MATH 2010E ADVANCED CALCULUS I LECTURE 12

WING HONG TONY WONG

14.8 — Lagrange multipliers

In Section 14.7, we try to find extrema of f over a domain D in the following way.

- (1) Find all critical points of f in int(D).
- (2) Classify the critical points of f using second derivative test if necessary.
- (3) Find the extrema in $(\partial D) \cap D$.
- (4) Compare the values found in (1) and (2) with those in (3) and decide the global extrema.

In this section, we will focus on the case where D is a level surface (or level curve). Since a level surface is expressed as $q(\mathbf{x}) = k$ for some constant k, we also call this type of problems "finding extrema with constraints".

Example 1. Find the minimal distance between the plane x - 2y + 6z = 4 and the point (3, -2, 4).

Solution. We are minimizing the function $\phi(x, y, z) = \sqrt{(x-3)^2 + (y+2)^2 + (z-4)^2}$, which is equivalent to minimizing $f(x, y, z) = (x-3)^2 + (y+2)^2 + (z-4)^2$, subject to the constraint x - 2y + 6z = 4.

We may rewrite the constraint as x = 2y - 6z + 4. Substituting back to f(x, y, z), we are minimizing $\tilde{f}(y,z) = (2y - 6z + 4 - 3)^2 + (y + 2)^2 + (z - 4)^2$.

$$\begin{cases} \widetilde{f}_y = 2(2y - 6z + 1)(2) + 2(y + 2) = 10y - 24z + 8 = 0 \quad (1) \\ \widetilde{f}_z = 2(2y - 6z + 1)(-6) + 2(z - 4) = -24y + 74z - 20 = 0 \quad (2) \end{cases}$$

 $(1) \times 12 + (2) \times 5 \qquad -288z + 96 + 370z - 100 = 0 \implies 82z = 4 \implies z = \frac{2}{41}.$ Substitute back to (1), we get $10y - \frac{48}{41} + 8 = 0 \implies y = -\frac{28}{41}.$

 $\widetilde{f}_{uu} = 10, \ \widetilde{f}_{yz} = -24, \ \text{and} \ \widetilde{f}_{zz} = 74, \ \text{so}$

$$D\widetilde{f} = \begin{pmatrix} 10 & -24 \\ -24 & 74 \end{pmatrix}.$$

Since $\tilde{f}_{yy} = 10 > 0$ and $\det(D\tilde{f}) = 10 \times 74 - (-24)^2 = 164 > 0$, $(y, z) = \left(-\frac{28}{41}, \frac{2}{41}\right)$ is a local minimum of $\widetilde{f}(y,z)$. As $x = 2\left(-\frac{28}{41}\right) - 6\left(\frac{2}{41}\right) + 4 = \frac{96}{41}$ is well-defined, and the boundary of the plane x - 2y + 6z = 4 is empty, the point $(x, y, z) = \frac{2}{41}(48, -14, 1)$ is

Date: Thursday, 18th June, 2015.

the global minimum of f. The minimum distance is

$$f\left(\frac{2}{41}(48,-14,1)\right) = \sqrt{\left(-\frac{27}{41}\right)^2 + \left(\frac{54}{41}\right)^2 + \left(-\frac{162}{41}\right)^2} = \frac{9}{41}\sqrt{9+36+324} = \frac{27}{41}\sqrt{41}.$$

Example 2. Find the minimal distance between the surface $x^2 - 4yz - 4z^2 = -1$ and the origin.

Attempt. Similar to Example 1, we need to minimize $f(x, y, z) = x^2 + y^2 + z^2$, subject to the constraint $x^2 - 4yz - 4z^2 = -1$.

We may rewrite the constraint as $x^2 = 4yz + 4z^2 - 1$. Substituting back to f(x, y, z), we are minimizing $\tilde{f}(y, z) = y^2 + 4yz + 5z^2 - 1 = (y + 2z)^2 + z^2 - 1$, which attains the minimum value -1 at (y, z) = (0, 0). However, (y, z) = (0, 0) implies that $x^2 = -1$ which is impossible, so the global minimum value of \tilde{f} is not the global minimum value of f. Attempt failed...

Lemma 3. Let $D \subseteq \mathbb{R}^n$ be a domain. Let $f : D \to \mathbb{R}$ be a differentiable real-valued function, and let $\mathbf{x} : I \to D$ be a smooth curve, where I is an interval of \mathbb{R} . If $\mathbf{a} \in \mathbf{x}(I)$ is a local extremum relative to the values of f on the curve $\mathbf{x}(I)$, then $\nabla f(\mathbf{a})$ is orthogonal to the tangent vector of the curve $\mathbf{x}(I)$ at \mathbf{a} .

Solution. Let $t_0 \in I$ be such that $\mathbf{x}(t_0) = \mathbf{a}$. Then $g(t) = f(\mathbf{x}(t)), t \in I$, attains a local extremum at t_0 . By single-variable calculus, $g'(t_0) = 0$. By chain rule,

$$0 = g'(t_0) = \left. \frac{d}{dt} f(\mathbf{x}(t)) \right|_{t=t_0} = \left. Df(\mathbf{x}) \right|_{\mathbf{x}=\mathbf{a}} \cdot \mathbf{x}'(t_0) = \nabla f(\mathbf{a}) \cdot \mathbf{x}'(t_0).$$

Therefore, $\nabla f(\mathbf{a})$ is orthogonal to the tangent vector of the curve $\mathbf{x}(I)$ at \mathbf{a} .

Let **a** be a local extremum of f subject to the level surface $D = \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) = k\}$. Then for all smooth curves $\mathbf{x} : I \to D$ such that $\mathbf{x}(t_0) = \mathbf{a}, \mathbf{a} \in \mathbf{x}(I)$ is a local extremum relative to the values of f on the curve $\mathbf{x}(I)$. By Lemma 3, $\nabla f(\mathbf{a})$ is orthogonal to all these curves at **a**, and hence, orthogonal to the level surface $g(\mathbf{x}) = k$ at **a**. Recall that $\nabla g(\mathbf{a})$ is also orthogonal to the level surface $g(\mathbf{x}) = k$ at **a** (if $\nabla g(\mathbf{a}) \neq 0$). Therefore, $\nabla f(\mathbf{a})$ and $\nabla g(\mathbf{a})$ are parallel. This deduces the following result.

Theorem 4 (Lagrange multipliers). Let $\Omega \subseteq \mathbb{R}^n$ be a domain. Let $f, g : \Omega \to \mathbb{R}$ be two differentiable real-valued functions. Let $D = \{\mathbf{x} \in \Omega : g(\mathbf{x}) = k\}$ be a level surface of g. If $\mathbf{a} \in D$ is a local extremum of f over D, and if $\nabla g(\mathbf{a}) \neq \mathbf{0}$, then there exists $\lambda \in \mathbb{R}$ such that

$$\nabla f(\mathbf{a}) = \lambda \nabla g(\mathbf{a}).$$

(Please note that λ can be 0.)

The Lagrange multiplier method can also be understood in the following manner. If the level surface $f(\mathbf{x}) = c$ and the level surface $g(\mathbf{x}) = k$ cut across each other instead of tangent to each other, then if we make a small change from c to c', the level surface $f(\mathbf{x}) = c'$ should still have nonempty intersection with the level surface $g(\mathbf{x}) = k$. This means that c is not a local extremum. Hence, if we $f(\mathbf{x})$ attains a local extremum on the level surface $g(\mathbf{x}) = k$ at $\mathbf{x} = \mathbf{a}$, then the level surfaces should be tangent to each other at \mathbf{a} . In other words, $\nabla f(\mathbf{a})$ should be parallel to $\nabla q(\mathbf{a})$. Solution to Example 2. Let $\mathbf{a} = (a, b.c)$ be a local extremum of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint $g(x, y, z) = x^2 - 4yz - 4z^2 = -1$. By Lagrange multiplier method,

$$(2a, 2b, 2c) = \lambda(2a, -4c, -4b - 8c).$$

By $2a = 2\lambda a$, we have a = 0 or $\lambda = 1$. By $2b = -4\lambda c$, we have $b = -2\lambda c$. Substituting into $2c = -4\lambda b - 8\lambda c$, we have $c = 4\lambda(\lambda - 1)c$.

Case 1: $\lambda = 1$. Then c = 0, b = -2, and a is arbitrary. g(a, -2, 0) = -1 implies that $a^2 = -1$, impossible.

Case 2: $\lambda \neq 1$, and c = 0. Then a = 0, and b = 0. $g(0, 0, 0) = 0 \neq -1$, impossible.

Case 3: $\lambda \neq 1$, and $c \neq 0$. Then a = 0, and $4\lambda(\lambda - 1) = 1$, implying $\lambda = \frac{4 \pm \sqrt{32}}{8} = \frac{1 \pm \sqrt{2}}{2}$. This further implies $b = (-1 \mp \sqrt{2})c$. As g(a, b, c) = -1, we have

$$0^{2} - 4(-1 \pm \sqrt{2})c^{2} - 4c^{2} = -1$$
$$\pm 4\sqrt{2}c^{2} = -1.$$

So the positive sign is rejected, and $c = \pm \frac{1}{2\sqrt[4]{2}}$. Therefore,

$$(a,b,c) = \left(0,\pm\frac{-1+\sqrt{2}}{2\sqrt[4]{2}},\pm\frac{1}{2\sqrt[4]{2}}\right),$$

and the extreme value is

$$f(a,b,c) = \left(\pm \frac{-1+\sqrt{2}}{2\sqrt[4]{2}}\right)^2 + \left(\pm \frac{1}{2\sqrt[4]{2}}\right)^2 = \frac{2-\sqrt{2}}{2\sqrt{2}} = \frac{\sqrt{2}-1}{2}.$$

To decide whether the local extreme value is a global maximum or minimum, we can try to understand the geometry of the level surface g(x, y, z) = -1.

The matrix for the quadratic portion of the equation is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & -2 & -4 \end{pmatrix}$$

To find its eigenvalues,

$$\det \begin{pmatrix} 1 - \lambda & 0 & 0\\ 0 & -\lambda & -2\\ 0 & -2 & -4 - \lambda \end{pmatrix} = (1 - \lambda)(4\lambda + \lambda^2 - 4) = 0,$$

implying $\lambda = 1$ or $-2 \pm 2\sqrt{2}$. Therefore, there are two positive eigenvalues and one negative eigenvalue. Since g(x, y, z) = -1 < 0, this surface is a nondegenerated hyperboloid with two sheets.

Therefore, there is a global minimum for the distance between the surface and the origin, and there is no global maximum, and the desired minimum distance is $\frac{\sqrt{2}-1}{2}$.

The geometric understanding at the end of the solution to Example 2 is crucial. This is because the solutions solved by Langrange multiplier method may not be a global extremum at all.

Example 5. Find the extreme values of x + y subject to the constraint xy = 1.

Solution. Let $\mathbf{a} = (a, b)$ be a local extremum of f(x, y) = x + y subject to the constraint g(x, y) = xy = 1. By Lagrange multiplier method,

$$(1,1) = \lambda(b,a),$$

implying $a = b = \frac{1}{\lambda}$. So $g(a, b) = \frac{1}{\lambda^2} = 1$, i.e. $\lambda = \pm 1$. Therefore, (a, b) = (1, 1) or (a, b) = (-1, -1).

However, neither of them is a global extremum, since g(x, y) = 1 implies that $y = \frac{1}{x}$, so $x + y = x + \frac{1}{x}$ which can be arbitrary large (positive) and arbitrary small (negative).

Example 6. Maximize and minimize f(x, y) = xy subject to the constraint $x^2 + 2y^2 = 1$. Solution. Let $\mathbf{a} = (a, b)$ be a local extremum of f(x, y) = xy subject to the constraint $g(x, y) = x^2 + 2y^2 = 1$. By Lagrange multiplier method,

$$(b,a) = \lambda(2a,4b).$$

Substituting $b = 2\lambda a$ into $a = 4\lambda b$, we have $a = 8\lambda^2 a$. If a = 0, then b = 0, and $g(a,b) = 0 \neq 1$, impossible. So $a \neq 0$ and $8\lambda^2 = 1$, i.e. $\lambda = \pm \frac{\sqrt{2}}{4}$. This means that $b = \pm \frac{\sqrt{2}}{2}a$.

$$g\left(a, \pm \frac{\sqrt{2}}{2}a\right) = a^{2} + 2\left(\pm \frac{\sqrt{2}}{2}a\right)^{2} = 1, \text{ which implies that } a = \pm \frac{\sqrt{2}}{2}. \text{ So}$$

$$\frac{(a, b) \left| \left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right) \right| \left(\frac{\sqrt{2}}{2}, -\frac{1}{2}\right) \left| \left(-\frac{\sqrt{2}}{2}, \frac{1}{2}\right) \right| \left(-\frac{\sqrt{2}}{2}, -\frac{1}{2}\right)}{f(a, b) \left| \frac{\sqrt{2}}{4} \right| -\frac{\sqrt{2}}{4} \left| -\frac{\sqrt{2}}{4} \right| \frac{\sqrt{2}}{4}}$$

To decide whether the local extreme values are global maxima or global minima, note that the level surface $g(x, y) = x^2 + 2y^2 = 1$ is an ellipse, which is closed and bounded (i.e. compact). By the extreme value theorem (introduced in Lecture 11), there is a global maximum and global minimum of f on this level surface. Therefore, the desired maximum is $\frac{\sqrt{2}}{4}$, and the desired minimum is $-\frac{\sqrt{2}}{4}$.

If **a** is a local extremum of f subject to multiple constraints $g_1(\mathbf{x}) = k_1$, $g_2(\mathbf{x}) = k_2$, ..., $g_j(\mathbf{x}) = k_j$, where g_1, \ldots, g_j are differentiable, then

$$\nabla f(\mathbf{a}) = \lambda_1 \nabla g_1(\mathbf{a}) + \dots + \lambda_j \nabla g_j(\mathbf{a})$$

if $\nabla g_1(\mathbf{a}), \ldots, \nabla g_j(\mathbf{a})$ are "linearly independent".

This can be understood in the following manner. Let the common intersection of all level surfaces $g_1(\mathbf{x}) = k_1, \ldots, g_j(\mathbf{x}) = k_j$ be Γ , which is of dimension n - j. Due to similar reasons mentioned in previous discussions, the level surface $f(\mathbf{x}) = c$ is tangent to Γ at $\mathbf{x} = \mathbf{a}$, where $c = f(\mathbf{a})$. In other words, $\nabla f(\mathbf{a})$ is orthogonal to Γ . Recall that Γ is of dimension n - j, so the orthogonal space of Γ is of dimension j, with $\nabla g_1(\mathbf{a}), \ldots, \nabla g_j(\mathbf{a})$ as its basis. Therefore, $\nabla f(\mathbf{a})$ is spanned by $\nabla g_1(\mathbf{a}), \ldots, \nabla g_j(\mathbf{a})$. In a general Lagrange multiplier problem, we are solving the system of equations

$$\begin{cases} \nabla f(\mathbf{a}) = \lambda_1 \nabla g_1(\mathbf{a}) + \dots + \lambda_j \nabla g_j(\mathbf{a}) \\ g_1(\mathbf{x}) = k_1 \\ \vdots \\ g_j(\mathbf{x}) = k_j \end{cases}$$

The first equation yields n different equations, where n is the number of components. Together with the other j equations, there are n + j equations. This matches perfectly with the number of variables, namely $a_1, \ldots, a_n, \lambda_1, \ldots, \lambda_i$.

Example 7. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points on the ellipse that lie closest to and furthest from the origin.

Solution. Let $\mathbf{a} = (a, b, c)$ be a local extremum of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints $g_1(x, y, z) = x + y + z = 1$ and $g_2(x, y, z) = x^2 + y^2 = 1$.

Since $\nabla q_1(\mathbf{a}) = (1, 1, 1)$ and $\nabla q_2(\mathbf{a}) = (2a, 2b, 0)$ are linearly independent when $(a, b, c) \neq (a, b, c)$ (0,0,0), we can apply Lagrange multiplier method and have

$$(2a, 2b, 2c) = \lambda_1(1, 1, 1) + \lambda_2(2a, 2b, 0)$$

This implies $\lambda_1 = 2c$, $2a = 2c + 2\lambda_2 a$, $2b = 2c + 2\lambda_2 b$, i.e. $c = a(1 - \lambda_2) = b(1 - \lambda_2)$. Case 1. If $\lambda_2 = 1$, then c = 0, $g_1(a, b, c) = a + b = 1$, and $g_2(a, b, c) = a^2 + b^2 = 1$. As a result,

$$ab = \frac{1}{2}[(a+b)^2 - (a^2 + b^2)] = 0,$$

implying that (a, b, c) = (1, 0, 0) or (a, b, c) = (0, 1, 0). In this case, $f(a, b, c) = a^2 + b^2 + b$ $c^2 = 1.$

Case 2. If $\lambda_2 \neq 1$, then a = b. $g_2(a, b, c) = a^2 + b^2 = 1$ implies that $a = b = \pm \frac{\sqrt{2}}{2}$. $g_1(a,b,c) = a + b + c = 1$ implies that $(a,b,c) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1 - \sqrt{2}\right)$ or (a,b,c) = $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1+\sqrt{2}\right)$. In this case, $f(a,b,c) = a^2 + b^2 + c^2 = 4 - 2\sqrt{2}$ or $4 + 2\sqrt{2}$

correspondingly.

Note that the intersection of the level surfaces $g_1(x, y, z) = 1$ and $g_2(x, y, z) = 1$ is an ellipse. Similar to Example 6, since an ellipse is closed and bounded (i.e. compact), there is a global maximum and global minimum of f on this ellipse.

Therefore, the points closest to the origin are (1,0,0) and (0,1,0) with minimum distance 1, and the point furthest from the origin is $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1+\sqrt{2}\right)$ with maximum distance $4 + 2\sqrt{2}$.

Example 8. Maximize $f(x, y, z) = x^2 + 3y - z^2$ subject to the constraints $g_1(x, y, z) =$ 2x - y = 0 and $g_2(x, y, z) = y + z = 0$.

Solution. Let $\mathbf{a} = (a, b, c)$ be a local extremum of f(x, y, z) subject to the given constraints. Since $\nabla g_1(\mathbf{a}) = (2, -1, 0)$ and $\nabla g_2(\mathbf{a}) = (0, 1, 1)$ are linearly independent, we can apply Lagrange multiplier method and have

$$(2a, 3, -2c) = \lambda_1(2, -1, 0) + \lambda_2(0, 1, 1).$$

Hence, $2\lambda_1 = 2a$, i.e. $\lambda_1 = a$, and $\lambda_2 = -2c$. Substituting into $-\lambda_1 + \lambda_2 = 3$, we have -a - 2c = 3. $\begin{pmatrix} 2 & -1 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ -1 & 0 & -2 & | & 3 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} -1 & 0 & -2 & | & 3 \\ 0 & 1 & 1 & | & 0 \\ 2 & -1 & 0 & | & 0 \end{pmatrix} \xrightarrow{-R_1} \begin{pmatrix} 1 & 0 & 2 & | & -3 \\ 0 & 1 & 1 & | & 0 \\ 2 & -1 & 0 & | & 0 \end{pmatrix}$ $\xrightarrow{R_3 - 2R_1} \begin{pmatrix} 1 & 0 & 2 & | & -3 \\ 0 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix} \xrightarrow{R_3 + R_2} \begin{pmatrix} 1 & 0 & 2 & | & -3 \\ 0 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix} \xrightarrow{-\frac{1}{3}R_3} \begin{pmatrix} 1 & 0 & 2 & | & -3 \\ 0 & 1 & 1 & | & 0 \end{pmatrix}$

$$\xrightarrow{\text{O}} \left(\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 0 & -1 & -4 & 6 \end{array}\right) \xrightarrow{\text{O}} \left(\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 0 & 0 & -3 & 6 \end{array}\right) \xrightarrow{\text{O}} \left(\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 0 & 0 & -3 & 6 \end{array}\right) \xrightarrow{\text{O}} \left(\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -2 \end{array}\right)$$
$$\xrightarrow{R_1 - 2R_3} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -2 \end{array}\right).$$

Therefore, (a, b, c) = (1, 2, -2), and f(a, b, c) = 3.

The intersection of the level surfaces $g_1(x, y, z) = 2x - y = 0$ and $g_2(x, y, z) = y + z = 0$ is a straight line. As there is only one local extremum, it has to be a global extremum as well. Since (0, 0, 0) is in the intersection of the level surfaces, and f(0, 0, 0) = 0 < 3, (a, b, c) = (1, 2, -2) is a global maximum. Therefore, the desired maximum is 3.

Example 9 (AM-GM inequality). Show that if $x_1, x_2, \ldots, x_n \ge 0$, then

$$\frac{x_1 + \dots + x_n}{n} \ge \sqrt[n]{x_1 \dots, x_n}$$

Solution. If $x_i = 0$ for some *i*, then the above inequality obviously hold.

Let $\mathbf{a} = (a_1, \ldots, a_n)$ be a local extremum of $f(x_1, \ldots, x_n) = x_1 \ldots x_n$ subject to $g(x_1, \ldots, x_n) = \frac{x_1 + \cdots + x_n}{n} = r$, where $a_i \neq 0$ for all *i*. By Lagrange multiplier method,

$$a_1 \dots a_n \left(\frac{1}{a_1}, \dots, \frac{1}{a_n}\right) = \lambda \left(\frac{1}{n}, \dots, \frac{1}{n}\right).$$

So $a_1 = \cdots = a_n$. Substituting into $g(a_1, \ldots, a_n) = \frac{a_1 + \cdots + a_n}{n} = r$, we have $(a_1, \ldots, a_n) = (r, \ldots, r)$, and $f(a_1, \ldots, a_n) = r^n$.

The level surface $g(x_1, \ldots, x_n) = \frac{x_1 + \cdots + x_n}{n} = r$ is an (n-1)-dimensional plane. As there is only one local extremum, it has to be a global extremum as well. Since $(nr, 0, \ldots, 0)$ is on the level surface, and $f(nr, 0, \ldots, 0) = 0 < r^n, (a_1, \ldots, a_n) = (r, \ldots, r)$ is a global maximum. Therefore, if $x_1, \ldots, x_n > 0$, let $\frac{x_1 + \cdots + x_n}{n} = r$. We have

$$x_1 \dots x_n = f(x_1, \dots, x_n) \le f(r, \dots, r) = r^n = \left(\frac{x_1 + \dots + x_n}{n}\right)^n.$$