Exercise:

1. The set of all upper triangular \(n \times n \) matrices is a subspace \(W \) of \(M_{n \times n}(\mathbb{F}) \). Find a basis for \(W \) and calculate its dimension.

2. Let \(W_1 \) and \(W_2 \) be subspaces of a finite dimensional vector space \(W \). Determine the necessary and sufficient conditions on \(W_1 \) and \(W_2 \) so that \(\dim(W_1 \cap W_2) = \dim(W_1) \).

3. Let \(V \) and \(W \) be vector spaces and \(T : V \rightarrow W \) be a linear transformation.
 (a) Prove \(T \) is one-to-one if and only if \(T \) carries linearly independent sets of \(V \) onto linearly independent subsets of \(W \).
 (b) Suppose \(T \) is one-to-one and \(S \) is a subset of \(V \). Prove \(S \) is linearly independent if and only if \(T(S) \) is linearly independent.
 (c) Suppose \(\beta = \{v_1, v_2, \ldots, v_n\} \) is a basis for \(V \), and \(T \) is one-to-one and onto. Prove \(T(\beta) = \{T(v_1), T(v_2), \ldots, T(v_n)\} \) is a basis for \(W \).

4. Let \(V \) and \(W \) be vector spaces. Let \(T : V \rightarrow W \) be a linear transformation, and \(\{w_1, w_2, \ldots, w_k\} \) be linearly independent subset of \(R(T) \). Prove that if \(S = \{v_1, v_2, \ldots, v_k\} \) is chosen so that \(T(v_i) = w_i \) for \(i = 1, 2, \ldots, k \), then \(S \) is linearly independent.
Solution:

1. Let M_{ij} be the matrix whose entries are all zero except the ij-th entry, which is one. Let $T = \{M_{ij}|i \leq j\}$, which is a subset of W. We will show T is a basis for W, so that the dimension of W is $|T| = (1 + n)n/2$.

Firstly, show that T generates W. Let $M \in W$ be an arbitrary upper triangular matrix with entries m_{ij}, then $m_{ij} = 0$ if $i > j$ since M is an upper triangular matrix. We can see that $M = \sum_{i\leq j} m_{ij} M_{ij}$. Hence M is a linear combination of T. Therefore, T generates W.

It remains to show that T is linearly independent. Let $A = \sum_{i\leq j} c_{ij} M_{ij} = O$. Then we can see that A is upper triangular and the ij-th entry $a_{ij} = c_{ij}$ if $i \leq j$. Hence the equation has only trivial solution, i.e. $c_{ij} = 0$ for all $1 \leq i \leq j \leq n$. Therefore, T is linearly independent, and it is a basis for W.

2. The necessary and sufficient condition is $W_1 \subseteq W_2$.

If $W_1 \subseteq W_2$, then $W_1 \cap W_2 = W_1$, so that $\dim(W_1 \cap W_2) = \dim(W_1)$. Hence it is a sufficient condition.

On the other hand, assume $n = \dim(W_1 \cap W_2) = \dim(W_1)$. Since W is finite dimensional, we have n is finite. Let β be a basis for $W_1 \cap W_2$, then it has n elements and they are linearly independent. Since $W_1 \cap W_2 \subseteq W_1$, we can conclude $\beta \subseteq W_1$, so that it is also a basis for W_1, which implies it generates W_1 and $W_1 \cap W_2 = W_1$. Therefore, $W_1 \subseteq W_2$. It is a necessary condition.

3. (a) Let $S = \{v_1, v_2, ..., v_k\}$ be arbitrary linearly independent subset of V, then $T(S) = \{T(v_1), T(v_2), ..., T(v_k)\}$ is a subset of W. Consider the equation $c_1 T(v_1) + c_2 T(v_2) + ... + c_k T(v_k) = 0$. LHS (short for left hand side) is $T(c_1 v_1 + c_2 v_2 + ... + c_k v_k)$ since T is linear.

First, assume T is one-to-one, then $T(x) = 0$ implies $x = 0$. Hence $T(c_1 v_1 + c_2 v_2 + ... + c_k v_k) = c_1 T(v_1) + c_2 T(v_2) + ... + c_k T(v_k) = 0$ implies $c_1 v_1 + c_2 v_2 + ... + c_k v_k = 0$. Then $c_1 = c_2 = ... = c_k = 0$ since S is linearly independent. Therefore, $T(S)$ is linearly independent.

On the other hand, assume $T(S)$ is linearly independent for each linearly independent subset S. Prove by contradiction. Assume T is not one-to-one. Then there exist some vectors x_1, x_2 such that $T(x_1) = T(x_2)$ and $x_1 \neq x_2$. Let $x = x_1 - x_2$, then $x \neq 0$, and $T(x) = T(x_1 - x_2) = T(x_1) - T(x_2) = 0$. Let $S = \{x\}$, then S is linearly independent since $x \neq 0$. However, $T(S) = \{0\}$ is not linearly independent. Contradiction. Therefore, T is one-to-one.
(b) Suppose \(S \) is linearly independent. Since \(T \) is one-to-one, from part (a) we can see that \(T(S) \) is linearly independent.

On the other hand, suppose \(T(S) \) is linearly independent. Assume \(S \) is not linearly independent. Let \(S = \{v_1, v_2, \ldots, v_k\} \), then there exist \(c_1, c_2, \ldots, c_k \) such that they are not all zero and
\[
c_1 v_1 + c_2 v_2 + \ldots + c_k v_k = 0.
\]
We get
\[
c_1 T(v_1) + c_2 T(v_2) + \ldots + c_k T(v_k) = T(c_1 v_1 + c_2 v_2 + \ldots + c_k v_k) = T(0) = 0.
\]
Contradict to the condition that \(T(S) \) is linearly independent. Hence if \(T(S) \) is linearly independent, we have \(S \) is linearly independent.

(c) First, from \(\beta \) is a basis for \(V \), we have \(\beta \) is linearly independent. And \(T \) is one-to-one, we can conclude that \(T(\beta) \) is linearly independent from part (a).

It remains to show that \(T(\beta) \) generates \(W \). For arbitrary vector \(w \) in \(W \), we can find \(v \) in \(V \) such that \(T(v) = w \) because \(T \) is onto. Since \(\beta \) is a basis for \(V \), there exist \(c_1, c_2, \ldots, c_n \) such that
\[
v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n.
\]
Then
\[
w = T(v) = T(c_1 v_1 + c_2 v_2 + \ldots + c_n v_n) = c_1 T(v_1) + c_2 T(v_2) + \ldots + c_k T(v_k).
\]
Since \(w \) is arbitrary vector in \(W \), we conclude that \(W \) is generated by \(T(\beta) \).

Therefore, \(T(\beta) \) is a basis for \(W \).

4. Consider the equation \(c_1 v_1 + c_2 v_2 + \ldots + c_k v_k = 0 \).
If the equation above holds, we have \(0 = T(0) = T(c_1 v_1 + c_2 v_2 + \ldots + c_k v_k) = c_1 T(v_1) + c_2 T(v_2) + \ldots + c_k T(v_k) = c_1 w_1 + c_2 w_2 + \ldots + c_k w_k \).
Since \(w_1, w_2, \ldots, w_k \) are linearly independent, we can conclude that \(c_1 = c_2 = \ldots = c_k = 0 \).
Therefore, the equation \(c_1 v_1 + c_2 v_2 + \ldots + c_k v_k = 0 \) has only trivial solution, which implies that \(S \) is linearly independent.