A mapping $f : A \to B$ is said to be **bijective**, if it satisfies the following two conditions: (1) $f(x) \neq f(y)$ whenever $x \neq y$ in A,

(2) for each $b \in B$, there exists $a \in A$ such that b = f(a).

Such a map f is called a **bijection**.

Suppose a mapping $f : A \to B$ is bijective. Then for each $b \in B$, there exists a unique $a \in A$ such that b = f(a). Thus, a mapping \tilde{f} from B into A is defined by: $\tilde{f}(b) = a$. We have:

 $\tilde{f} \circ f(a) = a$ for every $a \in A$, $f \circ \tilde{f}(b) = b$ for every $b \in B$.

This map \tilde{f} is called the **inverse map** of f, and is usually denoted by f^{-1} .

Example 1.

(i) The mapping $g: [0, \pi] \to [0, 1]$ given by:

 $g(x) = \sin x, \ x \in [0,\pi].$

is not bijective, because it does not satisfy condition (1) (e.g $g(\pi/4) = g(3\pi/4)$, though it satisfies condition (2)).

(ii) The mapping
$$h : [-\pi/2, \pi/2] \to [-1, 2]$$
 given by:
 $h(x) = \sin x, \ x \in [-\pi/2, \pi/2].$

is not bijective, because it does not satisfy condition (2) $(2 \neq h(x)$ for all $x \in [-\pi/2, \pi/2]$, though it satisfies condition (1)).

(iii) The mapping
$$f: [-\pi/2, \pi/2] \rightarrow [-1, 1]$$
 given by:
 $f(x) = \sin x, x \in [-\pi/2, \pi/2]$

is bijective.

The inverse f^{-1} : $[-1,1] \rightarrow [-\pi/2,\pi/2]$ is usually denoted by arcsin, and for each $y \in [-1,1]$, $\arcsin(y) = x$, where x is the unique number in $[-\pi/2,\pi/2]$ such that $y = \sin x$.

(iv) The mapping $g: [\pi/2, 3\pi/2] \rightarrow [-1, 1]$ given by: $g(x) = \sin x, \ x \in [\pi/2, 3\pi/2]$ is bijective. The inverse g^{-1} is a map from [-1, 1] into $[\pi/2, 3\pi/2]$, and for an $y \in [-1, 1]$, $g^{-1}(y) = x$, where x is the unique number in $[\pi/2, 3\pi/2]$ such that $y = \sin x$.