MATH 2010E ADVANCED CALCULUS I
LECTURE 10

WING HONG TONY WONG

14.5 — Directional derivatives and gradient vectors

Definition 1. Let D C R” be an open domain. Let f : D — R be a real-valued function.
Let a € D, and let u be a unit vector in R”. The directional derivative of f at x =a
in the direction u is
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Geometrically, when we consider the directional derivative D, f(a), we first consider
the curve obtained by intersecting the surface

Tntl = f(xl, R ,SL’”)
with the 2-dimensional plane
{(x1,...,2,) s 21 = a1 + tug, ..., Ty = ap + tu,}.

The partial derivative is the slope of the curve at the point x = a on the 2-dimensional
plane.

From this, we can easily see that the directional derivative is a generalization of partial
derivatives. In fact, f,, = De,f, where e; is the vector of all zeros except a 1 in the ¢-th
entry.

Another way to view directional derivative is

Duf(a) =lim ! @+ “1) — /@) _ %f(aJr tu)

t=0

If f is differentiable at a, then we can view this as the case R — R"™ — R in chain rule,
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= fxl(a)ul +---+ fxn(a)un

= (fm(a),...,fmn(a)) (g, uy)
=Vf(a)- u.

d
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In other words, all directional derivatives are linear combinations of n partial derivatives.

Example 2. Find the directional derivative of f(z,y) = xe¥ 4+ cos(xy) at the point
(a,b) = (2,0) in the direction v = (3, —4).
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Solution. The unit vector in the direction of v is

Therefore, the desired direction derivative is

Duf(2,0) = Vf(2,0) - (% _g)

: : 3 4
= (¢¥ — ysin(zy), ze! — zsin(zy)) |($7y):(270) : (— ——>

5 5
3 4
=(1,2)-({=,—= ) = —1.
(1,2) (5’ 5)

In the definition of differentiability of f at x = a, we have
f(at+h)—f(a)—V/f(a)-h

= bl ’
: f(a+h)— f(a) h )
| Vi) ) =0
i (7 T ]
lirr_l1 (f(a+ tl;) —J@) Vf(a)- ) 0 by letting ¢ = ||h]|.
i
< For all unit vectors u, lim flattu) = J(a) =Vf(a)- u

t—0+ t

By using —u in the last line, we have

fla+t(-uw) - f(a)

For all unit vectors u, tli%i ; =Vf(a): (—u)
i L0 00
i L0 S g
f(a+tu) — f(a)

.. Combining with above, lim =Vf(a) - u
t—0 t

In other words, f is differentiable at x = a if and only if all directional derivatives
D, f(a) exist at a and can be calculated as V f(a) - u.

Warning: This proof looks pretty, but it is WRONG!! This is because once I let h = tu,
and shrink ¢ — 0 for each u, I have already restricted myself to use straight paths for h
to get to 0, but “hm” needs to check every possible path. Therefore, this proof is totally

worthless. The conclusmn is WRONG as well. Please refer to Example 4. 1 am very
sorry for the confusion.

xy _
—— if (z,y) #0
Example 3. Let f(z,y) =< /22 +y? (=.9) # . We have shown in Lecture notes

0 otherwise
9 that this function is not differentiable at (0,0). Find D, f(0,0) for all unit vectors u,
and compare with V f(0,0) - u
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Solution. Every unit vector in R? can be written as u = (cos 6, sin §) for some . Hence,
0,0) 4+ t(cosf,sind)) — £(0,0
Dui0,0) = iy L0 ) — 70,0

t—0 t
t? cos A sin

2 2 2 qin2 N
= lim V12 cos? § + 12 sin” § —hmcos€s1n«9
t—0 t t—0 | |

which exists if and only if cos#sin§ = 0, and at that moment, the directional derivatives
are precisely the partial derivatives.

f2(0,0) = D(1,0)f(0,0) = hm cos 0 sin O|—| =0,

and .

F(0.0) = Doy (0.0) = limcos 5 sin 5 =0
In other words, V f(0,0) = (0,0). Therefore, V£(0,0)-u = 0 for all unit vectors u, which
do not agree with the directional derivatives D, f(0,0).
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1 f0<y<a?

0 otherwise

(a) Determine whether f is differentiable at (0, 0).

(b) Find D, f(0,0) for all unit vectors u, and compare with V f(0,0) - u

Solution. (a) lim  f(z,y) = 1 since 2t* < (2t)?, while " kl)m% O)f(m,y) = 0. Hence,
B)=(t,

(h,k)=(2t,2t2)
t—0 t—0

f is not continuous at (0,0), implying that f is not differentiable at (0,0).

(0)

Example 4. Let f(x,y) =

f((O, 0) + t(cos 6, sin 9)) — f(0,0) f(t(cos 0, sin 9)) ‘

t t—0 t

Dy f(0,0) = lim
t—0

Case 1. sinf = 0.

f(t(cos 6, sin 9)) = f(t,0) = 0. Hence, the directional derivative is 0.
Case 2. sinf > 0.

For all t € [0,sin 6], (tcosf)? = t?cos?§ < t* < tsinf, so f(t(cosf,sind)) = 0; for all
t € [—sinb,0), tsinf < 0, so f(t(cos 0, sin 9)) = 0. Hence, the directional derivative is 0.
Case 3. sinf < 0.

For all t € [0,—sind], tsinf < 0, so f(t(cos G,Sinﬁ)) = 0; for all t € [sin6,0),
(tcosf)? = t?cos?f < t* < tsinf, so f(t(cosf,sinf)) = 0. Hence, the directional
derivative is 0.

Therefore, D, f(0,0) = 0 for all unit vectors u. In particular, f,(0,0) = f,(0,0) = 0,
so Vf(0,0) - u=0= Duf( 0).
]

If f is differentiable at x = a, then the equation of the tangent plane of x,; = f(x)
at x =alis

Tni1 = f(a)+ Vf(a) (x—a)

=ﬂw+Vﬂm¢§}%

= [(a) + D s f(a) - (Jx — al)

lx —al




Theorem 5. Let f: D CR" — R be a differentiable real-valued function. At a € D,
(a) the value of f increases most rapidly along the direction Vf.

(b) the value of f decreases most rapidly along the direction —V f.

(c) the value of f does not change along any direction u that is orthogonal to V f.

Proof. Let u be a unit vector. First, we note that the rate of change of f along the
direction u at x = a is given by D, f(a). Since

Duf(a) = Vf(a) - u=[[Vf(a)ll[lul|cos§ = [|Vf(a)[| cos,

(a) the maximum increasing rate of f occurs when 6 = 0, i.e. u is in the same direction
as Vf(a);
(b) the maximum decreasing rate of f occurs when 6 = 7, i.e. u is in the same direction
as —Vf(a);
(¢) the rate of change of f is 0 when 6 = g, i.e. u is orthogonal to V f(a).

0

For a € D, let f(a) = k for some constant k& € R. In view of Theorem 5(¢), the
equation of the tangent plane of the level surface f(x) = k at the point x = a (in case of
n = 2, it is the equation of the tangent line of the level curve) is

Vf(a)-(x—a) :07
or
fo(@)(z1 —a1) + -+ fo,(a)(zn — an) = 0.

Remark: Compare this with the equation of the tangent plane of the surface z,,,1 = f(x)
at x = a
Tap1 = f(a) + Vf(a) - (x —a).

We can consider this surface as the level surface

9<X7 xn-‘rl) = Tpy1 — f(X) - Oa

then the equation of the tangent plane of this level surface at (x,z,+1) = (a, f(a)) is

Vg(a, f(@) - (x—a, 20— f(@)) = 0

(- Vf(a),1) - (x—a, z,01 — f(a)) =0

—Vf(a) - (x—a)+z.— fla) =0
Tnp1 = f(a) + Vf(a) - (x —a).

Example 6. Let D C R"™ be an open domain, and let a € D. Let f : D — R be a
real-valued function differentiable at a. Let & € R be a constant such that f(a) = k.
Let T" be the level surface f(x) = k. Let x : [a,b] — ' be a curve such that x(tg) = a
for some ty € (a,b). Also, assume that x is differentiable at ¢t = ¢y. Show that V f(a) is
orthogonal to x'(t).

Solution. Method 1 (geometric interpretation). V f(a) is normal to the tangent plane of
the level surface f(x) = k at x = a. Since x(¢) is a curve on the level surface f(x) = k,
and x'(t() is a tangent vector of the level surface at x = a, i.e. x/(to) lies on the tangent
plane. Therefore, V f(a) is orthogonal to x' (o).

Method 2 (chain rule). First, note that f(x(t)) = k, which is the R — R™ — R case. By
chain rule at t = t;, we have

Vf(a)-x'(ty) = 0.
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Example 7. Let f(z,y,2) = 2* — zy + 53/2 + 3.

(a) Find the equation of the tangent plane to the surface z = f(z,y) at (3,2).
(b) Find the equation of the tangent line to the level curve f(z,y) = 8 at (3,2).

Solution. (a) The equation is

= f(3,2)+Vf(3,2) - (x -3,y —2)
2=8+ 22—y, — T+ Y)|1y=2 (€ —3y—2)
z2=844,-1) - (z—3,y —2)
z2=84+4r—12—y+2
z=4r —y— 2.
(b) The equation is
Vf(3,2)-(x—3,y—2)=0
dr —12—y+2=0
dr —y — 10 = 0.
O
As the gradient operator V is so useful, it will be helpful to know some of its properties.

Let f,g: D C R™ — R be two real-valued functions such that V f(a) and Vg(a) exist for
some a € D, and let k € R, then

e (sum and difference rule) V(f £ g)(a) = Vf(a) £ Vg(a).
e (product rules)

= V(kf)(a) = KV f(a).

- V(f9)(a) = f(a)Vg(a) + g(a)V f(a).

e (quotient rule) V (g) (a) = g(a)Vf (a;Jaj;( a)Vyg(a)

if g(a) # 0.

14.6 — Tangent planes and differentials

Let D C R™ be an open domain. Let f : D — R be a differentiable function at a € D.
We have already derived the formula for tangent plane of the surface x,.; = f(x) at
x = a in Section 14.3 in Lecture notes 8 as

Tor1 = f(2)+Vf(a): (x—a)
Tnt1 = f() + fo, (@) (21 —ar) + - + fo, (@) (20 — an).

Also, from our discussions in Section 14.3, the tangent plane is a linearization of the
function z,, 11 = f(x) near x = a, i.e.

L(x) = f(a) + V[(a) - (x — a),

and f(x) ~ L(x) is the standard linear approximation of f at x = a. The upper
bound of the error of this approximation is given by

1 2
E(x) =[f(x) = L(x)| < §M(|$1 —ar|+ -+ |z, — anl) ,
where M is an upper bound of all |f,,.;| over D, 1 <i,j < n, if it exists.
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Example 8. Let f(x,y,2) = 2> — 2y + 3sin 2.
(a) Find the linearization L(x,y, z) at the point (2,1,0).
(b) If we are to use L(x,y, z) to approximate f(z,y, z) in

R={(x,y,2z) : |z — 2| <0,01,]y — 1] < 0,02, |z] <0.01},
find an upper bound of the error.
Solution. (a)
L(2,1,0) = f(2,1,0) + Vf(2,1,0) - (x — 2,y — 1,2 — 0)

=2+ (22 —y,—2,30082)| 1, o210 (T — 2,y — 1, 2)

=24(3,-2,3)- (z =2,y —1,2)

=243r—-6—-2y+2+ 32

=3z —2y+3z—2.
(0) fow =2, fyy =0, foo = =3sinz, foy = fyu = =1, fys = foy =0, fo. = foo = 0. The
maximum of all these functions in R is 2, so we can take M = 2.

E(x,y,2) < %M(|x —2l+ly—1+ |z =02 < %(2)(0.01 +0.02 4 0.01)* = 0.0016.
O

If we rearrange the terms in

Tn = f(a) +Vf(a)- (x —a)
into

Tn+1 — f(a) = Vf<a) ) (X - a)?
we obtain the following two results in differentials.

(1) df =V f(a)-uds, where ds denotes the small distance from a in the direction of
the unit vector u.

(2) df = f,(a)dxy + -+ - + fi,(a) dz,, which is called the total differential of f at
X = a.

Example 9. A cylinder has radius 1 and height 5. If the radius increases by 0.03, and
the height decreases by 0.1, estimate the absolute change in the volume of the can.

Solution. Let r denote the radius, h denote the height, and V' denote the volume of the
cylinder. Then V' = 7r?h. The total differential of f at (r,h) = (1,5) is

dV = (27rh)| = 5 dr + (77 dh
= 10mdr 4 wdh.
Now, dr ~ 0.03 and dh ~ —0.1, so
dV ~ 107(0.03) + m(—0.1) = 0.27.

2
)|(r,h):(1,5)



