
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH1510A Calculus for Engineers (Fall 2014)
Comments on Homework 1

Prepared by CHEUNG Siu Wun

Important Notice: For students from classes B and C, only the final score on the score
sheet on top will count towards your grading. Please DO NOT refer to the score in the
inside pages.

We will talk about some common crucial mistakes.

For Question 1,

1. Some students confuse domain with range of a function. Please read handouts of
Chapter 1.

2. Some students confuse open intervals with closed intervals, and also half-open
intervals. Please read handouts of Chapter 1.

For Question 2,

1. The same problems for Question 1 happen in Question 2.

2. For part (c), some students fail to realize f(x) ≥ 0 if and only if

(3x− 4 ≥ 0 and x2 + x− 6 > 0) or (3x− 4 ≤ 0 and x2 + x− 6 < 0)

Note that the denominator cannot be 0, for otherwise f is undefined at x.

3. Some students do not comprehend the meaning of asymptotes. Please read hand-
outs of Chapter 4.

For Question 4,

1. Some students do not plot f+g correctly. The value of (f+g)(x) at x is f(x)+g(x).
Roughly speaking, it means that the ’heights’ of f(x) and g(x) accumulate to the
’height’ of (f + g)(x).

2. Some students do not realize that (−∞, 0) is not in the domain of f + g. In fact,
one can prove

D(f + g) = D(f) ∩D(g)
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For Question 5,

1. Many students have the limit signs missed as they carry on calculations.

2. Some students test, say n = 10, in parts (a) and (b). In general, this is far less from
enough to see the limits. Also, more than one value should be tested, for example,
n = 103, 104, 105.

3. Some students attempt parts (a) and (b) analytically, but the reasonings are incor-
rect. For part (a), we are to show

lim
n→∞

3n

n!
= 0

(a) Some students give reasons as follows:

Proof. Since 3n

n!
is a decreasing sequence in n and 3n

n!
≥ 0, we have

lim
n→∞

3n

n!
= 0

.

This is insufficient to make the conclusion. Consider 1 + 1
n

is also a decreasing
sequence in n and 1 + 1

n
≥ 0, but limn→∞ 1 + 1

n
= 1. Instead, Squeeze The-

orem should be used. Please read the solution.

(b) Several students give reasons as follows:

Proof. Since 3n

n!
= 3

n
3

n−1 . . .
3
2
3
1
, we have

lim
n→∞

3n

n!
= 0 · 0 · . . . · 3

2
· 3

1
= 0

We have a theorem saying that if two limits exist, product of limits is equal to
limit of product.

Theorem 1. If limn→∞ an = L1 and limn→∞ bn = L2, then limn→∞ anbn =
L1L2

One can show that the above is true if the number of terms is finite. But it
is not applicable if the number of terms involved in the product also tends to
infinity. Consider e = limn→∞(1 + 1

n
)n, but limn→∞ 1 + 1

n
= 1.

For Question 7,

1. limx→a f(x) = L does not imply f(a) = L. The implication is correct if and only if
the function f is continuous at a. Please read handouts of Chapter 3.

2. In general, even if limx→a f(x) = L, f can be undefined at a. Note that as x
approaches a, x possibly never attain a.
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For Question 8,

1. 0
0

is indeterminate, i.e. nothing can be concluded about the limit by just letting
the numerator and the denominator approaching their limits separately. Please read
handouts of Chapter 4. In general, it is not equal to 0, as a few students answer.
Consider f(x) = x and g(x) = 2x. Then limx→0 f(x) = 0 = limx→0 g(x) but

limx→0
f(x)
g(x)

= 1
2
. The indeterminate forms can sometimes be solved by eliminating

removable terms from both the numerator and the denominator. In general, their
values can be determined by the powerful L’Hôpital’s Rule, which will be discussed
later in the course.

2. Some students attempt part (a) with incorrect reasonings. For part (a), we are to
show

lim
x→0

sin(3θ)

tan(θ)
= 3

(a) Some students give reasons as follows:

Proof. As θ approaches 0, sin(θ) = θ = tan(θ), we have

lim
x→0

sin(3θ)

tan(θ)
= lim

x→0

3θ

θ
= 3

.

Actually, one can in show sin(θ) = θ = tan(θ) is only true when θ = 0. In fact,
sin(θ) < θ < tan(θ) for θ ∈ (0, π

2
). As mentioned above, when θ approaches 0,

θ possibly never attain 0, which sin(θ) = θ = tan(θ) is wrong.

(b) Some students write the following:

Proof. Since | sin(θ)| ≤ |θ| ≤ | tan(θ)| for θ ∈ (−π
2
, π
2
), we have

lim
x→0

sin(3θ)

tan(θ)
≤ lim

x→0

3|θ|
|θ|

= 3

.

This is true, but it only shows a weaker result limx→0
sin(3θ)
tan(θ)

≤ 3.
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For Question 10,

1. Some students do not comprehend the meaning of the limit of f(x) does not exist
and the limit of f(x) is ∞ or −∞ as x approaches ∞. Please read handouts of
Chapter 2. To summarize,

(a) limx→∞ f(x) =∞ if and only if
for any given K > 0, there exists N > 0 such that f(x) > K for x > N .
Roughly speaking, any K > 0 cannot bound the tail of f(x) from above.
Similar for the limit of f(x) is −∞ as x approaches ∞.

(b) The limit of f(x) does not exist as x approaches ∞ because the tail of f(x)
is irregular, either approaching a real value, ∞ or −∞. Periodic functions in
this question is a good example.

2. To prove a limit does not exist, you may find the following Divergence Criterion
useful:

Theorem 2. Let c be either a real number, ∞ or −∞. If there exists two sequences
(xn) and (yn) such that xn → c and yn → c, but limn→∞ f(xn) 6= limn→∞ f(yn),
then limx→c f(x) does not exist.

Students are invited to try two such limits for each of parts (a) and (b).


