points of f using second derivative test if necessary.
(3) Find the extrema in (∂D) ∩D.
(4) Compare the values found in (1) and (2) with those in (3) and decide the global

extrema.

In this section, we will focus on the case where D is a level surface (or level curve).
Since a level surface is expressed as g(x) = k for some constant k, we also call this type
of problems “finding extrema with constraints”.

Example 1. Find the minimal distance between the plane x−2y+ 6z = 4 and the point
(3,−2, 4).

Solution. We are minimizing the function φ(x, y, z) =
√

(x− 3)2 + (y + 2)2 + (z − 4)2,
which is equivalent to minimizing f(x, y, z) = (x − 3)2 + (y + 2)2 + (z − 4)2, subject to
the constraint x− 2y + 6z = 4.

We may rewrite the constraint as x = 2y − 6z + 4. Substituting back to f(x, y, z), we

are minimizing f̃(y, z) = (2y − 6z + 4− 3)2 + (y + 2)2 + (z − 4)2.{
f̃y = 2(2y − 6z + 1)(2) + 2(y + 2) = 10y − 24z + 8 = 0 (1)

f̃z = 2(2y − 6z + 1)(−6) + 2(z − 4) = −24y + 74z − 20 = 0 (2)

(1)× 12 + (2)× 5 −288z + 96 + 370z − 100 = 0 ⇒ 82z = 4 ⇒ z =
2

41
.

Substitute back to (1), we get 10y − 48

41
+ 8 = 0 ⇒ y = −28

41
.

f̃yy = 10, f̃yz = −24, and f̃zz = 74, so

Df̃ =

(
10 −24
−24 74

)
.

Since f̃yy = 10 > 0 and det(Df̃) = 10× 74− (−24)2 = 164 > 0, (y, z) =

(
−28

41
,

2

41

)
is a

local minimum of f̃(y, z). As x = 2

(
−28

41

)
− 6

(
2

41

)
+ 4 =

96

41
is well-defined, and the

boundary of the plane x − 2y + 6z = 4 is empty, the point (x, y, z) =
2

41
(48,−14, 1) is
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the global minimum of f . The minimum distance is

f

(
2

41
(48,−14, 1)

)
=

√(
−27

41

)2

+

(
54

41

)2

+

(
−162

41

)2

=
9

41

√
9 + 36 + 324 =

27

41

√
41.

�

Example 2. Find the minimal distance between the surface x2 − 4yz − 4z2 = −1 and
the origin.

Attempt. Similar to Example 1, we need to minimize f(x, y, z) = x2 + y2 + z2, subject to
the constraint x2 − 4yz − 4z2 = −1.

We may rewrite the constraint as x2 = 4yz + 4z2 − 1. Substituting back to f(x, y, z),

we are minimizing f̃(y, z) = y2 + 4yz + 5z2 − 1 = (y + 2z)2 + z2 − 1, which attains the
minimum value −1 at (y, z) = (0, 0). However, (y, z) = (0, 0) implies that x2 = −1 which

is impossible, so the global minimum value of f̃ is not the global minimum value of f .
Attempt failed...

�

Lemma 3. Let D ⊆ Rn be a domain. Let f : D → R be a differentiable real-valued
function, and let x : I → D be a smooth curve, where I is an interval of R. If a ∈ x(I) is
a local extremum relative to the values of f on the curve x(I), then ∇f(a) is orthogonal
to the tangent vector of the curve x(I) at a.

Solution. Let t0 ∈ I be such that x(t0) = a. Then g(t) = f(x(t)), t ∈ I, attains a local
extremum at t0. By single-variable calculus, g′(t0) = 0. By chain rule,

0 = g′(t0) =
d

dt
f(x(t))

∣∣∣∣
t=t0

= Df(x)|x=a · x
′(t0) = ∇f(a) · x′(t0).

Therefore, ∇f(a) is orthogonal to the tangent vector of the curve x(I) at a.
�

Let a be a local extremum of f subject to the level surface D = {x ∈ Rn : g(x) = k}.
Then for all smooth curves x : I → D such that x(t0) = a, a ∈ x(I) is a local extremum
relative to the values of f on the curve x(I). By Lemma 3, ∇f(a) is orthogonal to all
these curves at a, and hence, orthogonal to the level surface g(x) = k at a. Recall that
∇g(a) is also orthogonal to the level surface g(x) = k at a (if ∇g(a) 6= 0). Therefore,
∇f(a) and ∇g(a) are parallel. This deduces the following result.

Theorem 4 (Lagrange multipliers). Let Ω ⊆ Rn be a domain. Let f, g : Ω → R be two
differentiable real-valued functions. Let D = {x ∈ Ω : g(x) = k} be a level surface of g.
If a ∈ D is a local extremum of f over D, and if ∇g(a) 6= 0, then there exists λ ∈ R such
that

∇f(a) = λ∇g(a).

(Please note that λ can be 0.)

The Lagrange multiplier method can also be understood in the following manner. If
the level surface f(x) = c and the level surface g(x) = k cut across each other instead
of tangent to each other, then if we make a small change from c to c′, the level surface
f(x) = c′ should still have nonempty intersection with the level surface g(x) = k. This
means that c is not a local extremum. Hence, if we f(x) attains a local extremum on the
level surface g(x) = k at x = a, then the level surfaces should be tangent to each other
at a. In other words, ∇f(a) should be parallel to ∇g(a).
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Solution to Example 2. Let a = (a, b.c) be a local extremum of f(x, y, z) = x2 + y2 + z2

subject to the constraint g(x, y, z) = x2 − 4yz − 4z2 = −1. By Lagrange multiplier
method,

(2a, 2b, 2c) = λ(2a,−4c,−4b− 8c).

By 2a = 2λa, we have a = 0 or λ = 1. By 2b = −4λc, we have b = −2λc. Substituting
into 2c = −4λb− 8λc, we have c = 4λ(λ− 1)c.
Case 1: λ = 1. Then c = 0, b = −2, and a is arbitrary. g(a,−2, 0) = −1 implies that
a2 = −1, impossible.
Case 2: λ 6= 1, and c = 0. Then a = 0, and b = 0. g(0, 0, 0) = 0 6= −1, impossible.

Case 3: λ 6= 1, and c 6= 0. Then a = 0, and 4λ(λ − 1) = 1, implying λ =
4±
√

32

8
=

1±
√

2

2
. This futher implies b = (−1∓

√
2)c. As g(a, b, c) = −1, we have

02 − 4(−1∓
√

2)c2 − 4c2 = −1

±4
√

2c2 = −1.

So the positive sign is rejected, and c = ± 1

2 4
√

2
. Therefore,

(a, b, c) =

(
0,±−1 +

√
2

2 4
√

2
,± 1

2 4
√

2

)
,

and the extreme value is

f(a, b, c) =

(
±−1 +

√
2

2 4
√

2

)2

+

(
± 1

2 4
√

2

)2

=
2−
√

2

2
√

2
=

√
2− 1

2
.

To decide whether the local extreme value is a global maximum or minimum, we can
try to understand the geometry of the level surface g(x, y, z) = −1.

The matrix for the quadratic portion of the equation is1 0 0
0 0 −2
0 −2 −4

 .

To find its eigenvalues,

det

1− λ 0 0
0 −λ −2
0 −2 −4− λ

 = (1− λ)(4λ+ λ2 − 4) = 0,

implying λ = 1 or −2± 2
√

2. Therefore, there are two positive eigenvalues and one neg-
ative eigenvalue. Since g(x, y, z) = −1 < 0, this surface is a nondegenerated hyperboloid
with two sheets.

Therefore, there is a global minimum for the distance between the surface and the

origin, and there is no global maximum, and the desired minimum distance is

√
2− 1

2
.

�

The geometric understanding at the end of the solution to Example 2 is crucial. This
is because the solutions solved by Langrange multiplier method may not be a global ex-
tremum at all.

Example 5. Find the extreme values of x+ y subject to the constraint xy = 1.
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Solution. Let a = (a, b) be a local extremum of f(x, y) = x+ y subject to the constraint
g(x, y) = xy = 1. By Lagrange multiplier method,

(1, 1) = λ(b, a),

implying a = b =
1

λ
. So g(a, b) =

1

λ2
= 1, i.e. λ = ±1. Therefore, (a, b) = (1, 1) or

(a, b) = (−1,−1).

However, neither of them is a global extremum, since g(x, y) = 1 implies that y =
1

x
,

so x+ y = x+
1

x
which can be arbitrary large (positive) and arbitrary small (negative).

�

Example 6. Maximize and minimize f(x, y) = xy subject to the constraint x2+2y2 = 1.

Solution. Let a = (a, b) be a local extremum of f(x, y) = xy subject to the constraint
g(x, y) = x2 + 2y2 = 1. By Lagrange multiplier method,

(b, a) = λ(2a, 4b).

Substituting b = 2λa into a = 4λb, we have a = 8λ2a. If a = 0, then b = 0, and

g(a, b) = 0 6= 1, impossible. So a 6= 0 and 8λ2 = 1, i.e. λ = ±
√

2

4
. This means that

b = ±
√

2

2
a.

g

(
a,±
√

2

2
a

)
= a2 + 2

(
±
√

2

2
a

)2

= 1, which implies that a = ±
√

2

2
. So

(a, b)

(√
2

2
,
1

2

) (√
2

2
,−1

2

) (
−
√

2

2
,
1

2

) (
−
√

2

2
,−1

2

)
f(a, b)

√
2

4
−
√

2

4
−
√

2

4

√
2

4

To decide whether the local extreme values are global maxima or global minima, note
that the level surface g(x, y) = x2 + 2y2 = 1 is an ellipse, which is closed and bounded
(i.e. compact). By the extreme value theorem (introduced in Lecture 11), there is a
global maximum and global minimum of f on this level surface. Therefore, the desired

maximum is

√
2

4
, and the desired minimum is −

√
2

4
.

�

If a is a local extremum of f subject to multiple constraints g1(x) = k1, g2(x) = k2,
. . . , gj(x) = kj, where g1, . . . , gj are differentiable, then

∇f(a) = λ1∇g1(a) + · · ·+ λj∇gj(a)

if ∇g1(a), . . . ,∇gj(a) are “linearly independent”.

This can be understood in the following manner. Let the common intersection of all
level surfaces g1(x) = k1, . . . , gj(x) = kj be Γ, which is of dimension n − j. Due to
similar reasons mentioned in previous discussions, the level surface f(x) = c is tangent to
Γ at x = a, where c = f(a). In other words, ∇f(a) is orthogonal to Γ. Recall that Γ is of
dimension n− j, so the orthogonal space of Γ is of dimension j, with ∇g1(a), . . . ,∇gj(a)
as its basis. Therefore, ∇f(a) is spanned by ∇g1(a), . . . ,∇gj(a).
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In a general Lagrange multiplier problem, we are solving the system of equations
∇f(a) = λ1∇g1(a) + · · ·+ λj∇gj(a)
g1(x) = k1

...
gj(x) = kj

.

The first equation yields n different equations, where n is the number of components.
Together with the other j equations, there are n + j equations. This matches perfectly
with the number of variables, namely a1, . . . , an, λ1, . . . , λj.

Example 7. The plane x + y + z = 1 cuts the cylinder x2 + y2 = 1 in an ellipse. Find
the points on the ellipse that lie closest to and furthest from the origin.

Solution. Let a = (a, b, c) be a local extremum of f(x, y, z) = x2 + y2 + z2 subject to the
constraints g1(x, y, z) = x+ y + z = 1 and g2(x, y, z) = x2 + y2 = 1.

Since∇g1(a) = (1, 1, 1) and∇g2(a) = (2a, 2b, 0) are linearly independent when (a, b, c) 6=
(0, 0, 0), we can apply Lagrange multiplier method and have

(2a, 2b, 2c) = λ1(1, 1, 1) + λ2(2a, 2b, 0).

This implies λ1 = 2c, 2a = 2c+ 2λ2a, 2b = 2c+ 2λ2b, i.e. c = a(1− λ2) = b(1− λ2).
Case 1. If λ2 = 1, then c = 0, g1(a, b, c) = a + b = 1, and g2(a, b, c) = a2 + b2 = 1. As a
result,

ab =
1

2
[(a+ b)2 − (a2 + b2)] = 0,

implying that (a, b, c) = (1, 0, 0) or (a, b, c) = (0, 1, 0). In this case, f(a, b, c) = a2 + b2 +
c2 = 1.

Case 2. If λ2 6= 1, then a = b. g2(a, b, c) = a2 + b2 = 1 implies that a = b = ±
√

2

2
.

g1(a, b, c) = a + b + c = 1 implies that (a, b, c) =

(√
2

2
,

√
2

2
, 1−

√
2

)
or (a, b, c) =(

−
√

2

2
,−
√

2

2
, 1 +

√
2

)
. In this case, f(a, b, c) = a2 + b2 + c2 = 4 − 2

√
2 or 4 + 2

√
2

correspondingly.
Note that the intersection of the level surfaces g1(x, y, z) = 1 and g2(x, y, z) = 1 is an

ellipse. Similar to Example 6, since an ellipse is closed and bounded (i.e. compact), there
is a global maximum and global minimum of f on this ellipse.

Therefore, the points closest to the origin are (1, 0, 0) and (0, 1, 0) with minimum dis-

tance 1, and the point furthest from the origin is

(
−
√

2

2
,−
√

2

2
, 1 +

√
2

)
with maximum

distance 4 + 2
√

2.
�

Example 8. Maximize f(x, y, z) = x2 + 3y − z2 subject to the constraints g1(x, y, z) =
2x− y = 0 and g2(x, y, z) = y + z = 0.

Solution. Let a = (a, b, c) be a local extremum of f(x, y, z) subject to the given con-
straints. Since ∇g1(a) = (2,−1, 0) and ∇g2(a) = (0, 1, 1) are linearly independent, we
can apply Lagrange multiplier method and have

(2a, 3,−2c) = λ1(2,−1, 0) + λ2(0, 1, 1).
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Hence, 2λ1 = 2a, i.e. λ1 = a, and λ2 = −2c. Substituting into −λ1 + λ2 = 3, we have
−a− 2c = 3. 2 −1 0 0

0 1 1 0
−1 0 −2 3

 R1↔R3−−−−→

 −1 0 −2 3
0 1 1 0
2 −1 0 0

 −R1−−→

 1 0 2 −3
0 1 1 0
2 −1 0 0


R3−2R1−−−−→

 1 0 2 −3
0 1 1 0
0 −1 −4 6

 R3+R2−−−−→

 1 0 2 −3
0 1 1 0
0 0 −3 6

 − 1
3
R3−−−→

 1 0 2 −3
0 1 1 0
0 0 1 −2


R1−2R3−−−−→
R2−R3

 1 0 0 1
0 1 0 2
0 0 1 −2

 .

Therefore, (a, b, c) = (1, 2,−2), and f(a, b, c) = 3.
The intersection of the level surfaces g1(x, y, z) = 2x−y = 0 and g2(x, y, z) = y+z = 0

is a straight line. As there is only one local extremum, it has to be a global extremum
as well. Since (0, 0, 0) is in the intersection of the level surfaces, and f(0, 0, 0) = 0 < 3,
(a, b, c) = (1, 2,−2) is a global maximum. Therefore, the desired maximum is 3.

�

Example 9 (AM-GM inequality). Show that if x1, x2, . . . , xn ≥ 0, then

x1 + · · ·+ xn
n

≥ n
√
x1 . . . , xn.

Solution. If xi = 0 for some i, then the above inequality obviously hold.
Let a = (a1, . . . , an) be a local extremum of f(x1, . . . , xn) = x1 . . . xn subject to

g(x1, . . . , xn) =
x1 + · · ·+ xn

n
= r, where ai 6= 0 for all i. By Lagrange multiplier

method,

a1 . . . an

(
1

a1
, . . . ,

1

an

)
= λ

(
1

n
, . . . ,

1

n

)
.

So a1 = · · · = an. Substituting into g(a1, . . . , an) =
a1 + · · ·+ an

n
= r, we have

(a1, . . . , an) = (r, . . . , r), and f(a1, . . . , an) = rn.

The level surface g(x1, . . . , xn) =
x1 + · · ·+ xn

n
= r is an (n − 1)-dimensional plane.

As there is only one local extremum, it has to be a global extremum as well. Since
(nr, 0, . . . , 0) is on the level surface, and f(nr, 0, . . . , 0) = 0 < rn, (a1, . . . , an) = (r, . . . , r)

is a global maximum. Therefore, if x1, . . . , xn > 0, let
x1 + · · ·+ xn

n
= r. We have

x1 . . . xn = f(x1, . . . , xn) ≤ f(r, . . . , r) = rn =

(
x1 + · · ·+ xn

n

)n

.

�
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