MATH 2010E ADVANCED CALCULUS I
LECTURE 8

WING HONG TONY WONG

14.3 — Partial derivatives

Definition 1. Let D C R" be an open domain. Let f : D — R be a real-valued function.
Let a= (ay,...,a,) € D. The partial derivative of f at x = a with respect to the i-th
variable z; is

gi(ah.“’an) b a) = }g% f(al,...,ai1,ai+h,ai+}1,...,an) — f(al,...,an).
Geometrically, when we consider the partial derivative ‘ (ay,...,an), we first consider
the curve obtained by intersecting the surface Z
Tpe1 = f(x1,...,2p)
with the 2-dimensional plane
T =Q1y ooy Ti] = Qi1, Tit] = Qjs1, -y Ty = Qp.

The partial derivative is the slope of the curve at the point x; = a; on the 2-dimensional
plane. (Please refer to Dr. Martin Li’s 2010B Lecture Note Week 6 P.4 for the picture.)

By comparing this definition of partial derivative with that of the derivative of single-
valued functions, we see that we are essentially taking the derivative of f(z1,...,z,) with
respect to x; by treating other variables as constants.

sin zy if 2y £ 0
Example 2. Let f(z,y) = 1xy ' fly . Find f,(2,1), f,(0,1), and f,(0,1).
otherwise
Solution. When zy # 0,
_ Osinxy  sinzy  ycoswy
fx($ay) - 81. Ty - ny + Ty :
sin2 cos2  2cos2 —sin2
x 271 = - =
. f(0,14+h)—f(0,1) . 1-1
50D = h R
. f(hy—f,1) o SE_1 sinh—h
OO = Tl T e
h —h) h—1
Since lim sin h — h = lim 4% = 0, we consider lim St~ _ iy €08
h—0 h—0 h—0 (h?)’ h—0 2h
h—1) —sinh
Since lim cosh — 1 = lim 2h = 0, we consider lim M — lim 20 0.
h—0 h0 h—0  (2h) h—0 2
By I'Hépital’s rule, f,(0,1) = 0. O
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Example 3. Let 22 + y?Inz + 2%sinz = 2yz be defined in a domain of R? such that z
0

is a function of x and y. Find o= <z, 2, 1).
Ox \2

To do this type of problem, we treat all independent variables except x as constants.

Solution.
g(ﬁ +y*lnz + 2 sing) = e
2r + 1a——l—Zzstzza + 22cost = yz + xy— 0z
82

( +2zsmx—xy) :yz—2x—22cosx
ox

0z yz — 2w — 2% cos T

o 2
y—+2zsinx—aﬁy
z

s
9 2—7‘(’—1(3085 9 _ 1

T
_(_’271>: -
Oz \2 4+28ing—7r 6—m

g

If we want to take higher order partial derivatives, we need to take first order
partial derivatives one-by-one repeatedly. For example,

o of\ . &f 0 [of
fon = dy0z (9y< ) foa = 0z O (%)’
Pt 0 of Pr 0 of
foe = 5.0 = a2 (ay (a ))’a“d fow = Byaty ~ By (&v (@)) e

2 . I .

Example 4. Let f(z,y) ={ © " <x> ifx#£0  pig Fou(1,1), fun(1,1), £2,(0,0),
0 otherwise

and f,.(0,0).

Solution. When z # 0,

fz = 2xsin <Q> + 22 cos (y) <—%> = 2z sin <Q> — 1 cos (g) ,
x x x x x

and

Hence,



and

Therefore, fy,(1,1) = fyz(1,1) =cos1 +sin1.

When x = 0,
(Y
h?sin (=) —0
o JO+hy) = fOy) <h> T (y>_
e(0.) = iy h e A =0
by sandwich theorem. This implies
(0,0) = — e =1 = lim —— = 0.
v T & 2
On the other hand,
fy(0,y) = lim . = lim = 0.

This implies
fy(h7 0) — fy(ov O)

fy2(0,0) = 2 fy = lim

ox (0,0) h—0 h
h cos (9> -0
) h .
= lim = limcos0 = 1.
h—0 h h—0

Warning: From this example, note that f,, # f,. in general.

Theorem 5 (Mixed derivative theorem). Let D be an open domain. Let f: D — R be
a real-valued function. Let a € D. If f, fu, fy, foy, fye are all defined in D and are all
continuous at a (i.e. f is C* at a), then

foy(@) = fya(a).
e¥ . 0w

Example 6. Let w = xy + m Find 920y

Solution. Method 1.

0w 0 2yeY eY

—=—|z- + =1

oxdy  Ox (¥?+1)2  y2+1
Method 2. Since the function w is a composition of perfectly smooth function and the
denominator is nonzero, w is obviously a C? function. By mixed derivative theorem,

0*w 0*w 0

Oxdy - Oyox - 8_yy =L

g

Proof of mized derivative theorem. Before we proceed, let us recall the mean value theo-

rem for one variable functions.
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Theorem 7 (Mean value theorem). Let x : [m,n] — R be a differentiable function. Then
there exists a real number ¢ € (m,n) such that

Y(e) = x(m) — x(n)

Y

x(m) = x(n) = x'(c)(m —n).

In this proof of mixed derivative theorem, we will assume D € R?. Let a = (a,b).
Consider the quantity

A= fla+hb+k)— fla+hb) — f(a,b+k)+ f(a,b).

A=[fla+hb+k)— fla+h,b)] A=[fla+hb+k)— fla,b+k)]
—[f(a,b+ k) — f(a,b)]. —[f(a+ h,b) — f(a,b)].

Let ®(x) = f(z,b+ k) — f(z,b). Let U(y) = f(a+ h,y) — f(a,y).

Then A = ®(a + h) — O(a). Then A = U(b+ k) — ¥(b).

By mean value theorem, A = ®'(a + hy)h, | By mean value theorem, A = W'(b + ky)k,

where hy € (0, h). where ko € (0, k).

By definition of ®, we have By definition of ¥, we have

A= [fila+h,b+k)— fola+h,b)]h. | A=[fla+hb+ks)— fy(a,b+ko)]k.

Next, let ¢(y) = fz(a+ hy,y). Next, let ¢(x) = fy(x,b+ ka).

Then A = [¢(b+ k) — ¢(b)] h. Then A = (¢(a+ h) — ¥(a))k.

By mean value theorem, A = ¢/(b+ ky)kh, | By mean value theorem, A = ¢'(a+ hs)hk,

where k; € (0,k). where hy € (0, h).

By definition of ¢, we have By definition of v, we have

A = fo (a+ hy,b+ kp)kh. A = fy.(a+ ho,b+ ko)hk.

Hence,

fxy(a + hl,b+ kl) = fyx(a + hg,b + kg)

Since f,, and f,, are continuous in at (a,b),

lim Ilfln’(l) fxy(a -+ hl, b + kl) = }lzg% ]lcl_{% fyx(a + hg, b + kz)

h—0 k—
fou (0 fimg s+ i) = S (0 fmy o 0+ i )
Jay(a,0) = fya(a,b).
U

Recall that the i-th partial derivative of f at x = a is the derivative (slope) of the
curve at x; = a; obtained by intersecting the surface

Tpi1 = f(x1,..., 1)
and the 2-dimensional plane
T =0Q1, ooy Ti] = A1, Tig1 = Ais1, -, Ty = Qp.
Hence, the existence of the i-th derivative of f for all : = 1,2,...,n does not guarantee

“differentiability” of f. In fact, we have the following warning for you.

Warning: The existence of f, and f, does not even guarantee the continuity of f.
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Example 8. Let f(x,y) =

0 ifzy=0
1 otherwise °

(a) Find f,(0,0) and f,(0,0).
(b) Is this function f continuous at (0,0)7

Solution. (a)

f(h,0) — £(0,0) 0-0

fz(O,O):}lLIL% : :}ILEI%)T:O'
MO =T i Y
(b) f(0,0) = 0. If f is continuous, then  lim  f(x,y) = 0. Note that
(2,y)—(0,0)
o dim fle,y) =lim f(t, 1) = lim 1 = 1.

t—0

Therefore, f is not continuous at (0, 0).

Here, we will state without proof the following criteria of “differentiability” of f.

Theorem 9. Let D be an open domain. If all the i-th partial derivatives of f are con-
tinuous at every point in D (i.e. f is C' at every point in D), then f is “differentiable”
and hence continuous at every point in D.

However, what is the definition of “differentiability”?

Definition 10. Let D C R™ be an open domain. Let f : D — R be a real-valued

function. Let a = (ay, . .

.,a,) € D. Then f is differentiable at x = a if

1o f@+h) = (@)~ Vf(a) b
h—0 ||

=0,

where Vf(a) = (fs,(a), fs,(a),. .., fs,(a)), called the gradient vector of f at x = a.

If f is differentiable at

every point in D, then f is differentiable.

Recall that in one-dimensional case,

fla+h) = f(a)

. h =fa
i @t ) = fla) = f'la) -k _
h—0 h
i fla+h)— f(a)— f'(a) - h 0,
h—0 |h|

so Definition 10 is a generalization of the one-dimensional case.

Remark: In two-dimensional case, f is differentiable at (z,y) = (a,b) if

(h,k)—(0,0)

fla+h,b+k)— f(a,b) — fo(a,b)h — fy(a,b)k _

0.
ViE iR
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Although we have motivated from one-dimensional case, the generalization is still not
obvious. If we revisit the definition of “differentiable” in one-dimensional case, we have
f is differentiable at x = a if

lim

h—0

fla+h)— f(a)
h
exists.

If we directly generalize this definition to higher-dimension, we have f is differentiable

at x = a if
“1i f(a+h)_f(a)w
im
h—0 h
exists. Unfortunately, the denominator is a vector, which does not make sense. If we use

the limit
h—0 |||
instead, then if f(x) = x;, the limit yields
lim —(a1 + )~ — lim —~
h—0 ||h|| h—0 ||h||

which does not exist (take two paths: h = #(1,0,...,0) and h = ¢(0,1,0...,0), ¢t — 0).
This is unacceptable since we want f(x) = x; to be differentiable.

In order to understand Definition 10 better, we need to think about the geometric
interpretation of differentiability and derivatives, i.e. tangent line and tangent plane.

In one-dimensional case, the tangent vector of y = f(z) at the point x = a is
(1, f’(a)), so the parametric form of the tangent line is

{(a, f(a)) +t(1, f'(a)) : t € R}.

Hence, © = a+t, and y = f(a) + tf'(a). By substituting t = x — a into the second
equation, we get

y = fla)+ f(a)(z —a).

In higher-dimensional case, the tangent vectors of x,,; = f(x) at the point x = a
are (1, 0,...,0, le(a)), - (O, ...,0,1, fxn(a)), so the parametric form of the tangent
plane is
{(ar,...,an, f(@)) +t:1(1,0,...,0, fr, (2)) + -+ £,(0,...,0,1, fo.(a)) : t1,... ,t, ER}.
(Please refer to Dr. Martin Li’s 2010B Lecture Note Week 7 P.6 for the picture.)

Hence, z; = a; + tf,,(a) foralli=1,...,n, and z,11 = f(a) + t1fo, (@) + - - + t, foa, (Q).
By substituting t; = x; — a; into the last equation, we get
Tnia = fa) + for (@) (21 —a1) + - + fo, (@) (2 — an)
:f<a)+Vf(a)'(xl—al,.--,l'n—a,n)-

Remark: In two-dimensional case, the equation of the tangent plane of z = f(x,y) at
the point (z,y) = (a,b) is

Z = f(a’ b) + fx(a7b)<x - a) + fy<a7b)(y - b)



For f to be differentiable, it means that the tangent plane approximation of f(x)
around x = a converges faster than x — a. In limit notation,
- fx) = [f@)+ V(@) (21— a2 — an)]
lim = OJ

xa I — all

1o JOcHB) = fa) = V(a)
a—h |||

or

=0.



