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13.5 — Tangential and normal components of acceleration

Let I be an interval in R, and let x : I → R3 be a smooth curve. Let

s(t) =

∫ t

t0

‖x′(τ)‖dτ

be the arc length parameter. Let x̃(s) = x(t(s)). Recall that

T = x̃′(s) =
x′(t)

‖x′(t)‖
,

κ =

∥∥∥∥dTds
∥∥∥∥ =

1

‖x′(t)‖

∥∥∥∥dTdt
∥∥∥∥ ,

and

N =
1

κ

dT

ds
=

dT/dt

‖dT/dt‖
.

We define the unit binormal vector as

B = T×N,

which measures the tendency of the curve to twist out of the TN-plane. The three vec-
tors T,N,B form the Frenet frame. It is a traveling frame, i.e. the frame keeps turning
along the curve when t changes.

We can try to use this traveling frame to express other vectors. For example, we know
that x′(t) = ‖x′(t)‖T. Also,

x′′(t) =

(
d

dt
‖x′(t)‖

)
T + ‖x′(t)‖dT

ds

ds

dt

=

(
d

dt
‖x′(t)‖

)
T + κ‖x′(t)‖2N.

Notice that the acceleration vector x′′(t) has no component in the direction of binormal

B. The tangent component of x′′(t) is
d

dt
‖x′(t)‖, which measures the rate of change of

the length of x′(t); the normal component of x′(t) is κ‖x′(t)‖2, which measures the rate
of change of the direction of x′(t).

An interesting application of this result is that if a car makes a sharp turn, doubling
the speed will require quadrupling the centripetal force. In case the tyres cannot provide
such force, the car will skid and is very dangerous. Also, if an object moves in a circle at
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a constant speed, then only the normal direction N has nonzero acceleration. Finally, to
calculate the normal component of x′′(t), we may use the formula√

‖x′′(t)‖2 −
(
d

dt
‖x′(t)‖

)2

,

so that we do not need to find κ.

Example 1. Let x(t) = (cos t+ t sin t, sin t− t cos t), t > 0. Find x′′(t) in terms of T and
N, without evaluating T and N explicitly.

Solution. x′(t) = (− sin t+ sin t+ t cos t, cos t− cos t+ t sin t) = (t cos t, t sin t), so we have

‖x′(t)‖ = t. In other words, the coefficient of T is
d

dt
‖x′(t)‖ = 1.

Next, x′′(t) = (cos t− t sin t, sin t+ t cos t). Hence, the coefficient of N is√
(cos t− t sin t)2 + (sin t+ t cos t)2 − 12 = t.

Therefore, x′′(t) = T + tN.
�

We can also try to use the traveling frame to express
dB

ds
.

dB

ds
=
dT×N

ds
=
dT

ds
×N + T× dN

ds
= T× dN

ds

since
dT

ds
and N are parallel. From the cross product, we know that

dB

ds
is orthogonal to

T. Moreover,
dB

ds
is orthogonal to B since B is of constant length. Therefore,

dB

ds
= −τN

for some real number τ . This τ is called the torsion of the curve, and the negative sign
is a tradition. In other words,

τ = −dB
ds
·N.

Unlike the curvature κ which is always nonnegative, the torsion τ can be both positive
or negative. The torsion measures the rate at which the osculating plane turns about T.
In other words, it measures how the curve twists. A space curve is a helix if and only if
both curvature κ and torsion τ are nonzero constants.

Other formulae for curvature κ and torsion τ

x′(t)× x′′(t) = ‖x′(t)‖T×
[(

d

dt
‖x′(t)‖

)
T + κ‖x′(t)‖2N

]
= κ‖x′(t)‖3T×N

= κ‖x′(t)‖3B.

Therefore, κ =
‖x′(t)× x′′(t)‖
‖x′(t)‖3

.

τ = −
(
T× dN

ds

)
·N =

(
dN

ds
×T

)
·N.
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To proceed, we need to find
dN

ds
.

x′′(t) =

(
d

dt
‖x′(t)‖

)
T + κ‖x′(t)‖2N

x′′′(t) =

(
d2

dt2
‖x′(t)‖

)
T +

(
d

dt
‖x′(t)‖

)
dT

dt
+
dκ‖x′(t)‖2

dt
N + κ‖x′(t)‖2dN

dt

dN

dt
=

1

κ‖x′(t)‖2

[
x′′′(t)−

(
d2

dt2
‖x′(t)‖

)
T−

(
d

dt
‖x′(t)‖

)
dT

dt
− dκ‖x′(t)‖2

dt
N

]
dN

ds

ds

dt
=

1

κ‖x′(t)‖2

[
x′′′(t)−

(
d2

dt2
‖x′(t)‖

)
T−

(
d

dt
‖x′(t)‖

)
dT

dt
− dκ‖x′(t)‖2

dt
N

]
dN

ds
=

1

κ‖x′(t)‖3

[
x′′′(t)−

(
d2

dt2
‖x′(t)‖

)
T−

(
d

dt
‖x′(t)‖

)
dT

dt
− dκ‖x′(t)‖2

dt
N

]
.

Hence,

dN

ds
×T =

1

κ‖x′(t)‖3

[
x′′′(t)×T−

(
d

dt
‖x′(t)‖

)
dT

dt
×T− dκ‖x′(t)‖2

dt
N×T

]
since T×T = 0. Also, since

dT

dt
=

∥∥∥∥dTdt
∥∥∥∥N, we have(

dT

dt
×T

)
·N = 0 and (N×T) ·N = 0.

As a result,

τ =

(
dN

ds
×T

)
·N =

1

κ‖x′(t)‖3
(x′′′(t)×T) ·N

=
1

κ‖x′(t)‖4
(x′′′(t)× x′(t)) · 1

κ

dT

ds

=
1

κ2‖x′(t)‖4
(x′′′(t)× x′(t)) · dT

dt

dt

ds

=
1

κ2‖x′(t)‖5
(x′′′(t)× x′(t)) · d

dt

x′(t)

‖x′(t)‖

=
1

κ2‖x′(t)‖5
(x′′′(t)× x′(t)) ·

[(
d

dt

1

‖x′(t)‖

)
x′(t) +

x′′(t)

‖x′(t)‖

]
=

1

κ2‖x′(t)‖6
(x′′′(t)× x′(t)) · x′′(t)

=
(x′′′(t)× x′(t)) · x′′(t)

‖x′(t)× x′′(t)‖2

=

∣∣∣∣∣∣
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)
x′′′(t) y′′′(t) z′′′(t)

∣∣∣∣∣∣
‖x′(t)× x′′(t)‖2

if ‖x′(t)× x′′(t)‖ 6= 0.
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Example 2. Let x(t) = (a cos t, a sin t, bt), a, b ≥ 0, a2 + b2 6= 0. Find the curvature κ
and torsion τ .

Solution. First, we have x′(t) = (−a sin t, a cos t, b), x′′(t) = (−a cos t,−a sin t, 0), and
x′′′(t) = (a sin t,−a cos t, 0), so

‖x′(t)‖ =
√

(−a sin t)2 + (a cos t)2 + b2 =
√
a2 + b2,

and

‖x′(t)× x′′(t)‖ =

∥∥∥∥∥∥
∣∣∣∣∣∣

î ĵ k̂
−a sin t a cos t b
−a cos t −a sin t 0

∣∣∣∣∣∣
∥∥∥∥∥∥

=
√

(ab sin t)2 + (−ab cos t)2 + (a2 sin2 t+ a2 cos2 t)2

= a
√
a2 + b2.

Therefore,

κ =
‖x′(t)× x′′(t)‖
‖x′(t)‖3

=
a

a2 + b2
,

and

τ =

∣∣∣∣∣∣
−a sin t a cos t b
−a cos t −a sin t 0
a sin t −a cos t 0

∣∣∣∣∣∣(
a
√
a2 + b2

)2 =
b(a2 cos2 t+ a2 sin2 t)

a2(a2 + b2)
=

b

a2 + b2
.

�

13.6 — Velocity and acceleration in polar coordinates

If x is a curve in two-dimensional polar coordinates, then we can use a different traveling
frame from the Frenet frame. For each point x(t) = r(t) (cos θ(t), sin θ(t)), let

ur = (cos θ, sin θ) and uθ = (− sin θ, cos θ).

Then
dur
dt

=
dur
dθ

dθ

dt
= (− sin θ, cos θ)θ′(t) = θ′(t)uθ,

and
duθ
dt

=
duθ
dθ

dθ

dt
= (− cos θ,− sin θ)θ′(t) = −θ′(t)ur.

Therefore,
x(t) = r(t)ur,

x′(t) = r′(t)ur + r(t)θ′(t)uθ,

and

x′′(t) = r′′(t)ur + r′(t)θ′(t)uθ + r′(t)θ′(t)uθ + r(t)θ′′(t)uθ + r(t)θ′(t)(−θ′(t)ur)
= (r′′(t)− r(t)θ′(t)2)ur + (2r′(t)θ′(t) + r(t)θ′′(t))uθ.

If x is a curve in a three-dimensional polar coordinates, i.e.

x(t) = (r(t) cos θ(t), r(t) sin θ(t), z(t)) ,

then we let

ur = (cos θ, sin θ, 0), uθ = (− sin θ, cos θ, 0), and k = (0, 0, 1),
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so that k = ur × uθ. In this case,

x(t) = r(t)ur + z(t)k,

x′(t) = r′(t)ur + r(t)θ′(t)uθ + z′(t)k,

and
x′′(t) = (r′′(t)− r(t)θ′(t)2)ur + (2r′(t)θ′(t) + r(t)θ′′(t))uθ + z′′(t)k.

Planet movement

Let M be a mass at the origin, and let m be a mass moving around M . Let x(t) be
the position of m. Let G be the universal gravitation constant. Then by Newton’s
law of gravitation, the gravitational force between M and m is

−GmMx

‖x‖3
.

Hence, the acceleration of m is

x′′(t) = −GMx

‖x‖3
.

Proposition 3. x(t)× x′(t) is a constant.

Proof.
d

dt
x(t)× x′(t) = x′(t)× x′(t) + x(t)× x′′(t) = 0 since x′′(t) = −GMx

‖x‖3
.

�

Proposition 3 shows that planet movements are on a fixed plane. We are going to skip
deriving the Kepler’s law of motion in this course.

14.1 — Functions of several variables

Let Bε(x0) = {x ∈ Rn : ‖x − x0‖ < ε} be an open ε-ball around x0 in Rn, and let

Bε(x0) = {x ∈ Rn : ‖x− x0‖ ≤ ε} be a closed ε-ball around x0.

Let S ⊆ Rn. Then for any point x ∈ Rn, it can be classified into one and only one of
the followings.

• x is an interior point of S if there exists ε > 0 such that Bε(x) ⊆ S.
• x is an exterior point of S if there exists ε > 0 such that Bε(x) ∩ S = ∅.
• x is a boundary point of S if for all ε > 0, Bε(x) * S and Bε(x) ∩ S 6= ∅.

Please note that if x is a boundary point of S, then x may be in S and may be not in S.
We let int(S) be the set of all interior points of S, ext(S) the set of all exterior points of
S, and ∂S the set of all boundary points of S.

S is open if one of the following holds.

• S = int(S).
• ∂S ∩ S = ∅.
• For all x ∈ S, there exists ε > 0 such that Bε(x) ⊆ S.

S is closed if one of the following holds.

• S = int(S) ∪ ∂S.
• ∂S ⊆ S.
• Rn\S is open.

5



Warning: A set S is not open does NOT imply that S is closed, vice versa. In other
words, S can be neither open nor closed.

A set S is both open AND closed in Rn if and only if S = ∅ or S = Rn.

Here are a couple more definitions.

• S is bounded if there exists R > 0 such that S ⊆ BR(0).
• S is compact if S is closed and bounded.
• S is path-connected if for every two points a and b in S, there exists a continuous

path x : [a, b]→ S such that x(a) = a and x(b) = b.
• S is a domain if S is open and path-connected.

Let D ⊆ Rn be a domain. A real-valued function f : D → R is defined such that
y = f(x1, x2, . . . , xn) ∈ R, where y is a dependent variable, while x1, x2, . . . , xn are
independent variables.

Example 4. Specify the largest domains and ranges of f .
(a) f(x, y) =

√
y − x2.

(b) f(x, y) =
1

xy
.

(c) f(x, y) = sinxy.

(d) f(x, y, z) =
√
x2 + y2 + z2

(e) f(x, y, z) =
1

x2 + y2 + z2

(f ) f(x, y, z) = xy ln z.

Example 5. Specify the largest domain of F (x, y) =
(

ln(x− y2), ln(y − x2)
)
.

If the real-valued function f has only two independent variables, we often write it as
z = f(x, y). It can be graphed as a surface in R3 over the domain D, sometimes with the
aid of contours (level curves) f(x, y) = c in R2.

Example 6. Graph f(x, y) = 100 − x2 − y2, and graph the level curves f(x, y) = 0,
f(x, y) = 51, f(x, y) = 75, and f(x, y) = −44.

Example 7. Graph f(x, y) = x2−y2, and graph the level curves f(x, y) = 0, f(x, y) = 1,
and f(x, y) = −1.

Solution. Recall from Section 12.6 that z = x2 − y2 is a hyperbolic paraboloid. The
“vertical slicing” x = 0 and y = 0 gives parabolas, while “horizontal slicing” x2 − y2 = c
gives the hyperbolic contours (level curves).

�

If the real-valued function f has three independent variables, we usually try to under-
stand f by graphing the level surfaces f(x, y, z) = c in R3.

Example 8. Graph the level surfaces of f(x, y, z) = x2 + y2 − z2.

6


