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1 L’Hospital’s Rule

Another useful application of mean value theorems is L’Hospital’s Rule. It
helps us to evaluate limits of “indeterminate forms” such as 0

0 . Let’s look
at the following example. Recall that we have proved in week 3 (using the
sandwich theorem and a geometric argument)

lim
x→0

sinx

x
= 1.

We say that the limit above has indeterminate form 0
0 since both the numer-

ator and denominator goes to 0 as x → 0. Roughly speaking, L’Hospital’s
rule says that under such situation, we can differentiate the numerator and
denominator first and then take the limit. The result, if exists, should be
equal to the original limit. For example,

lim
x→0

(sinx)′

(x)′
= lim

x→0

cosx

1
= 1,

which is equal to the limit before we differentiate!

Theorem 1.1 (L’Hospital’s Rule) Let f, g : (a, b) → R be differentiable
functions in (a, b) and fix an x0 ∈ (a, b). Assume that

(i) f(x0) = 0 = g(x0).

(ii) limx→x0
f ′(x)
g′(x) = L (i.e. the limit exists and is finite).

Then, we have

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
= L.

Example 1.2 Consider the limit

lim
x→0

sin2 x

1− cosx
,

this is a limit of indeterminate form 0
0 . Therefore, we can apply L’Hospital’s

Rule to obtain

lim
x→0

sin2 x

1− cosx
= lim

x→0

(sin2 x)′

(1− cosx)′
,
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if the limit on the right hand side exists. Since the right hand side is the
same as

lim
x→0

2 sinx cosx

sinx
= lim

x→0
(2 cosx) = 2.

Therefore, we conclude that limx→0
sin2 x
1−cosx = 2.

Exercise: Calculate the limit in Example 1.2 without using L’Hospital’s
Rule (hint: sin2 x = 1− cos2 x).

Sometimes we have to apply L’Hospital’s Rule a few times before we can
evaluate the limit directly. This is illustrated by the following two examples.

Example 1.3 Consider the limit

lim
x→0

x− sinx

x3
,

this is of the form “0
0”. Therefore, by L’Hospital’s rule

lim
x→0

x− sinx

x3
= lim

x→0

1− cosx

3x2
,

if the right hand side exists. The right hand side is still in the form “0
0”,

therefore we can apply L’Hospital’s Rule again

lim
x→0

1− cosx

3x2
= lim

x→0

sinx

6x
,

if the right hand side exists. But now the right hand side can be evaluated:

lim
x→0

sinx

6x
=

1

6
lim
x→0

sinx

x
=

1

6
.

As a result, if we trace backwards, we conclude that the original limit exists
and

lim
x→0

x− sinx

x3
=

1

6
.

Example 1.4 Consider the limit

lim
x→0

ex − x− 1

1− coshx
.

Applying L’Hospital’s Rule twice, we can argue as in Example 1.3 that

lim
x→0

ex − x− 1

1− coshx
= lim

x→0

ex − 1

− sinhx
= lim

x→0

ex

− coshx
=

1

−1
= −1.
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After seeing these examples, let us now go back to give a proof of
L’Hospital’s Rule.

Proof of L’Hospital’s Rule: Recall Cauchy’s Mean Value Theorem which
says that

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)

for some ξ ∈ (a, b). Therefore, since f(x0) = g(x0) = 0, we have

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(ξ)

g′(ξ)

for some ξ between x and x0. Notice that as x → x0, we must also have
ξ → x0. Therefore, we have

lim
x→x0

f(x)

g(x)
= lim

ξ→x0

f ′(ξ)

g′(ξ)
.

This proves the L’Hospital’s Rule.

2 Other indeterminate forms

When we evaluate limits, there are other possible “indeterminate forms”,
for example

0

0
, 0 · ∞, ∞

∞
, 00. (2.1)

Note that these forms above are just formal expressions which does not have
very precise mathematical meanings as ∞ is not a real number.

Convention: We distinguish two “infinities” by writing

∞ := +∞ and −∞ := −∞.

Remark 2.1 Not all expressions involving 0 and ∞ would result in an in-
determinate form. For example,

0∞ = 0, ∞∞ =∞, ∞+∞ =∞, ∞ ·∞ =∞.

In this section, we will see that all the indeterminate forms in (2.1)
can actually be rewritten into the standard form 0

0 . Symbolically we have
1/0 =∞. Therefore,

0 · ∞ = 0 · 1

0
=

0

0
,
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∞
∞

=
1/0

1/0
=

0

0
.,

00 = exp(0 ln 0) = exp(0 · (−∞)) = exp(−0

0
).

We should emphasize that the “calculations” above are just formal. They
indicate the general idea of transforming the limits rather than actual arith-
metic of numbers. Using these ideas, we can actually handle all the deter-
minate forms in (2.1) by the L’Hospital’s Rule. We have

Theorem 2.2 (L’Hospital’s Rule) The same conclusion holds if we re-
place (i) by

lim
x→x0

f(x) = ±∞ = lim
x→x0

g(x).

Remark 2.3 The theorem also holds in the case x0 = ±∞ and for one-
sided limits as well.

We postpone the proof of Theorem 2.2 until the end of this section but
we will first look at a few applications.

Example 2.4 Consider the one-side limit

lim
x→0+

x lnx.

This is of the form 0 · (−∞). However, we can rewrite it as

x lnx =
lnx

1/x
,

which is of the form −∞
∞ as x→ 0+. Therefore, we can apply Theorem 2.2

to conclude that

lim
x→0+

lnx

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0.

Therefore, we have limx→0+ x lnx = 0. In words, this means that as x→ 0+,
the linear function x is going to 0 faster than the logarithm function lnx
going to −∞.

Example 2.5 Sometimes we have to apply L’Hospital’s Rule a few times.
For example,

lim
x→+∞

x2

ex
= lim

x→+∞

2x

ex
= lim

x→+∞

2

ex
= 0.
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Similarly, we can prove that

lim
x→+∞

xk

ex
= 0, for any k.

In other words, as x→ +∞, the exponential function ex is going to∞ faster
than any polynomial of x.

The following example shows that L’Hospital’s Rule may not always
work:

lim
x→∞

sinhx

coshx
= lim

x→∞

coshx

sinhx
= lim

x→∞

sinhx

coshx
,

which gets back to the original limit we want to evaluate! So L’Hospital’s
Rule leads us nowhere in such situation. For this example, we have to do
some cancellations first,

lim
x→∞

sinhx

coshx
= lim

x→∞

ex − e−x

ex + e−x
= lim

x→∞

1− e−2x

1 + e−2x
= 1.

3 Some tricky examples of L’Hospital’s Rule

Sometimes it is not very obvious how we should transform a limit into a
“standard” indeterminate form.

Example 3.1 Evaluate that limit

lim
x→∞

x sin
1

x
.

We can choose to transform it to either

x sin
1

x
=

sin(1/x)

1/x
or x sin

1

x
=

x

1/ sin(1/x)
.

The first one has the form “0
0” and the second one has the form “∞∞” as

x → ∞. Therefore, we can apply L’Hospital’s Rule to both cases. For the
first case, we have

lim
x→∞

sin(1/x)

1/x
= lim

x→∞

− 1
x2

cos 1
x

− 1
x2

= lim
x→∞

cos
1

x
= 1.

However, for the second case, we have

lim
x→∞

x

1/ sin(1/x)
= lim

x→∞

1
1
x2

cos(1/x)

sin2(1/x)

,
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which doesn’t seem to simplify after L’Hospital’s Rule. Therefore, sometimes
we have to choose a good way to transform the limit before we apply the
L’Hospital’s Rule. A general rule of thumb here is that the expression should
get simpler after taking the derivatives.

Example 3.2 Evaluate the limit

lim
x→0

(
1

sinx
− 1

x

)
.

This limit has the indeterminate form “∞−∞”, which we haven’t men-
tioned. There is in fact no general way to evaluate limits of such forms. But
for this particular example, we can transform it as

1

sinx
− 1

x
=
x− sinx

x sinx
,

which has the standard indeterminate form “0
0”. Therefore, we can apply

L’Hospital’s Rule a few times to get

lim
x→0

x− sinx

x sinx
= lim

x→0

1− cosx

sinx+ x cosx
= lim

x→0

sinx

2 cosx− x sinx
= 0.

Example 3.3 Evaluate the limit

lim
x→∞

x
1
x .

Recall that if a > 0, b are real numbers, we define ab := exp(b ln a).
Therefore,

lim
x→∞

x
1
x = lim

x→∞
exp

(
1

x
lnx

)
= exp

(
lim
x→∞

lnx

x

)
= exp

(
lim
x→∞

1/x

1

)
= e0 = 1.

Note that we can move the limit into the function “exp” since the exponential
function “exp” is continuous.

We end this section with a proof of Theorem 2.2.

Proof of Theorem 2.2 : The idea is that if f(x0) = ±∞ = g(x0), then we have
1

f(x0)
= 0 = 1

g(x0)
. Therefore, we can apply L’Hospital’s Rule to conclude

that

lim
x→x0

f(x)

g(x)
= lim

x→x0

1/g(x)

1/f(x)
= lim

x→x0

−g′(x)/g(x)2

−f ′(x)/f(x)2
.
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The right hand side is

lim
x→x0

(
g′(x)

f ′(x)
· f(x)2

g(x)2

)
= lim

x→x0

g′(x)

f ′(x)
· lim
x→x0

(
f(x)

g(x)

)2

= lim
x→x0

g′(x)

f ′(x)
·
(

lim
x→x0

f(x)

g(x)

)2

.

Therefore, we have

lim
x→x0

f(x)

g(x)
= lim

x→x0

g′(x)

f ′(x)
·
(

lim
x→x0

f(x)

g(x)

)2

.

Canceling and moving terms around, we obtain

lim
x→x0

f(x)

g(x)
=

(
lim
x→x0

g′(x)

f ′(x)

)−1
= lim

x→x0

f ′(x)

g′(x)
.

This proves the theorem.
Question: Spot the gaps in the above proof. Can you fix them?

4 Indefinite Integral

Now, we know how to differentiate a function f(x) to get a new function
f ′(x). We want to ask whether we can reverse the process.

Question: Given a function f : (a, b)→ R (say differentiable), can we find
another function F : (a, b)→ R such that

F ′(x) = f(x)

for all x ∈ (a, b)?
Let’s try to understand the above question by some simple examples.

Example 4.1 Suppose f(x) = ex. Can we solve for F (x) such that F (x) =
f(x) = ex? Well we know that

F (x) = ex

is a solution since (ex)′ = ex. Are there any other solutions? Yes, for
example,

F (x) = ex + 1

is another solution. In fact, for any constant C ∈ R,

F (x) = ex + C

is a solution. Are these all the solutions then? The answer is indeed YES!
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Question: Show that if there are two solutions F1(x) and F2(x) such
that F ′1(x) = f(x) = F ′2(x) then

F1(x) = F2(x) + C for some constant C.

We make the following definition.

Definition 4.2 If F (x) is a differentiable function such that F ′(x) = f(x),
we say that F (x) is a primitive function of f(x) and∫

f(x) dx := F (x) + C

is said to be the indefinite integral of f(x). Here, C ∈ R is an arbitrary
constant called the integration constant.

For example, since we know that (ex)′ = ex and x′ = 1,∫
ex dx = ex + C,

∫
1 dx = x+ C.

Proposition 4.3 We can evaluate some of the elementary indefinite inte-
grals.

1.

∫
cosx dx = sinx+ C.

2.

∫
sinx dx = − cosx+ C.

3.

∫
xn dx =

xn+1

n+ 1
+ C for any real number n 6= −1.

4.

∫
1

x
dx = ln |x|+ C.

The following property helps us evaluate a much larger class of indefinite
integrals.

Proposition 4.4 (Linearity) Indefinite integrals are linear:

1.

∫
[f(x)± g(x)] dx =

∫
f(x) dx±

∫
g(x) dx.
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2.

∫
kf(x) dx = k

∫
f(x) dx for any constant k.

Using just Proposition 4.3 and 4.4, we can evaluate a lot of indefinite
integrals. First, we know how to compute the indefinite integrals of any
polynomials. For example,∫

(x4 − 3x+ 7) dx =

∫
x4 dx− 3

∫
x dx+ 7

∫
1 dx

=

(
x5

5
+ C1

)
− 3

(
x2

2
+ C2

)
+ 7(x+ C3)

=
x5

5
− 3x2

2
+ 7x+ (C1 − 3C2 + 7C3)

=
x5

5
− 3x2

2
+ 7x+ C

where C is ANY constant. Note that in the end, we can simply group all
the constants together to form a single constant C since all these constants
are arbitrary.

We can also evaluate the indefinite integrals of some rational functions.
For example,∫

(x+ 2)2

x
dx =

∫
x2 + 4x+ 4

x
dx

=

∫ (
x+ 4 +

4

x

)
dx

=

∫
x dx+

∫
4 dx+ 4

∫
1

x
dx

=
x2

2
+ 4x+ 4 ln |x|+ C.

The powers in the rational function do not need to be integers in some
cases. ∫

5x2 +
√
x+ 3√
x

dx =

∫
(5x

3
2 + 1 + 3x−

1
2 ) dx

= 5
x5/2

5/2
+ x+ 3

x1/2

1/2
+ C

= 2x
5
2 + x+ 6x

1
2 + C.

Proposition 4.5 We can evaluate the following indefinite integrals of trigono-
metric functions.
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1.

∫
sec2 x dx = tanx+ C.

2.

∫
csc2 x dx = − cotx+ C.

3.

∫
secx tanx dx = secx+ C.

4.

∫
cscx cotx dx = − cscx+ C.

5.

∫
secx dx = ln | secx+ tanx|+ C.

6.

∫
cscx dx = − ln | cscx+ cotx|+ C.

The first four integrals are easy. The last two will be proved after we
learn t-substitution in the next class.
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