
MATH 2010E ADVANCED CALCULUS I
LECTURE 9

WING HONG TONY WONG

14.3 — Continue on differentiability

Recall the definition of differentiability.

Definition 1. Let D ⊆ Rn be an open domain. Let f : D → R be a real-valued function.
Let a = (a1, . . . , an) ∈ D. Then f is differentiable at x = a if

lim
h→0

f(a + h)− f(a)−∇f(a) · h
‖h‖

= 0,

where ∇f(a) =
(
fx1(a), fx2(a), . . . , fxn(a)

)
, called the gradient vector of f at x = a.

If f is differentiable at every point in D, then f is differentiable.

Also, recall that the equation of the tangent plane of xn+1 = f(x) at the point x = a
is

xn+1 = f(a) +∇f(a) · (x− a).

Remark: The tangent plane

−fx1(a)x1 − · · · − fxn(a)xn + xn+1 = f(a)− fx1(a)a1 − · · · − fxn(a)an

has a normal vector
(
− fx1(a), . . . ,−fxn(a), 1

)
=
(
−∇f(a), 1

)
.

Example 2. Let f : R2 → R2 be such that f(x, y) = x2 + y2. Prove that f is differen-
tiable, and find the equation of the tangent plane at (x, y) = (1, 0).

Solution. At every (a, b) ∈ R2,

lim
(h,k)→(0,0)

(a+ h)2 + (b+ k)2 − (a2 + b2)− (2a, 2b) · (h, k)√
h2 + k2

= lim
(h,k)→(0,0)

h2 + k2√
h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2 = 0.

Therefore, f is differentiable.
At (x, y) = (1, 0), the equation of the tangent plane is

z = (12 + 02) +
(
2(1), 2(0)

)
· (x− 1, y − 0)

z = 1 + 2(x− 1)

2x− z = 1.
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Note that Definition 1 depends on the definition and the existence of partial derivatives.
Hence, it is desirable to have another definition of differentiability without appealing to
partial derivatives.

Definition 3. Let D ⊆ Rn be an open domain. Let f : D → R be a real-valued function.
Let a = (a1, . . . , an) ∈ D. Then f is differentiable at x = a if there exists a vector
v ∈ Rn such that

lim
h→0

f(a + h)− f(a)− v · h
‖h‖

= 0.

If f is differentiable at every point in D, then f is differentiable.

Using Definition 3, we can prove the following theorem.

Theorem 4. If f is differentiable at x = a in the sense of Definition 3, then
(a) fxi

(a) exists for all i = 1, 2, . . . , n.
(b) v = ∇f(a).

Proof. The existence of the limit

lim
h→0

f(a + h)− f(a)− v · h
‖h‖

= 0

implies that no matter which path we take for h→ 0, the limit is also 0.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the vector with all entries 0 except a 1 in the i-th
entry. If we take the path h = tei, then

lim
h=tei
t→0

f(a + h)− f(a)− v · h
‖h‖

= lim
t→0

f(a + tei)− f(a)− tvi
|t|

= 0

lim
t→0

f(a + tei)− f(a)− tvi
t

= 0

lim
t→0

f(a + tei)− f(a)

t
− vi = 0

lim
t→0

f(a + tei)− f(a)

t
= vi.

Since the existence of v = (v1, . . . , vn) is guaranteed in Definition 3, the partial derivatives
fxi

(a) = vi will also exist. Also, v =
(
fx1(a), . . . , fxn(a)

)
= ∇f(a).

�

Theorem 5. If f is differentiable at a, then f is continuous at a.

Proof.

lim
h→0

f(a + h)− f(a)−∇f(a) · h
‖h‖

= 0

lim
h→0

[
f(a + h)− f(a)−∇f(a) · h

]
= 0

lim
h→0

[
f(a + h)− f(a)

]
−∇f(a) · lim

h→0
h = 0

lim
h→0

[
f(a + h)− f(a)

]
= 0

lim
h→0

f(a + h) = f(a),

which is precisely the definition that f is continuous at a.
�
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Conclusion:

fx1 , . . . , fxn are continuous at a (f is C1 at a)
⇓

f is differentiable at a
⇓ ⇓

f is continuous at a 6⇐⇒ fx1 , . . . , fxn exist at a

Example 6. Determine whether f(x, y) =


xy√
x2 + y2

if (x, y) 6= 0

0 otherwise
is

(a) C1 at (0, 0).
(b) differentiable at (0, 0).

Solution.

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)−
(
fx(0, 0), fy(0, 0)

)
· (h, k)

√
h2 + k2

= lim
(h,k)→(0,0)

hk√
h2 + k2

− 0− (0, 0) · (h, k)

√
h2 + k2

= lim
(h,k)→(0,0)

hk

h2 + k2

which does not exist since

lim
(h,k)=t(1,0)

t→0

hk

h2 + k2
= lim

t→0

t · 0
t2 + 02

= 0

and

lim
(h,k)=t(1,1)

t→0

hk

h2 + k2
= lim

t→0

t · t
t2 + t2

= lim
t→0

t2

2t2
=

1

2
.

Therefore, f is not differentiable at (0, 0), and by the above conclusion, f is not C1 at
(0, 0).

�

Example 7. Determine whether f(x, y) =


x2y√
x2 + y2

if (x, y) 6= 0

0 otherwise

is

(a) C1 at (0, 0).
(b) differentiable at (0, 0).

Solution. When (x, y) 6= (0, 0),

fx(x, y) =
2xy√
x2 + y2

− 2x3y

2
(√

x2 + y2
)3 =

x3y + 2xy3(√
x2 + y2

)3 ,
and

fy(x, y) =
x2√
x2 + y2

− 2x2y2

2
(√

x2 + y2
)3 =

x4(√
x2 + y2

)3 .
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When (x, y) = (0, 0),

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0,

and

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

Note that |x| =
√
x2 ≤

√
x2 + y2 and |y| =

√
y2 ≤

√
x2 + y2, so

|fx(x, y)| = |x
3y + 2xy3|(√
x2 + y2

)3
≤ |x|

3|y|+ 2|x||y|3(√
x2 + y2

)3 (by triangle inequality)

≤
(√

x2 + y2
)3√

x2 + y2 + 2
√
x2 + y2

(√
x2 + y2

)3(√
x2 + y2

)3
= 3
√
x2 + y2,

and

|fy(x, y)| = |x|4(√
x2 + y2

)3 ≤
(√

x2 + y2
)4(√

x2 + y2
)3 =

√
x2 + y2.

Since lim
(x,y)→(0,0)

√
x2 + y2 = 0, by sandwich theorem,

lim
(x,y)→(0,0)

fx(x, y) = lim
(x,y)→(0,0)

fy(x, y) = 0.

Therefore, fx and fy are continuous at (0, 0), i.e. f is C1 at (0, 0), and by the above
conclusion, f is differentiable at (0, 0).

�

Definition 8. Let D ⊆ Rn be an open domain. Let f : D → Rm be a vector-valued
function, i.e. f = (f1, f2, . . . , fm) for some real-valued functions fi : D → R. Let a =
(a1, . . . , an) ∈ D. Then f is differentiable at x = a if

lim
h→0

f(a + h)− f(a)−Df(a) · h
‖h‖

= 0,

where Df(a) =



∂f1
∂x1

(a)
∂f1
∂x2

(a) . . .
∂f1
∂xn

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a) . . .
∂f2
∂xn

(a)

...
...

. . .
...

∂fm
∂x1

(a)
∂fm
∂x2

(a) . . .
∂fm
∂xn

(a)


, called the partial derivative ma-

trix of f at x = a, and h is taken as a column vector in the matrix multiplication
Df(a) · h. If f is differentiable at every point in D, then f is differentiable.

Remark: This definition follows from the fact that f is differentiable if and only if
f1, f2 . . . , fm are differentiable, and the limit in Definition 8 is precisely combining all the
limits needed for defining the differentiability of f1, f2, . . . , fm.
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14.4 — Chain rule

Theorem 9 (Chain rule). Let D ⊆ Rn be an open domain. Let f : D → Rm be a vector-
valued function. Let a ∈ D. Let E ⊆ Rm be an open domain such that f(a) ∈ E. Let
g : E → Rk be a vector valued function. If f is differentiable at a, and g is differentiable
at f(a), then g ◦ f is differentiable at a, and

D(g ◦ f)(a) = Dg(f(a)) ·Df(a).

Restricted to some simple cases:

• n = 1, m = 3, k = 1, i.e. R→ R3 → R:
Let f(t) =

(
x(t), y(t), z(t)

)
, and let g = g(x, y, z), then chain rule says

dg

dt
(a) =

∂g

∂x

(
x(a), y(a), z(a)

)dx
dt

(a)+
∂g

∂y

(
x(a), y(a), z(a)

)dy
dt

(a)+
∂g

∂z

(
x(a), y(a), z(a)

)dz
dt

(a),

or when f and g are both differentiable functions, the chain rule says

dg

dt
=
∂g

∂x

dx

dt
+
∂g

∂y

dy

dt
+
∂g

∂z

dz

dt
.

• n = 2, m = 3, k = 1, i.e. R2 → R3 → R:
Let f(r, s) =

(
x(r, s), y(r, s), z(r, s)

)
, and let g = g(x, y, z) so that both f and g

are differentiable functions, then chain rule says

∂g

∂r
=
∂g

∂x

∂x

∂r
+
∂g

∂y

∂y

∂r
+
∂g

∂z

∂z

∂r
,

∂g

∂s
=
∂g

∂x

∂x

∂s
+
∂g

∂y

∂y

∂s
+
∂g

∂z

∂z

∂s
.

• n = 2, m = 1, k = 3, i.e. R2 → R→ R3:
Let f = f(r, s), and let g(f) =

(
g1(f), g2(f), g3(f)

)
so that both f and g are

differentiable functions, then chain rule says

∂g1
∂r

=
dg1
df

∂f

∂r
,

∂g1
∂s

=
dg1
df

∂f

∂s
,

∂g2
∂r

=
dg2
df

∂f

∂r
,

∂g2
∂s

=
dg2
df

∂f

∂s
,

∂g3
∂r

=
dg3
df

∂f

∂r
,

∂g3
∂s

=
dg3
df

∂f

∂s
.

• n = 2, m = 2, k = 3, i.e. R2 → R2 → R3:
Let f =

(
x(r, s), y(r, s)

)
, and let g(f) =

(
g1(x, y), g2(x, y), g3(x, y)

)
so that both

f and g are differentiable functions, then chain rule says

∂g1
∂r

=
∂g1
∂x

∂x

∂r
+
∂g1
∂y

∂y

∂r
,

∂g1
∂s

=
∂g1
∂x

∂x

∂s
+
∂g1
∂y

∂y

∂s
,

∂g2
∂r

=
∂g2
∂x

∂x

∂r
+
∂g2
∂y

∂y

∂r
,

∂g2
∂s

=
∂g2
∂x

∂x

∂s
+
∂g2
∂y

∂y

∂s
,

∂g3
∂r

=
∂g3
∂x

∂x

∂r
+
∂g3
∂y

∂y

∂r
,

∂g3
∂s

=
∂g3
∂x

∂x

∂s
+
∂g3
∂y

∂y

∂s
.

5



Example 10. Let f(r, s) =
(
x(r, s), y(r, s), z(r, s)

)
= (3er sin s, 3er cos s, 4er), and let

g(x, y, z) =
√
x2 + y2 + z2. Find

(a)
∂g

∂r
and

∂g

∂s
.

(b)
∂g

∂r
(0, 0) and

∂g

∂s
(0, 0).

Solution. (a) Method 1 (direct substitution).

g(r, s) =
√

9e2r sin2 s+ 9e2r cos2 s+ 16e2r = 5er,

so
∂g

∂r
= 5er and

∂g

∂s
= 0.

Method 2 (chain rule).

∂g

∂x
=

2x

2
√
x2 + y2 + z2

=
3er sin s√

9e2r sin2 s+ 9e2r cos2 s+ 16e2r
=

3er sin s

5er
=

3 sin s

5
,

∂g

∂y
=

2y

2
√
x2 + y2 + z2

=
3er cos s

5er
=

3 cos s

5
,

∂g

∂z
=

2z

2
√
x2 + y2 + z2

=
4er

5er
=

4

5
.

Therefore, by chain rule,

∂g

∂r
=

3 sin s

5
(3er sin s) +

3 cos s

5
(3er cos s) +

4

5
(4er) = 5er,

∂g

∂s
=

3 sin s

5
(3er cos s) +

3 cos s

5
(−3er sin s) +

4

5
(0) = 0.

(b) Method 1 (use (a)).

∂g

∂r
(0, 0) = 5er|(r,s)=(0,0) = 5 and

∂g

∂s
(0, 0) = 0|(r,s)=(0,0) = 0.

Method 2 (chain rule). At (r, s) = (0, 0), (x, y, z) = (3e0 sin 0, 3e0 cos 0, 4e0) = (0, 3, 4).

∂g

∂x
(0, 3, 4) =

2x

2
√
x2 + y2 + z2

∣∣∣∣∣
(x,y,z)=(0,3,4)

= 0,

∂g

∂y
(0, 3, 4) =

2y

2
√
x2 + y2 + z2

∣∣∣∣∣
(x,y,z)=(0,3,4)

=
3

5
,

∂g

∂z
(0, 3, 4) =

2z

2
√
x2 + y2 + z2

∣∣∣∣∣
(x,y,z)=(0,3,4)

=
4

5
.

Therefore, by chain rule,

∂g

∂r
(0, 0) = 0

(
3er sin s|(r,s)=(0,0)

)
+

3

5

(
3er cos s|(r,s)=(0,0)

)
+

4

5

(
4er|(r,s)=(0,0)

)
= 0(0) +

3

5
(3) +

4

5
(4) = 5,

∂g

∂s
(0, 0) = 0

(
3er cos s|(r,s)=(0,0)

)
+

3

5

(
−3er sin s|(r,s)=(0,0)

)
+

4

5

(
0|(r,s)=(0,0)

)
= 0(3) +

3

5
(0) +

4

5
(0) = 0.

�
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Example 11. Let F (x, y, z) = 0 be a smooth level surface that implicitly defines z as a

function of x and y. In other words, z = f(x, y) and F (x, y, f(x, y)) = 0. Find
∂z

∂x
and

∂z

∂y
.

Solution. This can be viewed as the case R2 → R3 → R, and by differentiating the
equation 0 = F (x, y, z) using chain rule, we have

0 =
∂F

∂x

∂x

∂x
+
∂F

∂y

∂y

∂x
+
∂F

∂z

∂z

∂x
⇒ 0 = Fx + Fz

∂z

∂x
,

0 =
∂F

∂x

∂x

∂y
+
∂F

∂y

∂y

∂y
+
∂F

∂z

∂z

∂y
⇒ 0 = Fy + Fz

∂z

∂y
.

Therefore,
∂z

∂x
= −Fx

Fz

and
∂z

∂y
= −Fy

Fz

if Fz 6= 0.
�

Theorem 12 (Implicit function theorem). Let D ⊆ R3 be an open domain. Let F : D →
R be a real-valued function. Let (a, b, c) be a point on the level surface F (x, y, z) = k.
Then this level surface implicitly defines z as a function of x and y locally near (x, y, z) =
(a, b, c) if

• F is a C1 function, i.e. fx, fy, fz exist and are continuous in D, and
• Fz(a, b, c) 6= 0.

Example 13. In polar coordinates in R3, we have

(x, y, z) = (r cos θ cosφ, r sin θ cosφ, r sinφ).

If f = f(x, y, z) is a smooth function, find
∂f

∂r
,
∂f

∂θ
,
∂f

∂φ
.

Solution.
∂f

∂r
= (cos θ cosφ)fx + (sin θ cosφ)fy + (sinφ)fz.

∂f

∂θ
= (−r sin θ cosφ)fx + (r cos θ cosφ)fy.

∂f

∂φ
= (−r cos θ sinφ)fx + (−r sin θ sinφ)fy + (r cosφ)fz.

�
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