MATH 2010E ADVANCED CALCULUS I LECTURE 6

WING HONG TONY WONG

14.2 — Limits and continuity in higher dimensions

Definition 1. Let $D \subseteq \mathbb{R}^n$ be a domain. Let $f : D \to \mathbb{R}$ be a real-valued function. Let $\mathbf{x}_0 \in \overline{D}$ and $L \in \mathbb{R}$. Then

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that one of the following occurs.

- for all $\mathbf{x} \in D$ satisfying $0 < \|\mathbf{x} \mathbf{x}_0\| < \delta$, $|f(\mathbf{x}) L| < \epsilon$.
- $f((B_{\delta}(\mathbf{x}_0) \setminus \{\mathbf{x}_0\}) \cap D) \subseteq B_{\epsilon}(L).$

Example 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ such that f(x, y) = x. Show that $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = x_0$.

Solution. For all $\epsilon > 0$, let $\delta = \epsilon$. For all $(x, y) \in \mathbb{R}^2$ satisfying $0 < ||(x, y) - (x_0, y_0)|| < \delta$, we have

$$|f(x,y) - x_0| = |x - x_0|$$

= $\sqrt{(x - x_0)^2}$
 $\leq \sqrt{(x - x_0)^2 + (y - y_0)^2}$
= $||(x,y) - (x_0, y_0)|| < \delta = \epsilon.$

Example 3. Show that $\lim_{(x,y)\to(0,0)} (x^2 + y^2) = 0$, where the domain is \mathbb{R}^2 .

Solution. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that $f(x, y) = x^2 + y^2$. For all $\epsilon > 0$, let $\delta = \sqrt{\epsilon}$. For all $(x, y) \in \mathbb{R}^2$ satisfying $0 < ||(x, y) - (0, 0)|| < \delta$, we have

$$|f(x,y) - 0| = |x^2 + y^2|$$

= $||(x,y)||^2 < \delta^2 = \epsilon.$

If n = 1, then $B_{\delta}(x_0)$ is simply an open interval centered at x_0 , and $x \to x_0$ can be split into $x \to x_0^-$ and $x \to x_0^+$. More precisely, we have

$$\lim_{x \to x_0} f(x) = L \text{ if and only if } \lim_{x \to x_0^-} f(x) = L \text{ and } \lim_{x \to x_0^+} f(x) = L$$

However, when n = 2 or higher, there are many ways for $\mathbf{x} \to \mathbf{x}_0$. Even if

$$\lim_{h \to 0} f(\mathbf{x}_0 + h\mathbf{v}) = L$$

for all \mathbf{v} such that $\|\mathbf{v}\| = 1$, the limit may still NOT exist. In fact, $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = L$ if and only if no matter which path we choose for $\mathbf{x}\to\mathbf{x}_0$, the limit is still L.

Date: Thursday, 28th May, 2015.

Example 4. Does $\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$ exist, where the domain is $\mathbb{R}^2 \setminus \{(0,0)\}$?

Solution. Note that

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x \to 0} \frac{x^2}{x^2} = \lim_{x \to 0} 1 = 1,$$

while

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y \to 0} \frac{-y^2}{y^2} = \lim_{y \to 0} -1 = -1.$$

Hence, when $(x, y) \to (0, 0)$ using two different paths (the first path is along the x-axis, and the second path is along the y-axis), the limits are different. Therefore, the desired limit does not exist.

Example 5. Does $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist, where the domain is $\mathbb{R}^2 \setminus \{(0,0)\}$?

Solution. Before we proceed, we first observe that

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} \frac{0}{x^2} = \lim_{x \to 0} 0 = 0,$$

and

$$\lim_{y \to 0} \lim_{x \to 0} \frac{xy}{x^2 + y^2} = \lim_{y \to 0} \frac{0}{y^2} = \lim_{y \to 0} 0 = 0.$$

However, this does NOT imply that the desired limit exist, since we have only checked two paths $(x, y) \rightarrow (0, 0)$, but we have not checked many other paths.

To finish this problem, we take the paths $(x, y) = (t, kt), t \to 0, k \neq 0$.

$$\lim_{\substack{(x,y)=(t,kt)\\t\to 0}}\frac{xy}{x^2+y^2} = \lim_{t\to 0}\frac{kt^2}{t^2+k^2t^2} = \lim_{t\to 0}\frac{k}{1+k^2} = \frac{k}{1+k^2}.$$

If k = 1, the limit is $\frac{1}{2}$. Since the limits are different when $(x, y) \to (0, 0)$ using different paths, the desired limit does not exist.

Example 6. Does $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ exist, where the domain is $\mathbb{R}^2 \setminus \{(0,0)\}$?

Solution. Before we proceed, we first observe that

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 y}{x^4 + y^2} = \lim_{x \to 0} \frac{0}{x^4} = \lim_{x \to 0} 0 = 0,$$
$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 y}{x^4 + y^2} = \lim_{y \to 0} \frac{0}{y^2} = \lim_{y \to 0} 0 = 0,$$

and

$$\lim_{\substack{(x,y)=(t,kt)\\t\to 0}} \frac{x^2 y}{x^4 + y^2} = \lim_{t\to 0} \frac{kt^3}{t^4 + k^2 t^2} = \lim_{t\to 0} \frac{kt}{t^2 + k^2} = 0$$

since $\lim_{t\to 0} kt = 0$ and $\lim_{t\to 0} t^2 + k^2 = k^2$. However, these do NOT imply that the desired limit exist, since we have only checked straight-line paths $(x, y) \to (0, 0)$, but we have not checked many other paths.

To finish this problem, we take the path $(x, y) = (t, t^2), t \to 0$.

$$\lim_{\substack{(x,y)=(t,t^2)\\t\to 0}}\frac{x^2y}{x^4+y^2} = \lim_{t\to 0}\frac{t^4}{t^4+t^4} = \lim_{t\to 0}\frac{1}{2} = \frac{1}{2}.$$

Since the limits are different when $(x, y) \rightarrow (0, 0)$ using different paths, the desired limit does not exist.

Theorem 7. Let $D \subseteq \mathbb{R}^n$ be a domain. Let $f : D \to \mathbb{R}$ be a real-valued function. Let $\mathbf{x}_0 \in \overline{D} \text{ and } L, M, k \in \mathbb{R}. \text{ If } \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L \text{ and } \lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = M, \text{ then }$

- (sum and difference rule) lim_{x→x0} (f(x) ± g(x)) = L ± M.
 (constant multiple rule) lim_{x→x0} kf(x) = kL.
- (product rule) $\lim_{\mathbf{x}\to\mathbf{x}_0} (f(\mathbf{x})g(\mathbf{x})) = LM.$
- (quotient rule) $\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{L}{M}$ if $M \neq 0$.
- (power rule) $\lim_{\mathbf{x}\to\mathbf{x}_0} \left(f(\mathbf{x})\right)^k = L^k$ if L > 0; if L = 0, then we need k > 0; if L < 0, then we need $k = \frac{p}{q}$, where q is odd.

Together with $\lim_{(x,y)\to(x_0,y_0)} x = x_0$ and $\lim_{(x,y)\to(x_0,y_0)} y = y_0$, it can be seen that if f is a function that is a fraction with both numerator and denominator being polynomials or functions involving powers and roots etc, then the limit of f can be evaluated by substituting (x_0, y_0) into (x, y), provided that the denominator is nonzero.

Example 8. Find $\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$, where the domain is $\{(x,y)\in\mathbb{R}^2: x>0, y>0, y>0\}$ $x \neq y$.

Solution. Note that $\lim_{(x,y)\to(0,0)} (\sqrt{x} - \sqrt{y}) = 0$, so we cannot evaluate the limit by substitution.

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \lim_{(x,y)\to(0,0)} \frac{x(x-y)}{\sqrt{x} - \sqrt{y}}$$
$$= \lim_{(x,y)\to(0,0)} x \left(\sqrt{x} + \sqrt{y}\right) = 0$$

by substitution.

Example 9. Find $\lim_{(x,y)\to(0,0)} \frac{4xy^2}{x^2+y^2}$, where the domain is $\mathbb{R}^2 \setminus \{(0,0)\}$. Solution. Note that $\lim_{(x,y)\to(0,0)} (x^2 + y^2) = 0$, so we cannot evaluate the limit by substitution.

A possible candidate for the limit is 0. For all $\epsilon > 0$, let $\delta = \frac{\epsilon}{2}$. For all $(x, y) \in$ $\mathbb{R}^2 \setminus \{(0,0)\}$ satisfying $0 < ||(x,y) - (0,0)|| = \sqrt{x^2 + y^2} < \delta$, we have

$$\left|\frac{4xy^2}{x^2 + y^2} - 0\right| \le \left|\frac{4xy^2}{2xy}\right| = |2y| = 2\sqrt{y^2} \le 2\sqrt{x^2 + y^2} < 2\delta = \epsilon$$

Here, the first inequality is due to the AM-GM inequality: $\frac{a+b}{2} \ge \sqrt{ab}$ for all $a, b \ge 0$.

Theorem 10 (Sandwich theorem). Let $D \subseteq \mathbb{R}^n$ be a domain. Let $f, g, h : D \to \mathbb{R}$ be real-valued functions. Let $\mathbf{x}_0 \in \overline{D}$ and $L \in \mathbb{R}$. If

- $h(\mathbf{x}) \leq f(\mathbf{x}) \leq g(\mathbf{x})$ for all $\mathbf{x} \in D$, and
- $\lim_{\mathbf{x}\to\mathbf{x}_0} g(\mathbf{x}) = \lim_{\mathbf{x}\to\mathbf{x}_0} h(\mathbf{x}) = L,$

then $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = L.$

In particular, if

• $|f(\mathbf{x})| \leq g(\mathbf{x})$ for all $\mathbf{x} \in D$, and

•
$$\lim_{\mathbf{x}\to\mathbf{x}_0}g(\mathbf{x})=0,$$

then $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = 0.$

Example 11. Find
$$\lim_{(x,y)\to(0,0)} x \cos\left(\frac{1}{x^2+y^2}\right)$$
, where the domain is $\mathbb{R}^2 \setminus \{(0,0)\}$.
Solution. Note that $\left|x \cos\left(\frac{1}{x^2+y^2}\right)\right| \le |x|$ for all (x,y) in the domain, and $\lim_{(x,y)\to(0,0)} |x| = 0$. By sandwich theorem, $\lim_{(x,y)\to(0,0)} x \cos\left(\frac{1}{x^2+y^2}\right) = 0$.

Continuity

Definition 12. Let $D \subseteq \mathbb{R}^n$ be a domain. Let $f : D \to \mathbb{R}$ be a real-valued function. Let $\mathbf{x}_0 \in D$. Then f is **continuous** at \mathbf{x}_0 if

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=f(\mathbf{x}_0).$$

If f is continuous at every $\mathbf{x}_0 \in D$, then f is **continuous**.

Example 13. Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$

is continuous at every point $(x_0, y_0) \in \mathbb{R}^2$ except (0, 0). Solution. At $(x_0, y_0) \neq (0, 0)$, $\lim_{(x,y) \to (x_0, y_0)} f(x, y)$ can be evaluated by substituting (x_0, y_0) into (x, y). In other words, $\lim_{(x,y) \to (x_0, y_0)} f(x, y) = f(x_0, y_0)$.

However, at $(x_0, y_0) = (0, 0)$, the limit was shown that it does not exist in Example 5. Therefore, f is discontinuous at (0, 0).

Example 14. Show that the function

$$f(x,y) = \begin{cases} \frac{4xy^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$

is continuous at every point $(x_0, y_0) \in \mathbb{R}^2$.

Solution. At $(x_0, y_0) \neq (0, 0)$, $\lim_{(x,y)\to(x_0,y_0)} f(x, y)$ can be evaluated by substituting (x_0, y_0) into (x, y). In other words, $\lim_{(x,y)\to(x_0,y_0)} f(x, y) = f(x_0, y_0)$.

In Example 9, it was shown that $\lim_{(x,y)\to(0,0)} \frac{4xy^2}{x^2+y^2} = 0 = f(0,0)$. Therefore, f is continuous at (0,0) as well.

Theorem 15. Let $D \subseteq \mathbb{R}^n$ be a domain. Let $f : D \to \mathbb{R}$ be a real-valued function. Let $\mathbf{x}_0 \in D$. Let $E \subseteq \mathbb{R}$ be such that $f(\mathbf{x}_0) \in E$. Let $g : E \to \mathbb{R}$ be a scalar function. If f is continuous at \mathbf{x}_0 and g is continuous at $f(\mathbf{x}_0)$, then $g \circ f$ is continuous at \mathbf{x}_0 .

Example 16. Show that

$$h(x,y) = \begin{cases} \sqrt[3]{\frac{4xy^2}{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$

is continuous (0, 0).

Solution. Let f(x,y) be the function in Example 14, and let $g(x) = \sqrt[3]{x}$. Note that h(x,y) = g(f(x,y)). Since f is continuous at (0,0), and g is continuous at f(0,0) = 0, by Theorem 15, h is continuous at (0,0).

Polar coordinates in \mathbb{R}^2

Every point (x, y) in \mathbb{R}^2 can be represented by (r, θ) , where $r \ge 0$, and $\theta \in [0, 2\pi)$. It is defined such that $x = r \cos \theta$, and $y = r \sin \theta$. In other words, $r = \sqrt{x^2 + y^2}$, and $\theta = \tan^{-1} \frac{y}{x} = \sin^{-1} \frac{y}{r} = \cos^{-1} \frac{x}{r}$. Note that θ is not well-defined when r = 0.

Polar coordinates can sometimes simplify many clumsy expressions in rectangular coordinates. For example, the equation of the circle in rectangular coordinates is $x^2 + y^2 = R^2$, while the equation of the same circle in polar coordinates is r = R.

Example 17 (Archemedean spiral). Sketch the graph $r = \theta$ in \mathbb{R}^2 .

Example 18. Sketch the graph $r = 1 - a \cos \theta$ for (*i*) 0 < a < 1. (*ii*) a = 1. (*iii*) a > 1.

Theorem 19. Let $D \subseteq \mathbb{R}^2$ be a domain such that $(0,0) \in \overline{D}$. Let $f : D \to \mathbb{R}$ be a real-valued function. Then

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{r\to 0} f(r,\theta)$$

provided that either side exists.

Example 20. Find $\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^3}{x^2 + y^2}$, where the domain is $\mathbb{R}^2 \setminus \{(0,0)\}$.

Solution. Consider $x = r \cos \theta$ and $y = r \sin \theta$.

$$\lim_{r \to 0} \frac{(r\cos\theta)^3 + (r\cos\theta)(r\sin\theta)^3}{(r\cos\theta)^2 + (r\sin\theta)^2} = \lim_{r \to 0} \frac{r^3\cos^3\theta + r^4\cos\theta\sin^3\theta}{r^2}$$
$$= \lim_{r \to 0} \left(r\cos^3\theta + r^2\cos\theta\sin^3\theta\right) = 0.$$
orem 19,
$$\lim_{r \to 0} \frac{x^3 + xy^3}{r^2 + y^2} = 0.$$

By The $(x,y) \rightarrow (0,0) \quad x^2 + y^2$

Example 21. Find
$$\lim_{(x,y)\to(0,0)} \frac{3x^2-5y^2}{x^2+y^2}$$
, where the domain is $\mathbb{R}^2 \setminus \{(0,0)\}$.

Solution. Consider $x = r \cos \theta$ and $y = r \sin \theta$.

$$\lim_{r \to 0} \frac{3(r\cos\theta)^2 - 5(r\sin\theta)^2}{(r\cos\theta)^2 + (r\sin\theta)^2} = \lim_{r \to 0} \frac{3r^2\cos^2\theta - 5r^2\sin^2\theta}{r^2} = \lim_{r \to 0} \left(3\cos^2\theta - 5\sin^2\theta\right)$$

which does not exist since it has different value for different θ . By Theorem 19, the desired limit does not exist.