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12.4 — Cross product

Given x = (x1, x2, x3) and y = (y1, y2, y3), the cross product is given by

x× y =

∣∣∣∣∣∣
î ĵ k̂
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ ,
or

x× y =

(∣∣∣∣x2 x3
y2 y3

∣∣∣∣ ,− ∣∣∣∣x1 x3
y1 y3

∣∣∣∣ , ∣∣∣∣x1 x2
y1 y2

∣∣∣∣) .
Warnings:

(1) Remember the negative sign in the second term.
(2) Unlike dot product, cross product is only defined for vectors in R3. (If we want

to define something analogous in Rn, we need to take the “product” of n − 1
vectors.)

(3) The cross product of two vectors in R3 produces a vector in R3, instead of a real
number.

Example 1. If x = (1, 1, 2) and y = (−1, 2, 1), then

x× y =

(∣∣∣∣1 2
2 1

∣∣∣∣ ,− ∣∣∣∣ 1 2
−1 1

∣∣∣∣ , ∣∣∣∣ 1 1
−1 2

∣∣∣∣) = (−3,−3, 3).

If x = j and y = i, then

j× i =

(∣∣∣∣1 0
0 0

∣∣∣∣ ,− ∣∣∣∣0 0
1 0

∣∣∣∣ , ∣∣∣∣0 1
1 0

∣∣∣∣) = (0, 0,−1) = −k.

The geometric interpretation of cross product is given by the following theorem.

Theorem 2. If x and y are not scalar multiples of each other, then x× y is the unique
vector in R3 such that

(a) x× y is orthogonal to both x and y.
(b) The orientation of {x,y,x× y} is “right-handed”.
(c) ‖x× y‖ = ‖x‖‖y‖| sin θ| is the area of the parallelogram spanned by x and y.

Lemma 3 (scalar triple product). Let x,y, z be three vectors in R3. Then

(x× y) · z =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ .
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Proof.

(x× y) · z =

(∣∣∣∣x2 x3
y2 y3

∣∣∣∣ , ∣∣∣∣x3 x1
y3 y1

∣∣∣∣ , ∣∣∣∣x1 x2
y1 y2

∣∣∣∣) · (z1, z2, z3)
= z1

∣∣∣∣x2 x3
y2 y3

∣∣∣∣− z2 ∣∣∣∣x1 x3
y1 y3

∣∣∣∣+ z3

∣∣∣∣x1 x2
y1 y2

∣∣∣∣
=

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
by the expansion of the last row in the 3× 3 determinant.

�

Proof of Theorem 2. (a) By Lemma 3,

(x× y) · x =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
x1 x2 x3

∣∣∣∣∣∣ = 0.

Similar proof works for (x× y) · y.
(c)

‖x× y‖2 =

∣∣∣∣x2 x3
y2 y3

∣∣∣∣2 +

(
−
∣∣∣∣x1 x3
y1 y3

∣∣∣∣)2

+

∣∣∣∣x1 x2
y1 y2

∣∣∣∣2
=x21y

2
2 + x21y

2
3 + x22y

2
1 + x22y

2
3 + x23y

2
1 + x23y

2
2 − 2x1x2y1y2 − 2x2x3y2y3 − 2x1x3y1y3

=(x21 + x22 + x23)(y
2
1 + y22 + y23)− (x1y1 + x2y2 + x3y3)

2

=‖x‖2‖y‖2 − (x · y)2

=‖x‖2‖y‖2(1− cos2 θ) = ‖x‖2‖y‖2 sin2 θ.

(b) Recall that the orientation of the basis is decided by the sign of the determinant. By
Lemma 3, ∣∣∣∣∣∣∣∣

x1 x2 x3
y1 y2 y3∣∣∣∣x2 x3

y2 y3

∣∣∣∣ − ∣∣∣∣x1 x3
y1 y3

∣∣∣∣ ∣∣∣∣x1 x2
y1 y2

∣∣∣∣
∣∣∣∣∣∣∣∣ = (x× y) · (x× y) = ‖x× y‖2.

As x and y are not scalar multiples of each other, x and y are not parallel, i.e. θ 6= 0 or
π. Hence, ‖x× y‖2 = ‖x‖2‖y‖2 sin2 θ > 0.

�

The geometric interpretation of scalar triple product is given by the following theorem.

Theorem 4. Let x,y, z be three vectors in R3. If x and y are not scalar multiples of
each other, then (x× y) · z is the (signed) volume of the parallelopipe spanned by x,y, z.

Proof. (x × y) · z = ‖x × y‖‖z‖ cosφ, where φ is the angle between x × y and z. By
Theorem 2(c), we know that ‖x× y‖ is the base area of the parallelopipe. By Theorem
2(a), x×y is orthogonal to the base, so ‖z‖ cosφ is the (signed) height of the parallelopipe.

�
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Corollary 5. ∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
is the (signed) volume of the parallelopipe spanned by (x1, x2, x3), (y1, y2, y3), and (z1, z2, z3).

Corollary 6. The nonzero vectors x and y in R3 are parallel to each other if and only
if x× y = 0.

Here is a list of properties of cross product.

(1) (anti-commutative) x× y = −y × x.
(2) (distributive) (x + y)× z = x× z + y × z and x× (y + z) = x× y + x× z.
(3) (commutative and associative with scalar multiplication)

(λ1x)× (λ2y) = (λ1λ2)(x× y).
(4) (vector triple product) x× (y × z) = (x · z)y − (x · y)z.

Warning: From property (4), we know that cross product is not associative.

From property (4), we also obtain the following identity.

x× (y × z) + y × (z× x) + z× (x× y) = 0.

12.5 — Lines and planes in R3

As mentioned in Section 12.1, we need a system of two equations to describe a (straight)
line in R3, since one equation gives a 2-dimensional plane, and two equations give the
intersection of two planes, i.e. a line.

Here, we introduce another method to express a line algebraically. A line can be
determined by passing through a point p = (x0, y0, z0) and moving along a specific
direction v = (v1, v2, v3). Hence, we obtain a parametric form of a line

{p + tv : t ∈ R},

or

{(x0 + tv1, y0 + tv2, z0 + tv3) : t ∈ R},
where t is called the free parameter.

In parametric equations form,

x = x0 + tv1

y = y0 + tv2

z = z0 + tv3.

If we make t the subject in every equation, we get

x− x0
v1

=
y − y0
v2

=
z − z0
v3

,

which is called the symmetric form.
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Example 7. Let L be the line defined by

x− 2y + z = 1

2x+ y − z = 0.

Find the parametric form of L.

Solution. Label the first equation by (1) and the second equation by (2). Then (2)−(1)×2
yields

5y − 3z = −2,

or

y =
3z − 2

5
.

Let z = t be a free parameter. Then y =
3t− 2

5
, and x − 2

(
3t− 2

5

)
+ t = 1 implies

x =
t+ 1

5
. Hence, the parametric form of L is{(

t+ 1

5
,
3t− 2

5
, t

)
: t ∈ R

}
,

or {(
1

5
,−2

5
, 0

)
+ t

(
1

5
,
3

5
, 1

)
: t ∈ R

}
.

�

The parametric form of a line has the benefit that it carries all important physical
information in one formula. More specifically, in

p + tv = p + t‖v‖ v

‖v‖
,

p represents the initial position, t denotes the time, ‖v‖ stands for the speed, and
v

‖v‖
gives the direction of the motion.

Example 8. Consider R3. Find the perpendicular distance from the point x to the line
p + tv.

Solution. Let θ be the angle between x−p and v. The desired perpendicular distance is

‖x− p‖| sin θ| = ‖x− p‖‖v‖| sin θ|
‖v‖

=

∥∥∥∥(x− p)× v

‖v‖

∥∥∥∥ .
�

As mentioned in Section 12.3, a plane can be determined by passing through a point

p = (x0, y0, z0) and have a normal vector n = Âi + Bĵ + Ck̂. Any point x on the plane
has the property that

n · x = n ·
(
(x− p) + p

)
= n · (x− p) + n · p = n · p

since x− p lies on the plane and is orthogonal to n, i.e. n · (x− p) = 0. Therefore, the
plane can be described by

{x ∈ R3 : n · x = n · p},
4



or
{(x, y, z) ∈ R3 : Ax+By + Cz = Ax0 +By0 + Cz0}.

An equation of the plane is commonly written as

A(x− x0) +B(y − y0) + C(z − z0) = 0

or
Ax+By + Cz = D,

where D = Ax0 +By0 + Cz0.

Example 9. Consider R3. Find the perpendicular distance form the point x to the plane

Ax+By + Cz = D.

Solution. First, we need to find an arbitrary point p on the plane. In order to do so, note
that A, B, and C cannot be all zero. For the easiness of demonstration in this problem,

let us assume that B 6= 0. Then by taking x = z = 0, we solve that y =
D

B
. In other

words, p =

(
0,
D

B
, 0

)
.

Let θ be the angle between x − p and the normal of the plane n = (A,B,C). The
desired perpendicular distance is

‖x− p‖| cos θ| = ‖x− p‖‖n‖| cos θ|
‖n‖

=

∣∣∣∣(x− p) · n

‖n‖

∣∣∣∣ .
�

Example 10. Find an equation of the plane that passes through (1, 2, 0), (0,−1, 3), and
(−2, 1, 1).

Solution. A normal to the plane is

n =
(
(0,−1, 3)− (1, 2, 0)

)
×
(
(−2, 1, 1)− (1, 2, 0)

)
=

∣∣∣∣∣∣
î ĵ k̂
−1 −3 3
−3 −1 1

∣∣∣∣∣∣
= (0,−8,−8).

Hence, the plane is

{(x, y, z) ∈ R3 : (0,−8,−8) · (x, y, z) = (0,−8,−8) · (1, 2, 0)}.
Therefore, the equation of the plane is

−8y − 8z = −16,

or
y + z = 2.

(You may also solve this problem by letting the equation of the plane as

Ax+By + C = D

and setting up three equations through plugging the three points into the equation.)
�
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Example 11. Find a vector parallel to the line of intersection of the planes

4x+ y − 3z = 6

−2x+ 4y − z = 1.

Solution. Note that the line of intersection is orthogonal to the normals of the two planes.
Hence, a desired vector is

(4, 1,−3)× (−2, 4,−1) =

∣∣∣∣∣∣
î ĵ k̂
4 1 −3
−2 4 −1

∣∣∣∣∣∣ = (11, 10, 18).

(You may also solve this problem by finding the parametric form p + tv of the line of
intersection using the method in Example 7. Then v is the desired answer.)

�

Example 12. Find the angle between the two planes

4x+ y − 3z = 6

and
−2x+ 4y − z = 1.

Solution. Note that the angle between the two planes is the same as the angle between
the normals of the two planes. Hence, the angle is

θ = cos−1

(
(4, 1,−3) · (−2, 4,−1)

‖(4, 1,−3)‖‖(−2, 4,−1)‖

)
= cos−1

(
−1√
546

)
≈ 1.6136 (in radian measure).

(Notice that you may also answer with π − cos−1

(
−1√
546

)
= cos−1

(
1√
546

)
.)

�

We can also write a plane in parametric form

{p + t1v1 + t2v2 : t1, t2 ∈ R}.
There are two free parameters since there are two degrees of freedom on a plane.

Example 13. Let P be the plane defined by

x− 2y + 3z = 4.

Find the parametric form of P .

Solution. Let y = t1 and z = t2 be two free parameters. Then x = 2t1 − 3t2 + 4. Hence,
the parametric form of P is

{(2t1 − 3t2 + 4, t1, t2) : t1, t2 ∈ R},
or

{(4, 0, 0) + t1(2, 1, 0) + t2(−3, 0, 1) : t1, t2 ∈ R}.
�
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