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1 Derivatives of Piecewise Defined Functions

For piecewise defined functions, we often have to be very careful in com-
puting the derivatives. The di↵erentiation rules (product, quotient, chain
rules) can only be applied if the function is defined by ONE formula in a
neighborhood of the point where we evaluate the derivative. If we want
to calculate the derivative at a point where two di↵erent formulas “meet”,
then we must use the definition of derivative as limit of di↵erence quotient
to correctly evaluate the derivative. Let us illustrate this by the following
example.

Example 1.1 Find the derivative f

0(x) at every x 2 R for the piecewise
defined function

f(x) =

⇢
5� 2x when x < 0,

x

2 � 2x+ 5 when x � 0.

Solution: We separate into 3 cases: x < 0, x > 0 and x = 0. For the first
two cases, the function f(x) is defined by a single formula, so we could just
apply di↵erentiation rules to di↵erentiate the function.

f

0(x) = (5� 2x)0 = �2 for x < 0,

f

0(x) = (x2 � 2x+ 5)0 = 2x� 2 for x > 0.

At x = 0, we have to use the definition of derivative as limit of di↵erence
quotient. First of all,

f(0) = 02 � 2(0) + 5 = 5.

Then we calculate the left-hand and right-hand limits:

lim
h!0�

f(h)� f(0)

h

= lim
h!0�

(5� 2h)� 5

h

= lim
h!0�

�2 = �2,

lim
h!0+

f(h)� f(0)

h

= lim
h!0+

(h2 � 2h+ 5)� 5

h

= lim
h!0+

(h� 2) = �2.
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Since both of them exists and are equal, we have

f

0(0) = lim
h!0

f(h)� f(0)

h

= �2.

Therefore, putting all of these together, we see that f is di↵erentiable for
every x 2 R and

f

0(x) =

⇢
�2 when x  0,

2x� 2 when x > 0.

Remark 1.2 From the example above, we see that the derivative f

0(x) is
still a continuous function (check this!). This is not always true for any
function! (Have you seen a counterexample? See Homework 2)

Example 1.3 Consider the function defined by

f(x) =

⇢
ax+ b when x  �1,

ax

3 + x+ 2b when x > �1,

for what value(s) of a, b 2 R is the function f di↵erentiable at every x 2 R?

Solution: First, it is easy to see that for ANY a, b 2 R, the function f

is di↵erentiable at every x 6= �1 since f is defined by a polynomial on
(�1,+1) and (�1,�1). The only catch is at the point x = �1.

If f is di↵erentiable at x = �1, it must also be continuous at x = �1.
Therefore, we need

lim
x!�1

f(x) = f(�1).

Now, f(�1) = �a+ b and the left-hand and right-hand limits are

lim
x!�1�

f(x) = a(�1)3 + (�1) + 2b = �a+ 2b� 1,

lim
x!�1+

f(x) = a(�1) + b = �a+ b.

If f is continuous, then both of these limits must be the same and equal to
f(�1). Hence, we have

�a+ b = �a+ 2b� 1 ) b = 1.

Now, we take b = 1. To find the value of a which make f di↵erentiable
at x = �1, we require the limit

lim
h!0

f(�1 + h)� f(�1)

h
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to exists, which is equivalent to the statement that the left-hand and right-
hand limits exist and are equal. The left hand limit is

lim
h!0�

f(�1 + h)� f(�1)

h

= lim
h!0�

[a(�1 + h) + 1]� (�a+ 1)

h

= lim
h!0�

ah

h

= a.

The right hand limit is

lim
h!0+

f(�1 + h)� f(�1)

h

= lim
h!0+

[a(�1 + h)3 + (�1 + h) + 2]� (�a+ 1)

h

= lim
h!0+

a[(�1 + h)3 + 1] + h

h

= lim
h!0+

ah[(�1 + h)2 � (�1 + h) + 1] + h

h

= 3a+ 1.

Therefore, if we set them equal to each other, we obtain the condition

a = 3a+ 1 ) a = �1

2
.

In summary, we have a = �1/2 and b = 1 if f is di↵erentiable at every
x 2 R.

2 Di↵erentiation Rules II: Product and Quotient

Rules

Theorem 2.1 If f and g are di↵erentiable functions, then both their prod-
uct fg and quotient f/g are di↵erentiable and we have

(1) Product Rule:

[f(x)g(x)]0 = f

0(x)g(x) + f(x)g0(x),

(2) Quotient Rule:
✓
f(x)

g(x)

◆0
=

g(x)f 0(x)� f(x)g0(x)

(g(x))2
,

provided that g(x) 6= 0.

Remark 2.2 Observe that the di↵erentiation rule [kf(x)]0 = kf

0(x) where
k is a constant is just a special case of product rule by taking g(x) ⌘ k,
which has g

0(x) = 0.
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Before we go into the proof of these rules, let us first look at a few
examples of how to apply these rules to help us calculate derivatives.

Example 2.3

d

dx

[(x+ 2)(x2 + 1)] = (x+ 2)0(x2 + 1) + (x+ 2)(x2 + 1)0

= (1)(x2 + 1) + (x+ 2)(2x)

= 3x2 + 4x+ 1.

d

dx

[sinx cosx] = (sinx)0 cosx+ sinx(cosx)0

= cosx cosx+ sinx(� sinx)

= cos 2x.

d

dx

✓
x

2 + 1

x+ 1

◆
=

(x+ 1)(x2 + 1)0 � (x2 + 1)(x+ 1)0

(x+ 1)2

=
(x+ 1)(2x)� (x2 + 1)(1)

(x+ 1)2

=
x

2 + 2x� 1

(x+ 1)2
.

d

dx

✓
sinx

x

◆
=

x(sinx)0 � sinx(x)0

x

2

=
x cosx� sinx

x

2
.

Note that for the last two examples, the calculation is valid only for
x 6= �1 and x 6= 0 respectively.

Question: Does the limit lim
x!0

d

dx

�
sinx

x

�
exist? If we define

f(x) =

⇢
sinx

x

when x 6= 0,
1 when x = 0,

then does f 0(0) exists? If so, is it related to the limit at the beginning?
Question: Calculation the derivatives of all the trigonometric and hy-

perbolic functions!
Now, we come back to the proof of the product rule and quotient rule.
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Proof of Product Rule: Using the definition of derivative,

[f(x)g(x)]0 = lim
h!0

f(x+ h)g(x+ h)� f(x)g(x)

h

= lim
h!0

[f(x+ h)g(x+ h)� f(x)g(x+ h)] + [f(x)g(x+ h)� f(x)g(x)]

h

= lim
h!0

✓
g(x+ h)

f(x+ h)� f(x)

h

◆
+ lim

h!0

✓
f(x)

g(x+ h)� g(x)

h

◆

= g(x)f 0(x) + f(x)g0(x).

In the last equality, we have also used that lim
h!0 g(x + h) = g(x) since g

is continuous (even di↵erentiable) by assumption.
Proof of Quotient Rule: Using the definition of derivative,

✓
f(x)

g(x)

◆0
= lim

h!0

f(x+h)
g(x+h

� f(x)
g(x)

h

= lim
h!0

f(x+ h)g(x)� f(x)g(x+ h)

hg(x)g(x+ h)

= lim
h!0

f(x+h)g(x)�f(x)g(x)
h

+ f(x)g(x)�f(x)g(x+h)
h

g(x)g(x+ h)

= lim
h!0

g(x) f(x+h)�f(x)
h

� f(x) g(x+h)�g(x)
h

g(x)g(x+ h)

=
g(x)f 0(x)� f(x)g0(x)

(g(x))2
.

Again we have used the continuity of g in the last equality.

3 Composite Functions

Apart from addition, subtraction, multiplication and division to get new
functions, there is another useful way to obtain new functions from old
called composition.

Definition 3.1 Given two functions f : D ! E and g : E ! F , we can
define the composite function

g � f : D ! F by g � f(x) := g(f(x)).
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If we think of functions as assignments, then g � f means assigning x to
f(x) first and then we further assign f(x) to g(f(x)). Note that in order
for the composition g � f to be well defined, the domain of g must contain
the image of f . However, we do not require either f or g to be injective or
surjective.

Question: Which of the following statement is true?

• f and g are injective ) g � f is injective?

• f and g are injective ) g � f is injective?

• g is not injective ) g � f is not injective?

• g is not surjective ) g � f is not surjective?

Let us look at one example. Consider two functions defined by

f : R ! R, f(x) := cosx,

g : R ! R, g(y) := y

2
,

the composition g � f : R ! R is hence

g � f(x) = g(f(x)) = g(cosx) = cos2 x.

Note that we can also do the composition in a di↵erent order for this exam-
ple. We can form f � g : R ! R which is defined by

f � g(y) = f(g(y)) = f(y2) = cos y2.

Note that even in this case both g � f and f � g are defined, they are NOT
equal to each other. Therefore, the ordering is important when we talk
about composition:

Remark 3.2 In general, we have g � f 6= f � g even when both are well-
defined.
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The notation g � f may be confusing sometimes since we are writing g

first and then f but the composition means doing f first and then g. One
good way to memorize this is that when g � f acts on x, we write g � f(x).
It is f which hits x first, and then followed by g. This is the reason why we
use this convention.

Also, in the above example, we write g�f as a function of x and f �g as a
function of y. When comparing them as functions, the name of the variable
(x and y) are irrelevant. It is the rule of assignment that determines the
function. For example, we consider f(x) = x and g(y) = y as the same
“function”. It will become clear later that it is useful to keep using x for
elements in the domain of f and y as elements in the codomain of f .

Composition is a rather nice operation which preserves many of the an-
alytic properties of f and g.

Theorem 3.3 If

(i) f is continuous at x0, and

(ii) g is continuous at y0 := f(x0),

then g � f is continuous at x0. In other words, composition of continuous
functions is continuous.

The “proof” is rather intuitive. When x is close to x0, then y := f(x)
is also close to y0 := f(x0) by the continuity of f . On the other hand,
since y is close to y0, we must have g(y) close to g(y0). This is the same as
saying that g(f(x)) is close to g(f(x0)). A rigorous proof can given using
the ✏� � definition of continuity. Interested students can try to write down
a complete proof as an exercise.

We have already used this theorem implicitly many times when we eval-
uate limits. For example, when we compute

lim
x!0

cos2 x = (cos 0)2 = 1,

we have used the continuity of cos and square function which justifies the
direct substitution with x = 0 to compute the limit.

4 Di↵erentiation Rules III: Chain Rule

Composition of di↵erentiable functions is also di↵erentiable.

Theorem 4.1 (Chain Rule) If
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(i) f is di↵erentiable at x0, and

(ii) g is di↵erentiable at y0 := f(x0),

then g � f is di↵erentiable at x0 and

(g � f)0(x0) = g

0(f(x0)) · f 0(x0).

Remark 4.2 The chain rule simply says that the derivative of composition
is just the product of derivatives. Yet this is one of the most confusing rules
among all the di↵erentiation rules we have seen so far. The reason is that
we have to be careful at which points we are evaluating the derivatives! We
are NOT evaluating g

0 at x0, but at f(x0) instead. If you recall the step-by-
step assignment picture of composite functions, you see that it is indeed the
only way for the formula to make sense since g

0(x0) is not even defined as
x0 is not in the domain of g!

Let us turn to some examples.

Example 4.3 Calculate the derivatives of the following functions:

(i) cosx2,

(ii) (x2 + 1)7,

(iii) e

sinx,

(iv) e

sinx

2
.

Solution: (i) Let f(x) = x

2 and g(y) = cos y, then g � f(x) = cosx2 is
the function we want to di↵erentiate. Note that

f

0(x) = 2x and g

0(y) = � sin y.

Therefore, applying chain rule we get

(g � f)0(x) = g

0(f(x))f 0(x) = (� sin(x2)) · (2x) = �2x sinx2.

(ii) Let f(x) = x

2+1 and g(y) = y

7. We have f 0(x) = 2x and g

0(y) = 7y6,
Therefore,

d

dx

(x2 + 1)7 = 7(x2 + 1)6 · (2x) = 14x(x2 + 1)6.
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Therefore, the chain rule basically says that we can di↵erentiate “layer-by-
layer”, starting from the outermost layer. In this example, we first di↵eren-
tiation the function of “raising to power 7” and then di↵erentiate into the
bracket.

(iii) Using the concept of di↵erentiating layer-by-layer, we do not need
to define f and g every time. Since we know the derivative of ey is just ey

and the derivative of sinx is cosx, we get

d

dx

e

sinx = e

sinx · cosx.

(iv) For functions involving more than two layers, we just di↵erentiate
them one by one. Here, the outer layer is exponential function, the middle
layer is sin and the inner later is x2, so

d

dx

e

sinx

2
= e

sinx

2 · (cosx2) · (2x).

Note that when di↵erentiating the outer layers, you keep the inner layers
unchanged. This makes sure that you are evaluating at the correct point as
discussed in Remark 4.2.

Question: Use layer by layer di↵erentiation to evaluate the following
derivatives:

d

dx

q
x+

p
x and

d

dx

✓
xp

1 + x

2

◆
.

Proof of Chain Rule: By definition of derivative,

(g � f)0(x0) = lim
x!x0

g(f(x))� g(f(x0))

x� x0

= lim
x!x0


g(f(x))� g(f(x0))

f(x)� f(x0)

f(x)� f(x0)

x� x0

�

= lim
x!x0

g(f(x))� g(f(x0))

f(x)� f(x0)
· lim
x!x0

f(x)� f(x0)

x� x0
.

Let y = f(x) and y = f(x0), since f is continuous at x0, we have y ! y0

as x ! x0, therefore, we can rewrite the first limit in the last line above in
terms of y:

lim
y!y0

g(y)� g(y0)

y � y0
· lim
x!x0

f(x)� f(x0)

x� x0
= g

0(y0)f
0(x0) = g

0(f(x0))f
0(x0).

This proves the chain rule.
Question: There is a loophole in the above proof. Can you find it and

fix it?
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5 Inverse Di↵erentiation

We can use the chain rule to find the derivative of the inverse f

�1 of a
function, if it exists.

Theorem 5.1 Let f : (a, b) ! (c, d) be a bijective di↵erentiable function
whose derivative f

0 is continuous. Then, the inverse function g : (c, d) !
(a, b) is di↵erentiable at every y such that f 0(g(y)) 6= 0 and

g

0(y) =
1

f

0(g(y))
.

Remark 5.2 Note that the inverse may not be di↵erentiable at where f

0 =
0. For example, consider f : R ! R defined by f(x) = x

3, then its inverse
g(y) = y

1/3 exists but is not di↵erentiable at y = 0.

Proof of Theorem 5.1 The proof that g is di↵erentiable is much more
involved so we skip it here. By the definition of inverse,

f(g(y)) = y for all y.

Since the above equation holds for ALL y, we can di↵erentiate the whole
equation on both side with respect to y, applying chain rule on the left hand
side, we obtain

f

0(g(y))g0(y) = 1.

If f 0(g(y)) 6= 0, we can divide it to the other side to obtain the formula of
g

0(y).

Example 5.3 Show that d

dx

(ln y) = 1
y

.

Solution: Recall that the exponential function exp(x) : R ! (0,1) is 1-1
and onto whose inverse is ln y : (0,1) ! R. We have already seen that
d

dx

exp(x) = exp(x). Therefore, using inverse di↵erentiation, keeping in mind
that y = exp(x), we have

d

dy

ln(y) =
1

exp(x)
=

1

y

.

Example 5.4 Show that d

dx

sin�1
y = 1p

1�y

2
.
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Solution: Recall that sin(x) : R ! R is neither 1-1 nor onto so the inverse
does not exists. However, if we restrict its domain and codomain to sin(x) :
(�⇡

2 ,
⇡

2 ) ! (�1, 1), then it becomes 1-1 and onto and hence there is an
inverse sin�1

y : (�1, 1) ! (�⇡

2 ,
⇡

2 ). Using inverse di↵erentiation, since
y = sinx, we have

d

dy

sin�1
y =

1
d

dx

sinx
=

1

cosx
=

1p
1� sin2 x

=
1p

1� y

2
.

Note that we could have restrict sin(x) to a di↵erent domain e.g. (⇡2 ,
3⇡
2 ).

The inverse function sin�1
y would be di↵erent, but the derivative is the

same! The choice of sin�1 is a phenomenon called “branching”.
Question: What happens to d

dy

sin�1
y when y ! ±1? What does it

correspond to in terms of the slope of the graphs?
Question: Discuss the domains and codomains of the inverses of other

trigonometric and hyperbolic functions. What are their derivatives?

6 More Examples

We give a few more examples illustrating the use of all the di↵erentiation
rules we discussed.

d

dx

(ln(x+
p
1 + x

2)) =
1

x+
p
1 + x

2

d

dx

(x+
p

1 + x

2)

=
1

x+
p
1 + x

2
[1 + x(1 + x

2)�
1
2 ]

=
1p

1 + x

2
.

We can use exp and ln to define an arbitrary exponential function a

b for
ANY a > 0 and b 2 R:

a

b := exp(b ln a).

Hence, we can calculate the derivatives of these general exponential func-
tions:

d

dx

3x =
d

dx

(exp(x ln 3)) = exp(x ln 3) · ln 3 = 3x ln 3.

d

dx

x

x =
d

dx

(exp(x ln x)) = exp(x ln x) · [(1)(ln x)+(x)(
1

x

)] = (1+ ln x)xx.

Question: Calculate d

dx

(xx
x

).
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