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12.5 — Lines and planes in R3

Example 1. Let Ax + By + Cz = D1 and Ax + By + Cz = D2 be two planes in R3.
Find the perpendicular distance between them.

Proof. First, we notice that these two planes are parallel since they share the same normal
vector; otherwise, these two planes will intersect and the perpendicular distance is 0.
{t(A,B,C) : t ∈ R} is a line perpendicular to both planes. The intersections of this

line with the two planes are

D1

A2 +B2 + C2
(A,B,C) and

D2

A2 +B2 + C2
(A,B,C),

and the desired perpendicular distance is the distance between these two points, which is√
(D1 −D2)2A2 + (D1 −D2)2B2 + (D1 −D2)2C2

A2 +B2 + C2
=

|D1 −D2|√
A2 +B2 + C2

.

�

12.6 — Cylinders and Quadric Surfaces

In R2, the most general form of a quadratic equation is given by

Ax2 + 2Bxy + Cy2 +Dx+ Ey = F.

There are three major types of quadric curves, also known as conic sections.

• Ellipse:
x2

a2
+
y2

b2
= F .

– If F = 1, or F > 0, then it is nondegenerated.
– if F = 0, then it is a single point.
– If F < 0, then it is empty.

• Hyperbola:
x2

a2
− y2

b2
= F .

– If F = 1, or F > 0, then it is nondegenerated with left-right branches.
– if F = 0, then it is degenerated into a “cross” at the origin.
– If F = −1, or F < 0, then it is nondegenerated with top-bottom branches.

• Parabola: y = ax2.

All quadratic equations of two variables can be transformed into one of the above forms
by change of variables.

Example 2. Rewrite x2 + 2xy + 3y2 + 4x+ 5y = 6 as one of the above forms.
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Solution.

x2 + 2xy + 3y2 + 4x+ 5y = 6

(x2 + 2xy + y2) + 2y2 + 4x+ 5y = 6

(x+ y)2 +
(√

2y
)2

+ 4(x+ y) +
1√
2

(√
2y
)

= 6

[
(x+ y)2 + 4(x+ y) + 4

]
+

[(√
2y
)2

+ 2
1

2
√

2

(√
2y
)

+

(
1

2
√

2

)2
]

= 10 +
1

8

(x+ y + 2)2 +

(√
2y +

1

2
√

2

)2

=
81

8

Hence, if we let u = x+ y + 2 and v =
√

2y +
1

2
√

2
, then we get a circle. In other words,

the original quadratic equation corresponds to an ellipse.
�

In order to determine which type of quadric object a given quadratic equation repre-
sents, we only need to study the quadratic portion (not the linear portion) of the equation.
Linear algebra can help us to study systematically.

The quadratic expression Ax2 + 2Bxy+Cy2 can be written as a matrix multiplication(
x y

)(A B
B C

)(
x
y

)
= x>Mx.

This expression can be easily generalized to higher dimension by taking x = (x1 x2 · · · xn)>

and M to be an n× n symmetric matrix.

Let Di denote the i-th leading principal minor of M , i.e. the determinant of the
i × i submatrix formed by the first i rows and the first i columns of M . What we have
done to the quadratic portion in Example 2 is

x>Mx = Ax2 + 2Bxy + Cy2

= A

(
x+

B

A
y

)2

+
AC −B2

A
y2

= D1u
2 +

D2

D1

v2

=
(
u v

)(D1 0
0 D2

D1

)(
u
v

)
= u>∆u,

where

u =

(
u
v

)
=

(
1 B

A
0 1

)(
x
y

)
= Ux.

Lagrange noticed that this technique can be generalized to higher dimension. First,
we permute the variables x1, x2, . . . , xn and the corresponding rows and columns of M
such that D1, D2 . . . , Dk 6= 0 and Dk+1, Dk+2, . . . , Dn = 0 for some k = 1, 2, . . . , n. Next,
we obtain the upper triangular matrix U as the row echelon form of M with diagonal
entries being 1, i.e. no backward substitution needed. Then we have
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x>Mx =
(
u1 u2 · · · un

)


D1 0 · · · 0 0 · · · 0
0 D2

D1
· · · 0 0 · · · 0

...
...

. . .
...

... · · · ...
0 0 · · · Dk

Dk−1
0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0





u1
u2
...
uk
uk+1

...
un


= u>∆u,

where u = Ux. This is because M = U>∆U by Cholesky decomposition of symmetric
matrices.

The type of quadric object that the quadratic equation represents is solely determined
by the numbers of zeros, positive and negative entries on the diagonal of ∆. In fact, these
numbers are identical to those of the eigenvalues of M .

Given an n× n matrix A, an eigenvector of A is a vector v 6= 0 such that Av = λv
for some real number λ. Such a real number λ is the eigenvalue of A corresponding to v.

In order to find all eigenvalues of A, note that (A − λI)v = 0 has nontrivial solu-
tions, i.e. A − λI is singular. Hence, all eigenvalues λ are solutions to the equation
det(A− λI) = 0.

Example 3. Find the eigenvalues of A =

(
1 1
1 3

)
.

Solution.

∣∣∣∣(1 1
1 3

)
− λ

(
1 0
0 1

)∣∣∣∣ =

∣∣∣∣1− λ 1
1 3− λ

∣∣∣∣ = λ2 − 4λ + 2 = 0 yields λ = 2 ±
√

2.

Hence, the eigenvalues of A are 2 +
√

2 and 2−
√

2.
�

As M is symmetric, M is orthogonally diagonalizable with real eigenvalues, i.e. there
exist an orthogonal matrix Q and a diagonal matrix Λ (all its diagonal entries are the
eigenvalues of M) such that Q>MQ = Λ. In other words, x>Mx = u>Λu, where
u = Q>x.

Theorem 4. The type of conic section that Ax2 +2Bxy+Cy2 +Dx+Ey = F represents
is determined as follows.

(1) Write M =

(
A B
B C

)
.

(2) Find the eigenvalues λ1 and λ2 of M .
(3) Determine the conic section.

• If λ1 and λ2 are both positive or both negative, then it is an ellipse (possibly
degenerated).
• If one of λ1 and λ2 is positive and the other is negative, then it is a hyperbola
(possibly degenerated).
• If one of λ1 or λ2 is 0, then it is a parabola.

In R3, the most general form of a quadratic equation is given by

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz +Gx+Hy + Iz = J.
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There are five major types of quadric surfaces.

• Ellipsoid:
x2

a2
+
y2

b2
+
z2

c2
= J .

– If J = 1, or J > 0, then it is nondegenerated.
– if J = 0, then it is a single point.
– If J < 0, then it is empty.

• Hyperboloid:
x2

a2
+
y2

b2
− z2

c2
= J .

– If J = 1, or J > 0, then it is nondegenerated with one sheet.
– if J = 0, then it is degenerated into an elliptic cone.
– If J = −1, or J < 0, then it is nondegenerated with top and bottom sheets.

• Elliptic paraboloid:
x2

a2
+
y2

b2
=
z

c
.

– If c = 1, or c > 0, then it is nondegenerated opening upward.
– If c = −1, or c < 0, then it is nondegenerated opening downward.

• Hyperbolic paraboloid:
x2

a2
− y2

b2
=
z

c
.

– If c = 1, or c > 0, then it is nondegenerated with a “smiling” parabola on
the xz-plane.

– If c = −1, or c < 0, then it is nondegenerated with a “crying” parabola on
the xz-plane.

• Cylinders: If there is a variable missing from the equation, then it is a “cylinder”.

Theorem 5. The type of quadric surface that Ax2 +By2 +Cz2 +2Dxy+2Exz+2Fyz+
Gx+Hy + Iz = J represents is determined as follows.

(1) Write M =

A D E
D B F
E F C

.

(2) Find the eigenvalues λ1, λ2, λ3 of M .
(3) Determine the conic section.

• If λ1, λ2, λ3 are all positive or all negative, then it is an ellipsoid (possibly
degenerated).
• If two of λ1, λ2, λ3 are of one sign, and the other is of the opposite sign, then
it is a hyperboloid (possibly degenerated).
• If one of λ1, λ2, λ3 is 0, and the other two are of the same sign, then it is an
elliptic paraboloid (possibly degenerated into an elliptic cylinder).
• If one of λ1, λ2, λ3 is 0, and the other two are of opposite signs, then it is a
hyperbolic paraboloid (possibly degenerated into an hyperbolic cylinder).
• If two of λ1, λ2, λ3 are 0, then it is a parabolic cylinder.

13.1 — Curves in space and their tangents

Let I be an interval in R. A curve in Rm is a vector-valued function x : I → Rm

such that

x(t) =
(
x1(t), x2(t), . . . , xm(t)

)
.

Each xi is a component function of x, and it is scalar-valued, i.e. the conventional type.

Example 6. Graph x(t) = (cos t, sin t), t ∈ R.
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Solution. Since x = cos t, y = sin t, we have x2 + y2 = 1. In other words, the curve will
be a unit circle centered at the origin.

�

Example 7. Graph x(t) = (cos t, sin t, t), t ∈ R.

Example 8. Graph x(t) = (1, t, t2), t ∈ [−1, 1].

Example 9 (Cycloid). Let C be the unit circle x2 + (y − 1)2 = 1, and let p be a
point on C, initially at the origin. When the circle C rotates tangentially on the x-axis
(without slipping), the point p makes a trace in R2. Write the curve thus produced as a
vector-valued function.

Solution. Let (t, 1) be the position of the center of C at time t. The position of p at time
t is given by

x(t) = (t, 1) + (− sin t,− cos t) = (t− sin t, 1− cos t).

�

Warning: A curve is a geometric object with “parametrization”. For example, x(t) =
(sin t, cos t), t ∈ R is also a unit circle centered at the origin, but unlike in Example 7,
the parametrization has a different initial position at t = 0, and it goes clockwise instead
of counterclockwise. Therefore, we treat them as different curves.

A curve x : [a, b]→ Rm is closed if x(a) = x(b), and it is simple (not self-intersecting)
if x(t1) 6= x(t2) for all t1 6= t2 unless {t1, t2} = {a, b}.

Analytic Properties

Definition 10. Let x : I → Rm be a curve. Let t0 ∈ I and L ∈ Rm. Then

lim
t→t0

x(t) = L

if for every ε > 0, there exists δ > 0 such that

for all t ∈ I satisfying 0 < |t− t0| < δ, ‖x(t)− L‖ < ε.

It turns out that

lim
t→t0

x(t) =

(
lim
t→t0

x1(t), lim
t→t0

x2(t), . . . , lim
t→t0

xm(t)

)
,

provided that the limit on either side exists.

A curve is continuous at t0 if

lim
t→t0

x(t) = x(t0).

If a curve is continuous at every t0 in I, then the curve is continuous.

Definition 11. Let x : I → Rm be a curve. Let t0 ∈ I. Then the derivative of x(t) at
t0 is defined to be

x′(t0) =
dx(t)

dt

∣∣∣∣
t=t0

= lim
t→t0

x(t)− x(t0)

t− t0
if it exists. Furthermore, if x′(t0) exists, then x(t) is said to be differentiable at t0.
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It turns out that
x′(t0) =

(
x′1(t0), x

′
2(t0), . . . , x

′
m(t0)

)
,

provided that either side exists.

Here are some other terminologies.

• The derivative x′(t0) is also known as the tangent vector or velocity vector.
• The parametric form of the tangent line at t0 is {x(t0) + tx′(t0) : t ∈ R}.

• The speed at t0 is ‖x′(t0)‖. (Warning: 6= d‖x(t)‖
dt

∣∣∣∣
t=t0

)

• The direction of motion at t0 is
x′(t0)

‖x′(t0)‖
.

• The acceleration vector at t0 is x′′(t0).

If a curve x(t) is differentiable at every t0 in I, then the curve x(t) is differentiable.
Furthermore, if x′(t) is continuous and never 0, then the curve x(t) is smooth. If a curve
x(t) is continuous, and I can be partitioned into finitely many subintervals such that x(t)
is smooth on each subinterval, then the curve x(t) is piecewise smooth.

Here are some rules for differentiation of vector-valued functions.

Let x,y : I → Rm be two differentiable curves. Let C be a constant vector, c be a
scalar, and f : I → R be a differentiable scalar-valued function.

• (constant function rule) C′ = 0.
• (sum and difference rule) [x(t)± y(t)]′ = x′(t) + y′(t).
• (product rules)

– [cx(t)]′ = cx′(t).
– [f(t)x(t)]′ = f ′(t)x(t) + f(t)x′(t).
– [x(t) · y(t)]′ = x′(t) · y(t) + x(t) · y′(t).
– If m = 3, [x(t)× y(t)]′ = x′(t)× y(t) + x(t)× y′(t).

• (chain rule) [x(f(t))]′ = f ′(t)x′(f(t)).

Example 12. Let Sm−1 denote the (m−1)-dimensional unit sphere centered at the origin
in Rm. Let x : I → Sm−1 be a curve on the sphere. Show that the position vector x(t)
and the tangent vector x′(t) are orthogonal for all t ∈ I.

Proof.

‖x(t)‖ = 1

x(t) · x(t) = 1

[x(t) · x(t)]′ = 0

x′(t) · x(t) + x(t) · x′(t) = 0

2x(t) · x′(t) = 0

x(t) · x′(t) = 0

This implies that x′(t) and x(t) are orthogonal.
�
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