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14.7 — Extreme values and saddle points

Definition 1. Let D C R" be a domain, and let f : D — R be a real-valued function.
a € D is a critical point of f if Vf(a) =0 or f,,(a) does not exist for some x;.

Definition 2. Let D C R" be a domain, and let f : D — R be a real-valued function.
Let ac D.
e a is a local maximum of f if there exists B.(a) such that for every x € B.(a),
f(a) > f(x). With a small abuse of notation, we also call f(a) a local maximum.
e a is a local minimum of f if there exists B.(a) such that for every x € B.(a),
f(a) < f(x). With a small abuse of notation, we also call f(a) a local minimum.
e a is a saddle point of f if f is differentiable, a is a critical point, and for every
B.(a), there exists x,x’ € B.(a) such that f(a) > f(x) and f(a) < f(x'). With
a small abuse of notation, we also call f(a) a saddle point.

Theorem 3. Let D C R"™ be a domain, and let f : D — R be a real-valued function. Let
ac D. If f(a) is a local mazimum or local minimum, then a is a critical point.

Solution. As f(a) is a local extremum, then g(z;) = f(aq,...,a;-1, %, Qip1,...,0,) IS &
function of x;, and g(a;) is a local extremum. If f, (a) = ¢'(a;) exists, by single-variable
calculus, f.,(a) = ¢'(a;) = 0.

U

Theorem 4 (Second derivative test). Let D C R"™ be an open domain, and let f : D — R
be a C? real-valued function. Let a € D be a critical point of f, i.e. V f(a) = 0. Consider
the second order partial derivative matriz
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Let A\, Ao, ..., A\ be the n eigenvalues of D?f(a).

If M, Aoy ..o, A, <0, then f(a) is a local mazimum.

If M, Aoy ..o A >0, then f(a) is a local minimum.

If \i <0 and \; > 0, then f(a) is a saddle point.

If \i =0, and all \’s are of the same sign, then there is no conclusion.

Date: Tuesday, 16" June, 2015.



The proof of Theorem 4 uses Taylor’s theorem on f, which will be introduced later in
this course. Note that the condition C? guarantees that
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so D?f(a) in Theorem 4 is a symmetric matrix.

Let M; denote the i-th leading principal minor of D?f(a), i.e. the determinant of the
i X i submatrix formed by the first 7 rows and the first ¢ columns of D?f(a). If M; # 0

M, M,

for all ¢, then the number of positive and negative entries in ¢ My, — AR are
1 n—1

identical to those of the eigenvalues of D?f(a). Besides, det (D?f(a )) is the product of

all eigenvalues. Therefore, if we restrict to D C R?, we have the following theorem.

Theorem 5. Let D C R? be an open domain, and let f : D — R be a C? real-valued
function. Let a € D be a critical point of f, i.e. fi(a) = f,(a) =0. Consider the second
order partial derivative matrix

20y — [ Je2(@) fry(a)
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e If fuu(a) <0 and det (D?f(a)) > 0, then f(a) is a local mazimum.
o [f fu.(a) > O and det (D?f(a)) > 0, then f(a) is a local minimum.

e Ifdet (D?f(a)) <0, then f(a) is a saddle point.

o Ifdet (D?f ) = 0, then there is no conclusion.

Example 6. Let f(z,y) = 2> + vy + v* — 3y + 9. Find all critical points and classify
them using the second derivative test.

Solution. f, =2x+y, and f, =z + 2y — 3. f, = f, = 0 if and only if

20 +y =0
r+2y—3 =0,

or (z,y) = (—1,2), which is the only critical point of f.

foe =2, fyy =2, foy =1, 50
D2f(=1,2) = G ;)

The leading principal minors are M; = 2 and My =4 —1 = 3, s0 (z,y) = (—1,2) is a
local minimum.

OJ
Recall from our studies about quadric surfaces, if the equation is
2z = A2z® + 2Bxy + Cy*> + Dz + Ey + F,
then we represent the quadratic portion by

A B O
B C 0],
0 0 0

and we compute the leading principal minors M; and M.
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e If M; <0 and % < 0, then the surface is a paraboloid opening downwards, and
the critical point 1is a local maximum.

e If M7 > 0 and % > 0, then the surface is a paraboloid opening upwards, and
the critical point ié a local minimum.

e If M and % are of opposite signs, i.e. My < 0, then the surface is a hyperboloid,

and the criticlzal point is a saddle point.
Notice that
(b ) =2 (4 )
Jay  Jyy B C)"
Hence, the second derivative test and the studies of quadric surfaces are highly related.

Example 7. Let f(z,y,2) = (322 + 2® + 2%)e~@*+¥*+2*)  Find all critical points and
classify them using the second derivative test.

Solution.
fo = 6xe@HH) 95322 4 242 4 22)e” @) — g
P332 1257 4 ) =0
fy = Aye” @) 9y (302 4 9y2 4 22)em @) —
y(2 - (B2* + 2" +2%) =0
J.= 2ze~ @Y H) _ 22(32% + 2y* + z2)6—(12+y2+z ) =0
2(1— (32° + 2y +2%)) = 0

fe = f, = f. =0if and only if
e 322+ 2y2 + 22 =3 and y=2z=0,1ie (z,y,2) = (£1,0,0),
302 427 + 22 =2and v = 2 = 0, Le. (2,,2) = (0,£1,0),
e (z,y,2) = (0,0,0).
foz = [2(3 — (31*2 + 2?/2 + z2)) + 2z(—6x) + 2I(3 _ (31,2 + 2y2 4 22)) (—QI)] o (@22 12?)
= [6 — 302 — 41® — 22% + 422(32% 4 2 4 22)]e” @ HYH),
fyy = [2(2 — (31‘2 -+ 2y2 —+ Z2>) + 2y(-4y) + 2y(2 _ (3%2 + 2y2 + 22))(_2(@)} 6_(x2+y2+22)
= [4 — 622 — 203/2 — 9,2 + 4y2(3x2 + 2y2 + 22)]6_(x2+y2+z2),
for = [2(1 — (31}2 + 2y2 4 2'2)) + Qy(—QZ) + 22,(1 _ (31_2 + 2y2 + 22))<—22)} e_(12+y2+22)
:[2—6952—43/ 102% + 42%(32* + 2¢° +z)] (22 +y?+22)
[22(—4y) + 22(3 — (32” + 2y° + 2%)) (—2y)] e~ (@ +y*+2%)
[—20zy + dzy(32” + 2° + 2%)]e” V) = (=5 4 32” + 27 + 2%)daye V),
[Zx —22) + 21‘(3 — (32 + 2% + 2 ))(_22)]6—(x2+y2+z2)
-
-

1622 + d22(322 + 202 + 22)]e @'+ = (4 4 322 + 2y° + 2° Ay ze @ +z"),
Y
2y 22 —I— 2y (2 — (3:10 + 2y + 2z ))(_22)}6—(z2+y2+z2)

12z + dyz(3a® + 27 + 22)]e” ) = (=34 30 4 297 4 27 dyze” T,
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D?f(£1,0,0) =e 1| 0 —2 0 |,so (£1,0,0) are local maxima.
0 0 —4
2 0 0
D%f(0,+£1,0)=e ' [0 =8 0 |, so (0,41,0) are saddle points.
0O 0 =2
4 0 0
D%f(0,0,+£1)=e 1[0 2 0 |,so (0,0,%1) are saddle points.
0 0 —4

D?*£(0,0,0) =

, 80 (0,0,0) is a local minimum.

(s>l el )]
O = O
N OO

Global extreme values

Theorem 8 (Extreme value theorem). Let D C R™ be a compact domain, i.e. closed and
bounded, and let f : D — R be a continuous real-valued function. Then f has a global
mazimum and a global minimum.

A global extremum is either a local extremum in int(D) or on the boundary dD.

Example 9. Let f(z,y) = 2% + 2y + 3*> — 3y + 9, defined in the domain
D={(z,y): —2<2<2,0<y<4}
Find the global maximum and global minimum of f.

Solution. In Example 6, we found that f has a critical point at (—1,2) € int(D), and
f(—1,2) = 6 is a local minimum.
On Ly ={(-2,y) : 0 <y <4},

5\% 27
f(—Z,y)=y2—5y—|—13:(y—§) +Z'

. 5) 27 .
Hence, 021;24f(—2,y) = f(—2,§> =7 As for maximum, f(—2,0) = 13, and
f(=2,4) =9, so max f(~2,y) = 13.

On Ly = {(2,9) : 0 <y < 4},

1\> 51
f(2,y)=y2—y+13=(y—§) + T

1 51
Hence, min f(2,y) = f |2, —) = —. As for maximum, f(2,0) = 13, and f(2,4) = 25,
0<y<4 2 4
SO orélféf@’ y) = 25.
On Ly = {(£,0) : =2 <@ <2}, f(2,0) = 2 +9. Hence, min_f(z,0) = f(0,0) = 9.
As for maximum, f(—2,0) = 13, and f(2,0) = 13, so gia}izf(_x’_o) = 13.

On Ly = {(2,4) : =2 < 2 <2}, f(z,4) = a2+ 42+ 13 = (z +2)2 + 9. Hence,
min2f($,4) = f(—2.4) = 9. As for maximum, f(2,4) = 25, so IQIiaEQf(x,él) = 25.

—2<z<
4



Therefore, min f(z,y) = 6 at (z,y) = (—1,2), and maXDf(x,y) =25 at (z,y) =
x,y)€E

(z.y)eD (z.y)
(2,4).
O

Example 10. Let f(x,y) = 2% + 2y + y* — 3y + 9, defined in the domain
D= {(z,y) : a® +y* < 4}.
Find the global maximum and global minimum of f.

Solution. The critical point found in Example 6 is (—1,2) ¢ D. Hence, the global extrema
can only be on the boundary dD. We need to parametrize 0D in only one variable, so

we let
0D = {2(cosf,sinf) : 0 < 0 < 27}.

Let g(6) = f(2(cos,sinf)) = 4cosfsinf — 6sin 6 + 13. Then
g (0) = —4sin® 0 + 4cos* — 6cosf = 0
2 —2sin® 6 + 2cos’ — 3cosh = 2
4cos*f —3cosh —2 =0

3 —v4l 3+ v4l
cosf = g Of +8 (rejected since > 1)
2
. 3—v4l V14 4+ 6v41

Since cosf < 0, g(#) should attain the maximum when sind < 0. Therefore, the

3— V4l V14 + 641
- 8

8

ot (@.9) = (3—@ \/14+6\/ﬁ>
e 8 8 '

global maximum is at (z,y) = ( ), and the global minimum is




