MATH 2010E ADVANCED CALCULUS I LECTURE 10

WING HONG TONY WONG

14.5 — Directional derivatives and gradient vectors

Definition 1. Let $D \subseteq \mathbb{R}^n$ be an open domain. Let $f : D \to \mathbb{R}$ be a real-valued function. Let $\mathbf{a} \in D$, and let \mathbf{u} be a unit vector in \mathbb{R}^n . The **directional derivative** of f at $\mathbf{x} = \mathbf{a}$ in the direction \mathbf{u} is

$$D_{\mathbf{u}}f(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t}.$$

Geometrically, when we consider the directional derivative $D_{\mathbf{u}}f(\mathbf{a})$, we first consider the curve obtained by intersecting the surface

$$x_{n+1} = f(x_1, \dots, x_n)$$

with the 2-dimensional plane

$$\{(x_1,\ldots,x_n): x_1 = a_1 + tu_1, \ldots, x_n = a_n + tu_n\}.$$

The partial derivative is the slope of the curve at the point $\mathbf{x} = \mathbf{a}$ on the 2-dimensional plane.

From this, we can easily see that the directional derivative is a generalization of partial derivatives. In fact, $f_{x_i} = D_{\mathbf{e}_i} f$, where \mathbf{e}_i is the vector of all zeros except a 1 in the *i*-th entry.

Another way to view directional derivative is

$$D_{\mathbf{u}}f(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t} = \left. \frac{d}{dt}f(\mathbf{a} + t\mathbf{u}) \right|_{t=0}$$

If f is differentiable at **a**, then we can view this as the case $\mathbb{R} \to \mathbb{R}^n \to \mathbb{R}$ in chain rule, so

$$\frac{d}{dt}f(\mathbf{a}+t\mathbf{u})\Big|_{t=0} = \left(\frac{\partial f}{\partial x_1}\Big|_{\mathbf{x}=\mathbf{a}}\right) \left(\frac{dx_1}{dt}\Big|_{t=0}\right) + \dots + \left(\frac{\partial f}{\partial x_1}\Big|_{\mathbf{x}=\mathbf{a}}\right) \left(\frac{dx_1}{dt}\Big|_{t=0}\right)$$
$$= f_{x_1}(\mathbf{a})u_1 + \dots + f_{x_n}(\mathbf{a})u_n$$
$$= \left(f_{x_1}(\mathbf{a}), \dots, f_{x_n}(\mathbf{a})\right) \cdot (u_1, \dots, u_n)$$
$$= \nabla f(\mathbf{a}) \cdot \mathbf{u}.$$

In other words, all directional derivatives are linear combinations of n partial derivatives.

Example 2. Find the directional derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (a, b) = (2, 0) in the direction $\mathbf{v} = (3, -4)$.

Date: Thursday, 11th June, 2015.

Solution. The unit vector in the direction of \mathbf{v} is

$$\mathbf{u} = \frac{(3, -4)}{\sqrt{3^2 + (-4)^2}} = \left(\frac{3}{5}, -\frac{4}{5}\right).$$

Therefore, the desired direction derivative is

$$D_{\mathbf{u}}f(2,0) = \nabla f(2,0) \cdot \left(\frac{3}{5}, -\frac{4}{5}\right)$$

= $\left(e^{y} - y\sin(xy), xe^{y} - x\sin(xy)\right)\Big|_{(x,y)=(2,0)} \cdot \left(\frac{3}{5}, -\frac{4}{5}\right)$
= $(1,2) \cdot \left(\frac{3}{5}, -\frac{4}{5}\right) = -1.$

In the definition of differentiability of
$$f$$
 at $\mathbf{x} = \mathbf{a}$, we have

$$\lim_{\mathbf{h} \to \mathbf{0}} \frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - \nabla f(\mathbf{a}) \cdot \mathbf{h}}{\|\mathbf{h}\|} = 0$$

$$\lim_{\mathbf{h} \to \mathbf{0}} \left(\frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a})}{\|\mathbf{h}\|} - \nabla f(\mathbf{a}) \cdot \mathbf{h} \right) = 0$$

$$\lim_{\|\mathbf{u}\|=1} \left(\frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t} - \nabla f(\mathbf{a}) \cdot \mathbf{u} \right) = 0 \quad \text{by letting } t = \|\mathbf{h}\|.$$

$$\Leftrightarrow \quad \text{For all unit vectors } \mathbf{u}, \quad \lim_{t \to 0^+} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t} = \nabla f(\mathbf{a}) \cdot \mathbf{u}.$$
By using $-\mathbf{u}$ in the last line, we have
For all unit vectors $\mathbf{u}, \quad \lim_{t \to 0^+} \frac{f(\mathbf{a} + t(-\mathbf{u})) - f(\mathbf{a})}{t} = \nabla f(\mathbf{a}) \cdot (-\mathbf{u})$

$$\lim_{t \to 0^+} \frac{f(\mathbf{a} + (-t)\mathbf{u}) - f(\mathbf{a})}{-t} = \nabla f(\mathbf{a}) \cdot \mathbf{u}$$

$$\lim_{t \to 0^-} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{-t} = \nabla f(\mathbf{a}) \cdot \mathbf{u}$$

$$\lim_{t \to 0^-} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t} = \nabla f(\mathbf{a}) \cdot \mathbf{u}.$$

In other words, f is differentiable at $\mathbf{x} = \mathbf{a}$ if and only if all directional derivatives $D_{\mathbf{u}}f(\mathbf{a})$ exist at \mathbf{a} and can be calculated as $\nabla f(\mathbf{a}) \cdot \mathbf{u}$.

Warning: This proof looks pretty, but it is WRONG!! This is because once I let $\mathbf{h} = t\mathbf{u}$, and shrink $t \to 0$ for each \mathbf{u} , I have already restricted myself to use straight paths for \mathbf{h} to get to $\mathbf{0}$, but "lim" needs to check every possible path. Therefore, this proof is totally worthless. The conclusion is WRONG as well. Please refer to Example 4. I am very sorry for the confusion.

Example 3. Let
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq 0\\ 0 & \text{otherwise} \end{cases}$$
. We have shown in Lecture notes

9 that this function is not differentiable at (0,0). Find $D_{\mathbf{u}}f(0,0)$ for all unit vectors \mathbf{u} , and compare with $\nabla f(0,0) \cdot \mathbf{u}$.

Solution. Every unit vector in \mathbb{R}^2 can be written as $\mathbf{u} = (\cos \theta, \sin \theta)$ for some θ . Hence,

$$D_{\mathbf{u}}f(0,0) = \lim_{t \to 0} \frac{f((0,0) + t(\cos\theta,\sin\theta)) - f(0,0)}{t}$$
$$= \lim_{t \to 0} \frac{\frac{t^2 \cos\theta \sin\theta}{\sqrt{t^2 \cos^2\theta + t^2 \sin^2\theta}} - 0}{t} = \lim_{t \to 0} \cos\theta \sin\theta \frac{t}{|t|}$$

which exists if and only if $\cos \theta \sin \theta = 0$, and at that moment, the directional derivatives are precisely the partial derivatives.

$$f_x(0,0) = D_{(1,0)}f(0,0) = \lim_{t \to 0} \cos 0 \sin 0 \frac{t}{|t|} = 0,$$

and

$$f_y(0,0) = D_{(0,1)}f(0,0) = \lim_{t \to 0} \cos \frac{\pi}{2} \sin \frac{\pi}{2} \frac{t}{|t|} = 0.$$

In other words, $\nabla f(0,0) = (0,0)$. Therefore, $\nabla f(0,0) \cdot \mathbf{u} = 0$ for all unit vectors \mathbf{u} , which do not agree with the directional derivatives $D_{\mathbf{u}}f(0,0)$.

Example 4. Let $f(x,y) = \begin{cases} 1 & \text{if } 0 < y < x^2 \\ 0 & \text{otherwise} \end{cases}$.

(a) Determine whether f is differentiable at (0, 0).

(b) Find $D_{\mathbf{u}}f(0,0)$ for all unit vectors \mathbf{u} , and compare with $\nabla f(0,0) \cdot \mathbf{u}$.

Solution. (a) $\lim_{\substack{(h,k)=(2t,2t^2)\\t\to 0}} f(x,y) = 1$ since $2t^2 < (2t)^2$, while $\lim_{\substack{(h,k)=(t,0)\\t\to 0}} f(x,y) = 0$. Hence,

f is not continuous at (0,0), implying that f is not differentiable at (0,0). (b)

$$D_{\mathbf{u}}f(0,0) = \lim_{t \to 0} \frac{f((0,0) + t(\cos\theta, \sin\theta)) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(t(\cos\theta, \sin\theta))}{t}.$$

Case 1. $\sin \theta = 0$.

 $f(t(\cos\theta,\sin\theta)) = f(t,0) = 0$. Hence, the directional derivative is 0. Case 2. $\sin\theta > 0$.

For all $t \in [0, \sin \theta]$, $(t \cos \theta)^2 = t^2 \cos^2 \theta \le t^2 \le t \sin \theta$, so $f(t(\cos \theta, \sin \theta)) = 0$; for all $t \in [-\sin \theta, 0)$, $t \sin \theta < 0$, so $f(t(\cos \theta, \sin \theta)) = 0$. Hence, the directional derivative is 0. *Case* 3. $\sin \theta < 0$.

For all $t \in [0, -\sin\theta]$, $t\sin\theta < 0$, so $f(t(\cos\theta, \sin\theta)) = 0$; for all $t \in [\sin\theta, 0)$, $(t\cos\theta)^2 = t^2\cos^2\theta \le t^2 \le t\sin\theta$, so $f(t(\cos\theta, \sin\theta)) = 0$. Hence, the directional derivative is 0.

Therefore, $D_{\mathbf{u}}f(0,0) = 0$ for all unit vectors **u**. In particular, $f_x(0,0) = f_y(0,0) = 0$, so $\nabla f(0,0) \cdot \mathbf{u} = 0 = D_{\mathbf{u}}f(0,0)$.

If f is differentiable at $\mathbf{x} = \mathbf{a}$, then the equation of the tangent plane of $x_{n+1} = f(\mathbf{x})$ at $\mathbf{x} = \mathbf{a}$ is

$$\begin{aligned} x_{n+1} &= f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) \\ &= f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|} \cdot \|\mathbf{x} - \mathbf{a}\| \\ &= f(\mathbf{a}) + D_{\frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|}} f(\mathbf{a}) \cdot (\|\mathbf{x} - \mathbf{a}\|). \end{aligned}$$

Theorem 5. Let $f : D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a differentiable real-valued function. At $\mathbf{a} \in D$, (a) the value of f increases most rapidly along the direction ∇f .

(b) the value of f decreases most rapidly along the direction $-\nabla f$.

(c) the value of f does not change along any direction **u** that is orthogonal to ∇f .

Proof. Let **u** be a unit vector. First, we note that the rate of change of f along the direction **u** at $\mathbf{x} = \mathbf{a}$ is given by $D_{\mathbf{u}}f(\mathbf{a})$. Since

$$D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u} = \|\nabla f(\mathbf{a})\| \|\mathbf{u}\| \cos \theta = \|\nabla f(\mathbf{a})\| \cos \theta,$$

(a) the maximum increasing rate of f occurs when $\theta = 0$, i.e. \mathbf{u} is in the same direction as $\nabla f(\mathbf{a})$;

(b) the maximum decreasing rate of f occurs when $\theta = \pi$, i.e. **u** is in the same direction as $-\nabla f(\mathbf{a})$;

(c) the rate of change of f is 0 when $\theta = \frac{\pi}{2}$, i.e. **u** is orthogonal to $\nabla f(\mathbf{a})$.

For $\mathbf{a} \in D$, let $f(\mathbf{a}) = k$ for some constant $k \in \mathbb{R}$. In view of Theorem 5(c), the equation of the tangent plane of the level surface $f(\mathbf{x}) = k$ at the point $\mathbf{x} = \mathbf{a}$ (in case of n = 2, it is the equation of the tangent line of the level curve) is

$$\nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) = 0$$

or

$$f_{x_1}(\mathbf{a})(x_1 - a_1) + \dots + f_{x_n}(\mathbf{a})(x_n - a_n) = 0.$$

Remark: Compare this with the equation of the tangent plane of the surface $x_{n+1} = f(\mathbf{x})$ at $\mathbf{x} = \mathbf{a}$

$$x_{n+1} = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

We can consider this surface as the level surface

$$g(\mathbf{x}, x_{n+1}) = x_{n+1} - f(\mathbf{x}) = 0,$$

then the equation of the tangent plane of this level surface at $(\mathbf{x}, x_{n+1}) = (\mathbf{a}, f(\mathbf{a}))$ is

$$\nabla g(\mathbf{a}, f(\mathbf{a})) \cdot (\mathbf{x} - \mathbf{a}, x_{n+1} - f(\mathbf{a})) = 0$$

$$(-\nabla f(\mathbf{a}), 1) \cdot (\mathbf{x} - \mathbf{a}, x_{n+1} - f(\mathbf{a})) = 0$$

$$-\nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) + x_{n+1} - f(\mathbf{a}) = 0$$

$$x_{n+1} = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}).$$

Example 6. Let $D \subseteq \mathbb{R}^n$ be an open domain, and let $\mathbf{a} \in D$. Let $f : D \to \mathbb{R}$ be a real-valued function differentiable at \mathbf{a} . Let $k \in \mathbb{R}$ be a constant such that $f(\mathbf{a}) = k$. Let Γ be the level surface $f(\mathbf{x}) = k$. Let $\mathbf{x} : [a, b] \to \Gamma$ be a curve such that $\mathbf{x}(t_0) = \mathbf{a}$ for some $t_0 \in (a, b)$. Also, assume that \mathbf{x} is differentiable at $t = t_0$. Show that $\nabla f(\mathbf{a})$ is orthogonal to $\mathbf{x}'(t_0)$.

Solution. Method 1 (geometric interpretation). $\nabla f(\mathbf{a})$ is normal to the tangent plane of the level surface $f(\mathbf{x}) = k$ at $\mathbf{x} = \mathbf{a}$. Since $\mathbf{x}(t)$ is a curve on the level surface $f(\mathbf{x}) = k$, and $\mathbf{x}'(t_0)$ is a tangent vector of the level surface at $\mathbf{x} = \mathbf{a}$, i.e. $\mathbf{x}'(t_0)$ lies on the tangent plane. Therefore, $\nabla f(\mathbf{a})$ is orthogonal to $\mathbf{x}'(t_0)$.

Method 2 (chain rule). First, note that $f(\mathbf{x}(t)) = k$, which is the $\mathbb{R} \to \mathbb{R}^n \to \mathbb{R}$ case. By chain rule at $t = t_0$, we have

$$\nabla f(\mathbf{a}) \cdot \mathbf{x}'(t_0) = 0.$$

Example 7. Let $f(x, y, z) = x^2 - xy + \frac{1}{2}y^2 + 3$.

(a) Find the equation of the tangent plane to the surface z = f(x, y) at (3, 2).

(b) Find the equation of the tangent line to the level curve f(x, y) = 8 at (3, 2).

Solution. (a) The equation is

$$\begin{split} z &= f(3,2) + \nabla f(3,2) \cdot (x-3,y-2) \\ z &= 8 + (2x-y,-x+y)|_{(x,y)=(3,2)} \cdot (x-3,y-2) \\ z &= 8 + (4,-1) \cdot (x-3,y-2) \\ z &= 8 + 4x - 12 - y + 2 \\ z &= 4x - y - 2. \end{split}$$

(b) The equation is

$$\nabla f(3,2) \cdot (x-3, y-2) = 0$$

4x - 12 - y + 2 = 0
4x - y - 10 = 0.

As the gradient operator ∇ is so useful, it will be helpful to know some of its properties. Let $f, g: D \subseteq \mathbb{R}^n \to \mathbb{R}$ be two real-valued functions such that $\nabla f(\mathbf{a})$ and $\nabla g(\mathbf{a})$ exist for some $\mathbf{a} \in D$, and let $k \in \mathbb{R}$, then

• (sum and difference rule) $\nabla(f \pm g)(\mathbf{a}) = \nabla f(\mathbf{a}) \pm \nabla g(\mathbf{a})$.

• (product rules)

$$-\nabla(kf)(\mathbf{a}) = k\nabla f(\mathbf{a}).$$

$$-\nabla(fg)(\mathbf{a}) = f(\mathbf{a})\nabla g(\mathbf{a}) + g(\mathbf{a})\nabla f(\mathbf{a}).$$
• (quotient rule) $\nabla\left(\frac{f}{g}\right)(\mathbf{a}) = \frac{g(\mathbf{a})\nabla f(\mathbf{a}) - f(\mathbf{a})\nabla g(\mathbf{a})}{g^2(\mathbf{a})}$ if $g(\mathbf{a}) \neq 0$.

14.6 — Tangent planes and differentials

Let $D \subseteq \mathbb{R}^n$ be an open domain. Let $f : D \to \mathbb{R}$ be a differentiable function at $\mathbf{a} \in D$. We have already derived the formula for tangent plane of the surface $x_{n+1} = f(\mathbf{x})$ at $\mathbf{x} = \mathbf{a}$ in Section 14.3 in Lecture notes 8 as

$$x_{n+1} = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

or

$$x_{n+1} = f(\mathbf{a}) + f_{x_1}(\mathbf{a})(x_1 - a_1) + \dots + f_{x_n}(\mathbf{a})(x_n - a_n)$$

Also, from our discussions in Section 14.3, the tangent plane is a **linearization** of the function $x_{n+1} = f(\mathbf{x})$ near $\mathbf{x} = \mathbf{a}$, i.e.

$$L(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}),$$

and $f(\mathbf{x}) \approx L(\mathbf{x})$ is the standard linear approximation of f at $\mathbf{x} = \mathbf{a}$. The upper bound of the error of this approximation is given by

$$E(\mathbf{x}) = |f(\mathbf{x}) - L(\mathbf{x})| \le \frac{1}{2}M(|x_1 - a_1| + \dots + |x_n - a_n|)^2,$$

where M is an upper bound of all $|f_{x_ix_j}|$ over $D, 1 \le i, j \le n$, if it exists.

Example 8. Let $f(x, y, z) = x^2 - xy + 3 \sin z$.

(a) Find the linearization L(x, y, z) at the point (2, 1, 0).

(b) If we are to use L(x, y, z) to approximate f(x, y, z) in

$$R = \{(x, y, z) : |x - 2| \le 0, 01, |y - 1| \le 0, 02, |z| \le 0.01\},\$$

find an upper bound of the error.

Solution. (a)

$$L(2,1,0) = f(2,1,0) + \nabla f(2,1,0) \cdot (x-2, y-1, z-0)$$

= 2 + (2x - y, -x, 3 cos z)|_{(x,y,z)=(2,1,0)} · (x - 2, y - 1, z)
= 2 + (3, -2, 3) \cdot (x - 2, y - 1, z)
= 2 + 3x - 6 - 2y + 2 + 3z
= 3x - 2y + 3z - 2.

(b) $f_{xx} = 2$, $f_{yy} = 0$, $f_{zz} = -3 \sin z$, $f_{xy} = f_{yx} = -1$, $f_{yz} = f_{zy} = 0$, $f_{xz} = f_{zx} = 0$. The maximum of all these functions in R is 2, so we can take M = 2.

$$E(x, y, z) \le \frac{1}{2}M(|x - 2| + |y - 1| + |z - 0|)^2 \le \frac{1}{2}(2)(0.01 + 0.02 + 0.01)^2 = 0.0016.$$

If we rearrange the terms in

$$x_{n+1} = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

into

$$x_{n+1} - f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}),$$

we obtain the following two results in differentials.

- (1) $df = \nabla f(\mathbf{a}) \cdot \mathbf{u} \, ds$, where ds denotes the small distance from \mathbf{a} in the direction of the unit vector \mathbf{u} .
- (2) $df = f_{x_1}(\mathbf{a}) dx_1 + \cdots + f_{x_n}(\mathbf{a}) dx_n$, which is called the **total differential** of f at $\mathbf{x} = \mathbf{a}$.

Example 9. A cylinder has radius 1 and height 5. If the radius increases by 0.03, and the height decreases by 0.1, estimate the absolute change in the volume of the can.

Solution. Let r denote the radius, h denote the height, and V denote the volume of the cylinder. Then $V = \pi r^2 h$. The total differential of f at (r, h) = (1, 5) is

$$dV = (2\pi rh)|_{(r,h)=(1,5)} dr + (\pi r^2)|_{(r,h)=(1,5)} dh$$

= 10\pi dr + \pi dh.

Now, $dr \approx 0.03$ and $dh \approx -0.1$, so

 $dV \approx 10\pi(0.03) + \pi(-0.1) = 0.2\pi.$