MATH 2010E ADVANCED CALCULUS I LECTURE 11

WING HONG TONY WONG

14.7 — Extreme values and saddle points

Definition 1. Let $D \subseteq \mathbb{R}^n$ be a domain, and let $f : D \to \mathbb{R}$ be a real-valued function. $\mathbf{a} \in D$ is a **critical point** of f if $\nabla f(\mathbf{a}) = \mathbf{0}$ or $f_{x_i}(\mathbf{a})$ does not exist for some x_i .

Definition 2. Let $D \subseteq \mathbb{R}^n$ be a domain, and let $f : D \to \mathbb{R}$ be a real-valued function. Let $\mathbf{a} \in D$.

- **a** is a **local maximum** of f if there exists $B_{\epsilon}(\mathbf{a})$ such that for every $\mathbf{x} \in B_{\epsilon}(\mathbf{a})$, $f(\mathbf{a}) \ge f(\mathbf{x})$. With a small abuse of notation, we also call $f(\mathbf{a})$ a local maximum.
- **a** is a **local minimum** of f if there exists $B_{\epsilon}(\mathbf{a})$ such that for every $\mathbf{x} \in B_{\epsilon}(\mathbf{a})$, $f(\mathbf{a}) \leq f(\mathbf{x})$. With a small abuse of notation, we also call $f(\mathbf{a})$ a local minimum.
- **a** is a **saddle point** of f if f is differentiable, **a** is a critical point, and for every $B_{\epsilon}(\mathbf{a})$, there exists $\mathbf{x}, \mathbf{x}' \in B_{\epsilon}(\mathbf{a})$ such that $f(\mathbf{a}) > f(\mathbf{x})$ and $f(\mathbf{a}) < f(\mathbf{x}')$. With a small abuse of notation, we also call $f(\mathbf{a})$ a saddle point.

Theorem 3. Let $D \subseteq \mathbb{R}^n$ be a domain, and let $f : D \to \mathbb{R}$ be a real-valued function. Let $\mathbf{a} \in D$. If $f(\mathbf{a})$ is a local maximum or local minimum, then \mathbf{a} is a critical point.

Solution. As $f(\mathbf{a})$ is a local extremum, then $g(x_i) = f(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n)$ is a function of x_i , and $g(a_i)$ is a local extremum. If $f_{x_i}(\mathbf{a}) = g'(a_i)$ exists, by single-variable calculus, $f_{x_i}(\mathbf{a}) = g'(a_i) = 0$.

Theorem 4 (Second derivative test). Let $D \subseteq \mathbb{R}^n$ be an open domain, and let $f : D \to \mathbb{R}$ be a C^2 real-valued function. Let $\mathbf{a} \in D$ be a critical point of f, i.e. $\nabla f(\mathbf{a}) = \mathbf{0}$. Consider the second order partial derivative matrix

$$D^{2}f(\mathbf{a}) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(\mathbf{a}) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(\mathbf{a}) & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(\mathbf{a}) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(\mathbf{a}) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(\mathbf{a}) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(\mathbf{a}) & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(\mathbf{a}) \end{pmatrix}$$

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the *n* eigenvalues of $D^2 f(\mathbf{a})$.

- If $\lambda_1, \lambda_2, \ldots, \lambda_n < 0$, then $f(\mathbf{a})$ is a local maximum.
- If $\lambda_1, \lambda_2, \ldots, \lambda_n > 0$, then $f(\mathbf{a})$ is a local minimum.
- If $\lambda_i < 0$ and $\lambda_i > 0$, then $f(\mathbf{a})$ is a saddle point.
- If $\lambda_i = 0$, and all λ 's are of the same sign, then there is no conclusion.

Date: Tuesday, 16th June, 2015.

The proof of Theorem 4 uses Taylor's theorem on f, which will be introduced later in this course. Note that the condition C^2 guarantees that

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i},$$

so $D^2 f(\mathbf{a})$ in Theorem 4 is a symmetric matrix.

Let M_i denote the *i*-th leading principal minor of $D^2 f(\mathbf{a})$, i.e. the determinant of the $i \times i$ submatrix formed by the first *i* rows and the first *i* columns of $D^2 f(\mathbf{a})$. If $M_i \neq 0$ for all *i*, then the number of positive and negative entries in $\left\{M_1, \frac{M_2}{M_1}, \ldots, \frac{M_n}{M_{n-1}}\right\}$ are identical to those of the eigenvalues of $D^2 f(\mathbf{a})$. Besides, det $(D^2 f(\mathbf{a}))$ is the product of all eigenvalues. Therefore, if we restrict to $D \subseteq \mathbb{R}^2$, we have the following theorem.

Theorem 5. Let $D \subseteq \mathbb{R}^2$ be an open domain, and let $f : D \to \mathbb{R}$ be a C^2 real-valued function. Let $\mathbf{a} \in D$ be a critical point of f, i.e. $f_x(\mathbf{a}) = f_y(\mathbf{a}) = 0$. Consider the second order partial derivative matrix

$$D^2 f(\mathbf{a}) = \begin{pmatrix} f_{xx}(\mathbf{a}) & f_{xy}(\mathbf{a}) \\ f_{xy}(\mathbf{a}) & f_{yy}(\mathbf{a}) \end{pmatrix}.$$

- If $f_{xx}(\mathbf{a}) < 0$ and det $(D^2 f(\mathbf{a})) > 0$, then $f(\mathbf{a})$ is a local maximum.
- If $f_{xx}(\mathbf{a}) > 0$ and det $(D^2 f(\mathbf{a})) > 0$, then $f(\mathbf{a})$ is a local minimum.
- If det $(D^2 f(\mathbf{a})) < 0$, then $f(\mathbf{a})$ is a saddle point.
- If det $(D^2 f(\mathbf{a})) = 0$, then there is no conclusion.

Example 6. Let $f(x, y) = x^2 + xy + y^2 - 3y + 9$. Find all critical points and classify them using the second derivative test.

Solution. $f_x = 2x + y$, and $f_y = x + 2y - 3$. $f_x = f_y = 0$ if and only if

$$\begin{cases} 2x+y=0\\ x+2y-3=0 \end{cases}$$

or (x, y) = (-1, 2), which is the only critical point of f. $f_{xx} = 2, f_{yy} = 2, f_{xy} = 1$, so

$$D^2 f(-1,2) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

The leading principal minors are $M_1 = 2$ and $M_2 = 4 - 1 = 3$, so (x, y) = (-1, 2) is a local minimum.

Recall from our studies about quadric surfaces, if the equation is

$$z = Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F,$$

then we represent the quadratic portion by

$$\begin{pmatrix} A & B & 0 \\ B & C & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and we compute the leading principal minors M_1 and M_2 .

- If $M_1 < 0$ and $\frac{M_2}{M_1} < 0$, then the surface is a paraboloid opening downwards, and the critical point is a local maximum.
- If $M_1 > 0$ and $\frac{M_2}{M_1} > 0$, then the surface is a paraboloid opening upwards, and the critical point is a local minimum.
- If M_1 and $\frac{M_2}{M_1}$ are of opposite signs, i.e. $M_2 < 0$, then the surface is a hyperboloid, and the critical point is a saddle point.

Notice that

$$\begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix} = 2 \begin{pmatrix} A & B \\ B & C \end{pmatrix}.$$

Hence, the second derivative test and the studies of quadric surfaces are highly related.

Example 7. Let $f(x, y, z) = (3x^2 + 2y^2 + z^2)e^{-(x^2+y^2+z^2)}$. Find all critical points and classify them using the second derivative test.

Solution.

$$f_x = 6xe^{-(x^2+y^2+z^2)} - 2x(3x^2+2y^2+z^2)e^{-(x^2+y^2+z^2)} = 0$$
$$x(3 - (3x^2+2y^2+z^2)) = 0.$$
$$f_y = 4ye^{-(x^2+y^2+z^2)} - 2y(3x^2+2y^2+z^2)e^{-(x^2+y^2+z^2)} = 0$$
$$y(2 - (3x^2+2y^2+z^2)) = 0.$$
$$f_z = 2ze^{-(x^2+y^2+z^2)} - 2z(3x^2+2y^2+z^2)e^{-(x^2+y^2+z^2)} = 0$$
$$z(1 - (3x^2+2y^2+z^2)) = 0.$$

 $f_x = f_y = f_z = 0$ if and only if

- $3x^2 + 2y^2 + z^2 = 3$ and y = z = 0, i.e. $(x, y, z) = (\pm 1, 0, 0)$, $3x^2 + 2y^2 + z^2 = 2$ and x = z = 0, i.e. $(x, y, z) = (0, \pm 1, 0)$, $3x^2 + 2y^2 + z^2 = 1$ and x = y = 0, i.e. $(x, y, z) = (0, 0, \pm 1)$, or

- (x, y, z) = (0, 0, 0).

$$\begin{aligned} f_{xx} &= \left[2\left(3 - \left(3x^2 + 2y^2 + z^2\right)\right) + 2x\left(-6x\right) + 2x\left(3 - \left(3x^2 + 2y^2 + z^2\right)\right)\left(-2x\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[6 - 30x^2 - 4y^2 - 2z^2 + 4x^2\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ f_{yy} &= \left[2\left(2 - \left(3x^2 + 2y^2 + z^2\right)\right) + 2y\left(-4y\right) + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right)\right)\left(-2y\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[4 - 6x^2 - 20y^2 - 2z^2 + 4y^2\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ f_{zz} &= \left[2\left(1 - \left(3x^2 + 2y^2 + z^2\right)\right) + 2y\left(-2z\right) + 2z\left(1 - \left(3x^2 + 2y^2 + z^2\right)\right)\left(-2z\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[2 - 6x^2 - 4y^2 - 10z^2 + 4z^2\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[2x(-4y) + 2x\left(3 - \left(3x^2 + 2y^2 + z^2\right)\right)\left(-2y\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-20xy + 4xy\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-20xy + 4xy\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-16xz + 4xz\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-16xz + 4xz\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22xy + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right)\right) \left(-2z\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-12yz + 4yz\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-12yz + 4yz\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-12yz + 4yz\left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^2)} \\ &= \left[-22x + 2y\left(2 - \left(3x^2 + 2y^2 + z^2\right) \right] e^{-(x^2 + y^2 + z^$$

$$D^{2}f(\pm 1, 0, 0) = e^{-1} \begin{pmatrix} -12 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -4 \end{pmatrix}, \text{ so } (\pm 1, 0, 0) \text{ are local maxima.}$$
$$D^{2}f(0, \pm 1, 0) = e^{-1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \text{ so } (0, \pm 1, 0) \text{ are saddle points.}$$
$$D^{2}f(0, 0, \pm 1) = e^{-1} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}, \text{ so } (0, 0, \pm 1) \text{ are saddle points.}$$
$$D^{2}f(0, 0, 0) = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \text{ so } (0, 0, 0) \text{ is a local minimum.}$$

Global extreme values

Theorem 8 (Extreme value theorem). Let $D \subseteq \mathbb{R}^n$ be a compact domain, i.e. closed and bounded, and let $f : D \to \mathbb{R}$ be a continuous real-valued function. Then f has a global maximum and a global minimum.

A global extremum is either a local extremum in int(D) or on the boundary ∂D .

Example 9. Let $f(x, y) = x^2 + xy + y^2 - 3y + 9$, defined in the domain

$$D = \{(x, y) : -2 \le x \le 2, 0 \le y \le 4\}.$$

Find the global maximum and global minimum of f.

Solution. In Example 6, we found that f has a critical point at $(-1,2) \in int(D)$, and f(-1,2) = 6 is a local minimum.

On $L_1 = \{(-2, y) : 0 \le y \le 4\},\$

$$f(-2,y) = y^2 - 5y + 13 = \left(y - \frac{5}{2}\right)^2 + \frac{27}{4}.$$

0

Hence, $\min_{0 \le y \le 4} f(-2, y) = f\left(-2, \frac{5}{2}\right) = \frac{27}{4}$. As for maximum, f(-2, 0) = 13, and f(-2, 4) = 9, so $\max_{0 \le y \le 4} f(-2, y) = 13$. On $L_2 = \{(2, y) : 0 \le y \le 4\}$,

$$f(2,y) = y^2 - y + 13 = \left(y - \frac{1}{2}\right)^2 + \frac{51}{4}.$$

Hence, $\min_{0 \le y \le 4} f(2, y) = f\left(2, \frac{1}{2}\right) = \frac{51}{4}$. As for maximum, f(2, 0) = 13, and f(2, 4) = 25, so $\max_{0 \le y \le 4} f(2, y) = 25$.

On $L_3 = \{(x,0) : -2 \le x \le 2\}$, $f(x,0) = x^2 + 9$. Hence, $\min_{\substack{-2 \le x \le 2}} f(x,0) = f(0,0) = 9$. As for maximum, f(-2,0) = 13, and f(2,0) = 13, so $\max_{\substack{-2 \le x \le 2}} f(x,0) = 13$.

On $L_4 = \{(x,4) : -2 \le x \le 2\}$, $f(x,4) = x^2 + 4x + 13 = (x+2)^2 + 9$. Hence, $\min_{-2 \le x \le 2} f(x,4) = f(-2.4) = 9$. As for maximum, f(2,4) = 25, so $\max_{-2 \le x \le 2} f(x,4) = 25$.

Therefore, $\min_{(x,y)\in D} f(x,y) = 6$ at (x,y) = (-1,2), and $\max_{(x,y)\in D} f(x,y) = 25$ at (x,y) = (2,4).

Example 10. Let $f(x, y) = x^2 + xy + y^2 - 3y + 9$, defined in the domain $D = \{(x, y) : x^2 + y^2 \le 4\}.$

Find the global maximum and global minimum of f.

Solution. The critical point found in Example 6 is $(-1, 2) \notin D$. Hence, the global extrema can only be on the boundary ∂D . We need to parametrize ∂D in only one variable, so we let

$$DD = \{2(\cos\theta, \sin\theta) : 0 \le \theta \le 2\pi\}.$$

Let $g(\theta) = f(2(\cos\theta, \sin\theta)) = 4\cos\theta\sin\theta - 6\sin\theta + 13$. Then
 $g'(\theta) = -4\sin^2\theta + 4\cos^2\theta - 6\cos\theta = 0$
 $2 - 2\sin^2\theta + 2\cos^2\theta - 3\cos\theta = 2$
 $4\cos^2\theta - 3\cos\theta - 2 = 0$
 $\cos\theta = \frac{3 - \sqrt{41}}{8}$ or $\frac{3 + \sqrt{41}}{8}$ (rejected since > 1)

and $\sin \theta = \pm \sqrt{1 - \left(\frac{3 - \sqrt{41}}{8}\right)^2} = \pm \frac{\sqrt{14 + 6\sqrt{41}}}{8}.$

Since $\cos \theta < 0$, $g(\theta)$ should attain the maximum when $\sin \theta < 0$. Therefore, the global maximum is at $(x, y) = \left(\frac{3 - \sqrt{41}}{8}, -\frac{\sqrt{14 + 6\sqrt{41}}}{8}\right)$, and the global minimum is at $(x, y) = \left(\frac{3 - \sqrt{41}}{8}, \frac{\sqrt{14 + 6\sqrt{41}}}{8}\right)$.