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14.2 — Limits and continuity in higher dimensions

Definition 1. Let D ⊆ Rn be a domain. Let f : D → R be a real-valued function. Let
x0 ∈ D and L ∈ R. Then

lim
x→x0

f(x) = L

if for every ε > 0, there exists δ > 0 such that one of the following occurs.

• for all x ∈ D satisfying 0 < ‖x− x0‖ < δ, |f(x)− L| < ε.
• f
(
(Bδ(x0)\{x0}) ∩D

)
⊆ Bε(L).

Example 2. Let f : R2 → R such that f(x, y) = x. Show that lim
(x,y)→(x0,y0)

f(x, y) = x0.

Solution. For all ε > 0, let δ = ε. For all (x, y) ∈ R2 satisfying 0 < ‖(x, y)− (x0, y0)‖ < δ,
we have

|f(x, y)− x0| = |x− x0|

=
√

(x− x0)2

≤
√

(x− x0)2 + (y − y0)2

= ‖(x, y)− (x0, y0)‖ < δ = ε.

�

Example 3. Show that lim
(x,y)→(0,0)

(
x2 + y2

)
= 0, where the domain is R2.

Solution. Let f : R2 → R be such that f(x, y) = x2 + y2. For all ε > 0, let δ =
√
ε. For

all (x, y) ∈ R2 satisfying 0 < ‖(x, y)− (0, 0)‖ < δ, we have

|f(x, y)− 0| = |x2 + y2|
= ‖(x, y)‖2 < δ2 = ε.

�

If n = 1, then Bδ(x0) is simply an open interval centered at x0, and x → x0 can be
split into x→ x−0 and x→ x+0 . More precisely, we have

lim
x→x0

f(x) = L if and only if lim
x→x−0

f(x) = L and lim
x→x+0

f(x) = L.

However, when n = 2 or higher, there are many ways for x→ x0. Even if

lim
h→0

f(x0 + hv) = L

for all v such that ‖v‖ = 1, the limit may still NOT exist. In fact, lim
x→x0

f(x) = L if and

only if no matter which path we choose for x→ x0, the limit is still L.
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Example 4. Does lim
(x,y)→(0,0)

x2 − y2

x2 + y2
exist, where the domain is R2\{(0, 0)}?

Solution. Note that

lim
x→0

lim
y→0

x2 − y2

x2 + y2
= lim

x→0

x2

x2
= lim

x→0
1 = 1,

while

lim
y→0

lim
x→0

x2 − y2

x2 + y2
= lim

y→0

−y2

y2
= lim

y→0
−1 = −1.

Hence, when (x, y) → (0, 0) using two different paths (the first path is along the x-axis,
and the second path is along the y-axis), the limits are different. Therefore, the desired
limit does not exist.

�

Example 5. Does lim
(x,y)→(0,0)

xy

x2 + y2
exist, where the domain is R2\{(0, 0)}?

Solution. Before we proceed, we first observe that

lim
x→0

lim
y→0

xy

x2 + y2
= lim

x→0

0

x2
= lim

x→0
0 = 0,

and

lim
y→0

lim
x→0

xy

x2 + y2
= lim

y→0

0

y2
= lim

y→0
0 = 0.

However, this does NOT imply that the desired limit exist, since we have only checked
two paths (x, y)→ (0, 0), but we have not checked many other paths.

To finish this problem, we take the paths (x, y) = (t, kt), t→ 0, k 6= 0.

lim
(x,y)=(t,kt)

t→0

xy

x2 + y2
= lim

t→0

kt2

t2 + k2t2
= lim

t→0

k

1 + k2
=

k

1 + k2
.

If k = 1, the limit is
1

2
. Since the limits are different when (x, y)→ (0, 0) using different

paths, the desired limit does not exist.
�

Example 6. Does lim
(x,y)→(0,0)

x2y

x4 + y2
exist, where the domain is R2\{(0, 0)}?

Solution. Before we proceed, we first observe that

lim
x→0

lim
y→0

x2y

x4 + y2
= lim

x→0

0

x4
= lim

x→0
0 = 0,

lim
y→0

lim
x→0

x2y

x4 + y2
= lim

y→0

0

y2
= lim

y→0
0 = 0,

and

lim
(x,y)=(t,kt)

t→0

x2y

x4 + y2
= lim

t→0

kt3

t4 + k2t2
= lim

t→0

kt

t2 + k2
= 0

since lim
t→0

kt = 0 and lim
t→0

t2 + k2 = k2. However, these do NOT imply that the desired

limit exist, since we have only checked straight-line paths (x, y) → (0, 0), but we have
not checked many other paths.
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To finish this problem, we take the path (x, y) = (t, t2), t→ 0.

lim
(x,y)=(t,t2)

t→0

x2y

x4 + y2
= lim

t→0

t4

t4 + t4
= lim

t→0

1

2
=

1

2
.

Since the limits are different when (x, y)→ (0, 0) using different paths, the desired limit
does not exist.

�

Theorem 7. Let D ⊆ Rn be a domain. Let f : D → R be a real-valued function. Let
x0 ∈ D and L,M, k ∈ R. If lim

x→x0

f(x) = L and lim
x→x0

g(x) = M , then

• (sum and difference rule) lim
x→x0

(
f(x)± g(x)

)
= L±M .

• (constant multiple rule) lim
x→x0

kf(x) = kL.

• (product rule) lim
x→x0

(
f(x)g(x)

)
= LM .

• (quotient rule) lim
x→x0

f(x)

g(x)
=

L

M
if M 6= 0.

• (power rule) lim
x→x0

(
f(x)

)k
= Lk if L > 0; if L = 0, then we need k > 0; if L < 0,

then we need k =
p

q
, where q is odd.

Together with lim
(x,y)→(x0,y0)

x = x0 and lim
(x,y)→(x0,y0)

y = y0, it can be seen that if f is a

function that is a fraction with both numerator and denominator being polynomials or
functions involving powers and roots etc, then the limit of f can be evaluated by substi-
tuting (x0, y0) into (x, y), provided that the denominator is nonzero.

Example 8. Find lim
(x,y)→(0,0)

x2 − xy√
x−√y

, where the domain is {(x, y) ∈ R2 : x > 0, y > 0,

x 6= y}.

Solution. Note that lim
(x,y)→(0,0)

(√
x−√y

)
= 0, so we cannot evaluate the limit by substi-

tution.

lim
(x,y)→(0,0)

x2 − xy√
x−√y

= lim
(x,y)→(0,0)

x(x− y)√
x−√y

= lim
(x,y)→(0,0)

x
(√

x+
√
y
)

= 0

by substitution.
�

Example 9. Find lim
(x,y)→(0,0)

4xy2

x2 + y2
, where the domain is R2\{(0, 0)}.

Solution. Note that lim
(x,y)→(0,0)

(
x2 + y2

)
= 0, so we cannot evaluate the limit by substitu-

tion.

A possible candidate for the limit is 0. For all ε > 0, let δ =
ε

2
. For all (x, y) ∈

R2\{(0, 0)} satisfying 0 < ‖(x, y)− (0, 0)‖ =
√
x2 + y2 < δ, we have∣∣∣∣ 4xy2

x2 + y2
− 0

∣∣∣∣ ≤ ∣∣∣∣4xy22xy

∣∣∣∣ = |2y| = 2
√
y2 ≤ 2

√
x2 + y2 < 2δ = ε.
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Here, the first inequality is due to the AM-GM inequality:
a+ b

2
≥
√
ab for all a, b ≥ 0.

�

Theorem 10 (Sandwich theorem). Let D ⊆ Rn be a domain. Let f, g, h : D → R be
real-valued functions. Let x0 ∈ D and L ∈ R. If

• h(x) ≤ f(x) ≤ g(x) for all x ∈ D, and
• lim

x→x0

g(x) = lim
x→x0

h(x) = L,

then lim
x→x0

f(x) = L.

In particular, if

• |f(x)| ≤ g(x) for all x ∈ D, and
• lim

x→x0

g(x) = 0,

then lim
x→x0

f(x) = 0.

Example 11. Find lim
(x,y)→(0,0)

x cos

(
1

x2 + y2

)
, where the domain is R2\{(0, 0)}.

Solution. Note that

∣∣∣∣x cos

(
1

x2 + y2

)∣∣∣∣ ≤ |x| for all (x, y) in the domain, and lim
(x,y)→(0,0)

|x| =

0. By sandwich theorem, lim
(x,y)→(0,0)

x cos

(
1

x2 + y2

)
= 0.

�

Continuity

Definition 12. Let D ⊆ Rn be a domain. Let f : D → R be a real-valued function. Let
x0 ∈ D. Then f is continuous at x0 if

lim
x→x0

f(x) = f(x0).

If f is continuous at every x0 ∈ D, then f is continuous.

Example 13. Show that the function

f(x, y) =

{ xy

x2 + y2
if (x, y) 6= (0, 0)

0 otherwise

is continuous at every point (x0, y0) ∈ R2 except (0, 0).

Solution. At (x0, y0) 6= (0, 0), lim
(x,y)→(x0,y0)

f(x, y) can be evaluated by substituting (x0, y0)

into (x, y). In other words, lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

However, at (x0, y0) = (0, 0), the limit was shown that it does not exist in Example 5.
Therefore, f is discontinuous at (0, 0).

�

Example 14. Show that the function

f(x, y) =

 4xy2

x2 + y2
if (x, y) 6= (0, 0)

0 otherwise

is continuous at every point (x0, y0) ∈ R2.
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Solution. At (x0, y0) 6= (0, 0), lim
(x,y)→(x0,y0)

f(x, y) can be evaluated by substituting (x0, y0)

into (x, y). In other words, lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

In Example 9, it was shown that lim
(x,y)→(0,0)

4xy2

x2 + y2
= 0 = f(0, 0). Therefore, f is

continuous at (0, 0) as well.
�

Theorem 15. Let D ⊆ Rn be a domain. Let f : D → R be a real-valued function. Let
x0 ∈ D. Let E ⊆ R be such that f(x0) ∈ E. Let g : E → R be a scalar function. If f is
continuous at x0 and g is continuous at f(x0), then g ◦ f is continuous at x0.

Example 16. Show that

h(x, y) =

 3

√
4xy2

x2 + y2
if (x, y) 6= (0, 0)

0 otherwise

is continuous (0, 0).

Solution. Let f(x, y) be the function in Example 14, and let g(x) = 3
√
x. Note that

h(x, y) = g
(
f(x, y)

)
. Since f is continuous at (0, 0), and g is continuous at f(0, 0) = 0,

by Theorem 15, h is continuous at (0, 0).
�

Polar coordinates in R2

Every point (x, y) in R2 can be represented by (r, θ), where r ≥ 0, and θ ∈ [0, 2π).

It is defined such that x = r cos θ, and y = r sin θ. In other words, r =
√
x2 + y2, and

θ = tan−1
y

x
= sin−1

y

r
= cos−1

x

r
. Note that θ is not well-defined when r = 0.

Polar coordinates can sometimes simplify many clumsy expressions in rectangular coor-
dinates. For example, the equation of the circle in rectangular coordinates is x2+y2 = R2,
while the equation of the same circle in polar coordinates is r = R.

Example 17 (Archemedean spiral). Sketch the graph r = θ in R2.

Example 18. Sketch the graph r = 1− a cos θ for
(i) 0 < a < 1.
(ii) a = 1.
(iii) a > 1.

Theorem 19. Let D ⊆ R2 be a domain such that (0, 0) ∈ D. Let f : D → R be a
real-valued function. Then

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

f(r, θ)

provided that either side exists.

Example 20. Find lim
(x,y)→(0,0)

x3 + xy3

x2 + y2
, where the domain is R2\{(0, 0)}.
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Solution. Consider x = r cos θ and y = r sin θ.

lim
r→0

(r cos θ)3 + (r cos θ)(r sin θ)3

(r cos θ)2 + (r sin θ)2
= lim

r→0

r3 cos3 θ + r4 cos θ sin3 θ

r2

= lim
r→0

(
r cos3 θ + r2 cos θ sin3 θ

)
= 0.

By Theorem 19, lim
(x,y)→(0,0)

x3 + xy3

x2 + y2
= 0.

�

Example 21. Find lim
(x,y)→(0,0)

3x2 − 5y2

x2 + y2
, where the domain is R2\{(0, 0)}.

Solution. Consider x = r cos θ and y = r sin θ.

lim
r→0

3(r cos θ)2 − 5(r sin θ)2

(r cos θ)2 + (r sin θ)2
= lim

r→0

3r2 cos2 θ − 5r2 sin2 θ

r2

= lim
r→0

(
3 cos2 θ − 5 sin2 θ

)
which does not exist since it has different value for different θ. By Theorem 19, the
desired limit does not exist.

�
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