Optimization Approaches
for

Inverse Quadratic Eigenvalue Problems

Zheng-Jian Bai
Department of Information and Computational Mathematics
Xiamen University
Xiamen 361005, China

Email: zjbai©xmu.edu.cn

The 1st International Summer School on Numerical Linear Algebra
July 17--August 5, 2006 (Guangzhou & Hong Kong )



Outline |

e Introduction

e Main Problems
— Qur approaches
— Main results

— Numerical experiments

e Concluding Remarks



Introduction |

In many engineering application, we often need to solve a linear
second-order differential equation (e.g. Finite Element Model)

Mii(t) 4+ Cu(t) + Ku(t) = 0,

where M, C, K are n-by-n matrices and u(t) is an nth-order vector.



The separation of variables u(t) = ue leads to the quadratic
eigenvalue problem (QEP)

Q(Mu= (\°M 4+ \C 4+ K)u=0.

The scalar A and the corresponding nonzero vector u are called
the eigenvalue and eigenvector of the quadratic pencil Q(\).

(See Tisseur'01 for detail)



Applications of QEPs:

e Vibrating Analysis of Structural Mechanical and Acoustic
Systems

e Electrical Circuit Simulation

e Fluid Mechanics

e Modeling Microelectronic Mechanic Systems

e Linear algebra Problems and Signal Processing



Example: Damped mass-spring system

e The ith mass of weight m; is connected to the (¢ 4+ 1)th
mass by a spring and a damper with constants k; and d;,
respectively.

e [ he :th mass is also connected to the ground by a spring
and a damper with constants «; and 7;, respectively.
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T he vibration of this system is governed by the following QEP

(N°M 4+ A\C + K)u =0,

where M,C, K are called the mass, damping, and stiffness ma-
trices which are defined by

M = diag(mq,- -+ ,mp)

(d1+do+ 7 —do
—dp do +d3+ 1 —d3
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The dynamics is governed by
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e Natural Frequencies «— Eigenvalues of the QEP

e Model Shapes < Eigenvectors of the QEP




Disadvantage:

e Only partial frequencies & model shapes accurately predicted

e The predicted frequencies & model shapes often disagree
with that of experimentally measured from a realized practi-
cal structure
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Inverse Quadratic eigenvalue Problems (IQEP):

Reconstructing the quadratic pencil

QN =)\°M +XC+ K

from the prescribed eigenvalues/eigenvectors.

Applications of IQEP:

e Finite Element Model Updating (Friswell and Mottershead’'95)

e Partial Eigenstructure Assignment Problem (Datta’02)
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Previous Approaches:
e Optimization procedures (Baruch'78, Berman & Nagy'83, Caesar'86)

® Eigenstructure assignment techniques (Minas & Inman’'90, Zimmerman &
Widengren'90)

® Eigenvalue embedding methods ( Ferng'01, Carvalho'01)
Disadvantage:

e [ he damping matrix is just proportional or even ignored.

e Exploitable structural properties (e.g., symmetry, definiteness,

sparsity and bandedness) of the original model are not preserved.
12



Main Problems |

In our talk, we consider two types of IQEPSs:

e Find the real and symmetric mass, damping, and stiffness
matrices with the mass and the stiffness matrices positive definite
and positive semidefinite, respectively such that they are clos-
est to the given analytical matrices and satisfy the measured

eigendata;

e Constructing physical parameters of a damped mass-spring
system from measured eigendata.
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PART I.

A Dual Optimization Approach
for
Inverse Quadratic Eigenvalue Problems
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PART I. Statement of Problem |

The general IQEP can be defined as follows:

e Given a measured partial eigenpair (A, X) € RFXk x RXk with
k <n and X full column rank.

N\ = diag{/\l, .. -,/\,u,/\,u-i—la .- -7/\V}7

S;
_A\

A = diag{AP APy AP = [ @ D ] cR22 1 <4< p,

—0Bi o

/\i:)\ilsi, ,LL-I-lSiSI/,
o(Ni)Na(\;) =0,Vi#£j
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e Find M,C, K € §" with M > 0 and K > O such that

MXNAN2+CXAN+ KX = 0.

Chu, Kuo, and Lin (2004) showed that the general IQEP admits
a nontrivial solution, i.e, there exist

M = 0,C =CT K = 0 satisfying

MXNA2+CXAN+ KX = 0.

16



Optimization Problem: For given Mg, Cy, K, € 8™, which are
called the estimated analytic mass, damping, and stiffness ma-
trix, the IQEP is

inf LM — Ma||* + Z|IC — Cal|? + 3|1 K — Kal|?
s.t. MXAN2+CXAN+ KX =0,
M>=0(M=0), Cc=ct K=o

where c1 and co are two positive parameters.
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PART I. Our Approach |

Let the QR factorization of X be given by

where Q € R™ ": orthogonal and R € R¥*k: nonsingular and
upper triangular.
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By doing variables substitution,

M = /c1QTMQ, My = \/e1Q" MaQ), ete.
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The IQEP becomes

min

S.t.

SIM — Ma]2 4 31C — Call? + JIK — Kal?

v [Rlwo, 1 ,[R rR]
ﬁM[o A +@C[o]’\+K[o_—o’
(M,C,K) € €,

where €2 is a convex cone defined by

Qo =8"x8"xS"

Q:={(M,C,K)€eQq: M»0, KO0},
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Let

S = RAR 1. |

Partition

where M1,Cq1,Kq € Sk, Mo, Cor, Ko € ka(n—k), and Mgy, Cy, Ky €
S(n—Fk)
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For (M,C,K) € Qq, let H(M,C, K) be given by

1 1

NG

(AT (RTM1R> + - AT (RT01R> + (RTKlR)

NG

and G(M,C, K) be given by

1 1

(S*)' Mo + STCy + Ko.

Vet NG

While G : Qg — Rk*(n=k) is onto, H : Qg — R**F is not.
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Let

Range(H) := {H(M,C,K) : (M,C,K) € g} C RF*F,

Then H : Qp — Range(H) is surjective. The dimension of
Range(H) is given by

H 1 v
k2 - Z 87;(87; - 1) — 5 Z Si(Si — 1).
1=1 1=u+1
In particular, if sy = --- = s, = Sy+1 = " = Sy = 1,
it is equal to k2.
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Define the linear operator A : Q5 — Range(H) x RExX(n=k) py

AM,C,K) : = (H(M,C,K),G(M,C,K)) .

The IQEP takes the following compact form

min [(M, C, K) — (Ma, Ca, Ka) |2
St A(M7 C) K) — O)
(M,C,K) € Q2.
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Its dual problem is

min 6(Y, Z)
s.t. (Y,Z) € Range(H) x Rkx(n—k)

where

1 . 1
0(Y, Z) := S INe((Ma, Ca, Ka) +A"(Y, Z))||2—§||(Ma,0a,Ka)||2.
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Under Slater’'s condition

A: X — Y is onto,
34z € X such that Ax =b, z € int(£2),

where “int” denotes the topological interior, the classical duality
theorem [Rockafellar'74] says that

* 1= Mo (204 A*y*) solves the original problem
if y* solves the dual problem.
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From our construction, we know that

A : Qg — Range(H) x Rkx(n—k) js onto. I

Moreover, we have shown that

Theorem 1. The IQEP has a strictly feasible solution
iff

Det(A) #= 0.

Remark: If Det(A) = 0, we do not lose generality as we can
reduce the IQEP to another problem with a strictly feasible so-

lution.
27



Thus the Slater condition is satisfied.

In addition, the gradient of the dual function is given by

F(Y,Z) :=VO0(Y,Z) = ANq (Mg, Cq, K5) + A*(Y, Z)),

where (Y, Z) € Range(H) x Rk*(n=k) Therefore,

e Gradient based methods (e.g., BFGS method) can be used to
find the optimal solution (Y*, Z*) of the dual problem.

e \We can't directly use Newton’'s method to solve the dual prob-
lem since Mq(-) is not continuously differential.
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Notice that MNq(-) is globally Lipschitz continuous. Then we can
apply Clarke's General Jacobian based Newton methods for lo-
cally Lipschitz equations. We first recall the definition of Clarke’s
General Jacobian (Clarke’'83).

Let Y and Z be arbitrary finite dimensional real vector spaces.

Let O be an open set in Y and W : O C Y — Z be a locally
Lipschitz continuous function on the open set O.

Rademacher’'s theorem says that W is almost everywhere Fréchet
differentiable in O.
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We denote by Oy the set of points in O where W is Fréchet
differentiable.

Let W/(y) denote the Jacobian of W at y € Oy,.

Then Clarke's generalized Jacobian of W at y € O is defined by
[Clarke’83]

OV (y) := conv{dpW(y)},

where ‘“conv’ denotes the convex hull and

J—00

opW(y) := {V V= lim W (y), ¢ € (’)W}.
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When F : O C Y — Y is continuously differentiable (smooth),
the most effective approach for solving

F(y) =20

is probably Newton's method. For example, in 1987, S. Smale
wrote

If any algorithm has proved itself for the problem
of nonlinear systems, it is Newton’s method and
its many modifications...”

31



The extension of Newton’s methods to Lipschitz systems:

e Friedland, Nocedal, and Overton [87] for inverse eigenvalue
problems.

e Kojima and Shindoh [86] for piecewise smooth equations.

e Kummer [88] proposed a condition

(ii) for any x — y and V € oW (x),

V(z) —W(y) —V(z—y) =o(llz—yl]).

e Finally, Qi and J. Sun [93] showed what needed is semismoothness.
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The function W is (strongly) semismooth at a point y € O if

(i) W is directionally differentiable at y; and

(ii) for any x — y and V € oW (x),

W(z) —W(y) —V(z—y) = o(lz—yl]) (O(|z—y|[?)).

33



Let A € S™. Then A admits the following spectral decomposition

where > is the diagonal matrix of eigenvalues of A and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.

Define three index sets of positive, zero, and negative eigenvalues
of A, respectively, as

a:={i: o; > 0},
B:=1{io; =0}
v:={i: o; < 0}

34



Write

> = diag (za,zﬁ,zv) and P = [Po P3 Py]

with Py € Rl Py € R**I8], and Py € R™<N.

Define the matrix U € Rlex with entries

___max{o;,0} + max{oc;, 0}

1EQ,) €Y

v il + [oj] |

where 0/0 is defined to be 1.
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Sun and Sun [02] showed I‘Igi(-) is strongly semismooth every-
where and the directional derivative M, (A; H) is given by
_|_

PTHP, PTHP; UoPTHP, |
T T T
P PIHP.  Ng (PIHP) 0 P,
PTHP,oUT 0 0

where o denotes the Hadamard product.

When A is nonsingular, i.e., |8| = 0, I‘Igi(-) is continuously differ-
entiable around A and the above formula reduces to the classical
result of Lowner [34].

36



The tangent cone of Si at AL = I‘Igv_lz_(A):

Tsp(Ap) ={BeS": B= ngi(AJr; H)}={BeS" : PLBP; - 0},

where Py := [Pﬁ P,] and the lineality space of Tgi(A_l_), i,e, the
largest linear space in Tgi(A+),

lin (TSi(AJF)) — {(Bes": PIBP; =0},
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Let W(H) be defined by

' P'HP, PIHP; UoPIHP, |
P| PIHPL 0 0 pl
 PLHP,oU' 0 0 _

for all H € S™. Then W is an element in dglgn (A).
B S_|_



(Newton’s Method for solving F(Y,Z) =Vo(Y,Z) = 0)

[Step 0.] Given (Y9, 29) € Range(H) x Rkx(n=k) n < (0,1),
p,6 € (0,1/2). j:=0.

[Step 1.] (Newton's Iteration) Select an element

Wj € 0N ((Ma, Ca, Ka) + A*(Y7, 27))

and let

V:j L= .AWj.A*.
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Apply the conjugate gradient method to find an approximate
solution

(AY7, AZT) € Range(H) x REx(n—Fk)
to the linear system
F(Y?,27) 4+ V;(AY,AZ) =0 (1)
such that
IF(Y7,27) + Vi(AY ), AZT)|| < il F(Y, Z27)| (2)

and

(F(YY,29),(AYI, n27)) (3)
< —nj ((AY7, 820),(AY7, AZ0)),
where n; := min{n, |F (Y7, Z7)|}.

40



If (2) and (3) are not achievable, let

(AYI, AZI) = —F(YI,Z7)
= —ANg ((Ma, Ca, Ka) + A*(Y7, Z7)) .

[Step 2.] (Line Search) Let m; be the smallest nonnegative
integer m such that

0 ((Y7,27) + p™(AYI, n27)) — 0(Y7, 27)
< 6p™ (F(YT,27),(AYI, AZ7)) .
Set
(YI+L Zzithy .= (v7, 27) + p"™i(AYY, AZY).

[Step 3.] Replace j by 7+ 1 and go to Step 1.

41



Main Results |

Global convergence:

Theorem 2. The algorithm generates an infinite sequence
{(YJ,Z7)} with the properties that for each j > 0, (Y7,Z7) €
Range(H) x Rkx(n—k) £(yJi zi)} is bounded, and any accumula-
tion point of {(Y7,Z7)} is a solution to the dual problem.

42



For discussions on the rate of convergence, we need the con-
straint nondegenerate condition (“LICQ")

A (Iin (751(M)) S™.1in (zgi(m))
= Range(H) x Rkx(n—k)

where (M,C,K) € Qg is a feasible solution to the original prob-
lem.
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Theorem 3. Let (Y, Z) be an accumulation point of the

infinite sequence {(Y7,Z7)} generated by the algorithm.
Let

(M,C,K) :=Ng ((Ma, Ca, Ka) + A*(Y, 2)) .

Assume that the constraint nondegenerate condition

holds at (M,C,K). Then the whole sequence {(Y7, Z7)}
converges to (Y, Z) quadratically.
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Numerical Experiments I

The stopping criterion is

0(Y.. /
Tol — ||V (Y, Zp) || <107,

max{l, =M, WCQ,KQ)\\}

We set other parameters used in our algorithm as n = 109,
p=0.5, and § = 10~ 4.
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k=30, c¢c1=cp=1.0

n cputime | It. | Func. Tol.
100 0l m26s|18| 24 |3.9x10 1
200 04 m39s|14| 15 |39x 1011
500 21m16s|11| 12 |1.3x 10710

1,000 44 m13s| 9| 10 1.1 x 1079
1,500 | 08 h49 m1l1s| 7 8 1.6 x 108
2000/ 05h24m37s| 9| 10 3.3x 108
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~n/3, c¢1=10.0,co =0.10

n k cputime | It. | Func. Tol.
100 | 33 46.1s| 9| 11 |1.4x10°
200 | 66 42 m42s|13| 15 |58x 108

30010002 h24 m23s|17| 20 |6.5x10°
400 133/04h38 m42s|10| 11 |4.0x 108
450115012 h23 m44s|13| 14 |8.8x10°9°
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The largest numerical examples that we tested in this paper are:
e (i) n=2,000 and kK = 30 and
e (ii) n =450 and k = 150.

For case (i), there are roughly 6,000,000 unknowns in the primal
problem and 60,000 unknowns in the dual problem while for case
(ii), these numbers are roughly 300,000 and 67,000, respectively.

e In consideration of the scales of problems solved, our algorithm
IS very effective.
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PART II.

Reconstruction of the Physical Parameters
of
a Damped Vibrating System From Eigendata

In structural mechanics, a damped vibrating model is governed
by the equation

(MM 4+ \C 4+ K)u = 0,

where
49



(See Ram and Gladwell'94 for undamped case, i.e., C = O)
50



PART II: Statement of Problem |

Inverse problems can be stated as follows:

Problem A. Construct the parameters (m i kg )1 from
w = Y m; and two real eigenvalues (}\; )2 and three real

eigenvectors (ul))3.

Problem B. Construct the parameters (mj,c;, k;)7 from
w = g‘mj and one real eigenvector u®) and a complex

conjugate eigenpair (Ao 3 = a + Bi,u(?3) = up + uzi),

where 1 = /—1.
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PART II: Our Approach |

Let (A\,u) be any eigenpair of the equation

(\°M 4+ A\C + K)u =0,

Rewrite this equation so that (u;)} appear in matrices and (m;, c;, k;)7
in the vectors:

A Am + A\Bc + Bk = 0,

52



where

I 2u1 2u1 + uo
uq1 + 2uo> 2un + u3
A = ,
Up—2 + 2Up—1 2Up—1 + uUn
] Up—1 + 2un |
U1 U] — U
—u] + u> U2 — u3
B =

—Up—2 T Up—1 Up—1—Un
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Let

a ) = u. . An—1 _
(a;)T = uj_1 +2uj, (b;)7" " = 2u; +ujt1, (d;)T = uj —uj_1.
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Suppose that we have three real eigenpairs: {Aj,u(j)}{’. Then

)\JQ-A(j)m + )\jB(j)c + BUK = 0, j7=1,2,3. (4)

The last rows of above expression give

Zai) adl dSD | m,
A2a$? Aod® dP || en | =0.
2208 Azd$® afP |\ Fn
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To ensure the existence of a nontrivial solution, we let

BBV O ON
det | A2a$? Ad(P 4P | =0.
)\2 (3) )\3d7(13) d7(13)

30n

If this condition is satisfied, or alternatively if {)\;}7 and {u()}3
are given and )3 is determined by above equation, then the ratio
cn/mp and kp/my are determined by

Aldv(zl) do(zl) Cn/mn _ —)\%&7(11)
)\2d7(12) d7(12) kn/mn - — )2 (2) .

20n
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The other n — 1 rows of expression (4) yield

Let

[ 326y 4+ A e+ d kg )

)\2 §1) A\ d(l) d(l) -
2., d(2> d<2> ¢
%3) X d<3> d<3> K;

57



T hen

)\2 (1) A1 d(l) d(l) ~
<3> \ d<3> d(3> ks

( )\Qb(l)N]_H + Ald(lil j+1 T dg(}%lkj-l-l \
2) ~ 2

_ 2 (2)~ ( (
= —/\ij 1+ >\2d j+16+1 T d; +1’?7+1
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Notice that the total mass w = ?mj iIs known. T herefore, one
can obtain the parameters (mj,cj, k)T by m; = mjw/w, ¢; =
5]'?1}/@, and k] = k]’w/’UNJ, where w = Z?T/ﬁ]

Problem A is solved by the constructive proof. We can solve
Problem B by the same way. Here, we only note the following
fact.

For the complex conjugate eigenpair (Ao3 = a %+ Bi,u(23) =
up £ ujyi), we have

(AN2M + X0+ K)uW) =0, j=23.
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The real form:

{ M [(a? — B%)ug — 2apu;| 4+ C (aug — Bu;) + Kugp =0

M [2apup + (o — f)u;]| + C (Bug + aus) + Ku; =0

In terms of the parameters (m;,c;, k;)7:
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[(OzQ — ﬁQ)AR — QQﬁAI] m [OzBR — ﬁB[] c+ BRk =0

[QOéﬁAR —|— (Oz2 — 52)14]] m —I— [BBR —I— OéB]] C —I— B]k =0

where
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with

(ajr)] = wj—1r + 2ujr,  (a;0)7 = uj-1,1 + 2uyr,

(bir)T ™ = 2ujr + ujr1.r, ()7 " = 2ujr + ujqas

(djr)} = ujr — Uj—1,R, (d;1)} = ujr —uj—1r1,
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Disadvantage:

e Physical realistic (i.e., positive) mass, damping, and stiffness
not guaranteed

e Sensitive to Perturbations.
Aim:

e [0 reduce the sensitivity, we find the solution in the least
squares sense.
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Given w = ”fmj and k noise corrupted eigenpairs

{)‘2] 1,25 ‘= aj = Bj1, u(2i-1,25) . — uﬁ{) £+ u(]) }
1

2041
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Solving the least squares problems successively:

ardt) - gdy )] [ ~[(a? - B2)al}) 2a161a% ] \
Budyp +oady)  dy) —2a1fray + (of - b
S B N ) >a“> 204610y
Bed"?) + apd? d“) —[QOéeﬁeanR + (a2 — ﬁ%)a /]
)\25+1d(2£+1) d(2£+1) )2 a(2£+
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(a2 — ﬁf)a(l)

20415161 )+ (a2
(8
1—

(a7 -
] 5%)61('6)
IR

2 H a —|— (87
' (¢
¢ jR) ( 2

2
o ﬁla (1) (1
)a(l) 5551;

2a ﬁa ©
ozd(g)

51 d(l)
d(l)

5 a0

()

)\2
2£-|—% §2£—|—1)
)2 (k : :
2 ) r+1d; oy
j . .j
)\kd(k)
J
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£U) —

[ —[(a}- ﬁ(%))b%) — 201616 >]mj+1 + [on
1
—[201 81635 + (a3 — 5%)% ]mg+1 + (51

(G
— 20086y + (aF —

1) ~
~A6$ 41 4 Aad

27 (k) ~ ~
A1 + Akd§+>1CJ+1 +

— 204666[)%)]7%3'4-1 + [Oéedgll R
) ~
B0 + 1Ay

]+1EJ+1 +

(1) (1) PN
d%—i-)l R d( +1 []Cj 1+ d§}|—1 R j_|_1 \
dg+1 rRT O‘ldﬁ-l Aci+1+ ]—i-)l ij+1

0)
— B dg(+)1 ¢4+ dg+1 RkH—l
R O‘ﬁdﬁtl dci+1+ d3421 Ik]—i-l

(1) 7.
d]—i—lkj-f—l

(k) 7.
dj—l—].k]"‘l
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Advantage:

e Yield practically acceptable results for minor changes in eigen-
data

Drawback:

e Not theoretically ensure that the mass, damping, and stiffness
are positive.

Our Goal:

e Reconstructing Physical Model over experimentally measured
data
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Given w = Y "m,; and k noise corrupted eigenpairs
1"

. . : ML
{)‘Qj—l,Qj = Oy + ﬁji, u(29_1’29) L= u%{) + u%)z}

1

Solving the following positivity-constrained least squares opti-
mization problems successively:
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where ¢ > 0 is a parameter determined by practical requirements.
70



Att:
e Can be solved fast by the active/passive set related methods

[Lawson & Hanson'74, Bro & Jong'97, Benthem & Keenan'04]
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PART II: Numerical Example I

e Randomly generate the quadratic pencil

Q\) = XM+ \XC+ K

with
(m;)? = (1.4360,1.5401,1.1141,1.0754,1.4964,1.3537,1.8337,1.3974,1.2314,1.1680),
(¢j)f = (4.3780,4.0110,3.1299,5.6259,5.2197,5.0297,5.9495,3.6815,3.4181,5.9454),
(k;)? = (12.7586,10.6233,7.8552,13.6456,13.4818,10.0050,11.5915,9.4480, 10.1156,
7.3799)
Thus w = 2711 m; = 13.6462.
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e Its nine eigenvalues Aj with smallest absolute value of imaginary
parts :

—2.0214, -0.0066 £ 0.1815%, —0.0687 £ 0.56421,

—0.1753 + 0.92497, —0.3435 + 1.233bs.

T heir corresponding eigenvectors ul@) omitted here.

e Perturb the eigenvectors ul) by a uniform distribution between
—0.001 and 0.001 (denoted by a{: minor error ) or between
—0.1 and 0.1 (denoted by a(): large error )
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Direct construction with )\»3 and {2()}3

Exact A1 = —1.2311
_j my Cy kj 7’7?,]' Ej kj
1| 1.4360 4.3780 12.7586 5.6389 3.1818 8.8605
2115401 4.0110 10.6233 | —5.6475 3.5939 8.0443
3] 1.1141 3.1299 7.8552 8.0544 2.3894 5.4086
4 | 1.0754 5.6259 13.6456 | —6.7987 4.4939 10.2333
51 1.4964 5.2197 13.4818 ©.3876 4.6543 11.0499
6 | 1.3537 5.0297 10.0050 | 12.1230 —0.6583 —1.8995
7 | 1.8337 5.9495 11.5915 27431 —-11.4309 —-18.0664
8 | 1.3974 3.6815 9.4480 | —9.3768 —3.6187 —11.7761
9 | 1.2314 3.4181 10.1156 | —0.0105 0.8531 3.1674
10 | 1.1680 5.9454 7.3799 0.5327 3.1846 3.1356
Exact A1 = —4.9175
1| 1.4360 4.3780 12.7586 ©6.3704 3.0292 8.9758
2115401 4.0110 10.6233 | —4.5867 3.3911 7.9768
3] 1.1141 3.1299 7.8552 ©6.5166 2.2947 5.5019
4 | 1.0754 5.6259 13.6456 | —6.9295 4.5947 11.0647
51 1.4964 5.2197 13.4818 | 11.9582 3.3720 8.5015
6 | 1.3537 5.0297 10.0050 0.1812 0.1549 0.3327
7 | 1.8337 5.9495 11.5915 0.0867 0.1380 0.2173
8 | 1.3974 3.6815 9.4480 0.0412 0.0256 0.0832
9 | 1.2314 3.4181 10.1156 0.0049 0.0092 0.0340
10 | 1.1680 5.9454 7.3799 0.0033 0.0195 0.0192




Least Squares Solution with data {)\;,u}s

(minor error)

Exact s=3 s=5 s=7T s=29

m1 | 1.4360 2.4850 | 0.8194 | 1.5355 | 1.4389
mo | 1.5401 | —2.3071 | 1.7277 | 1.4646 | 1.5282
m3 | 1.1141 3.2693 | 1.1624 | 1.1760 | 1.1249
mqg | 1.0754 | —3.0153 | 1.1483 | 1.0041 | 1.0629
ms | 1.4964 3.7243 | 1.5204 | 1.5229 | 1.5057
me | 1.3537 5.2184 | 1.5387 | 1.3474 | 1.3504
m7 | 1.8337 3.1366 | 1.6805 | 1.8116 | 1.8309
mg | 1.3974 1.7486 | 1.5538 | 1.3985 | 1.4018
mog | 1.2314 | —0.2668 | 1.2761 | 1.2259 | 1.2332
mio | 1.1680 | —0.3468 | 1.2190 | 1.1597 | 1.1693
c1 | 4.3780 4.4897 | 4.6555 | 4.3227 | 4.3538
c> | 4.0110 5.0003 | 4.3081 | 3.9459 | 3.9552
c3 | 3.1299 3.6256 | 3.4385 | 3.0901 | 3.1263
cq | 5.6259 6.8113 | 5.9581 | 5.6565 | 5.6443
cs | 5.2197 6.8906 | 5.3820 | 5.2141 | 5.2535
ce | 5.0297 4.6982 | 5.3242 | 4.9680 | 5.0151
c7 | 5.9495 3.9867 | 6.3193 | 5.8908 | 5.9908
cg | 3.6815 0.2915 | 3.9451 | 3.6603 | 3.6896
co | 3.4181 | —0.5826 | 3.5109 | 3.4021 | 3.4102
cio | 5.9454 | —1.6932 | 6.2091 | 5.9120 | 5.9582
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Least Squares Solution with data {)\;,u¢)}$ (minor error)

Exact s=23 s=5 s=7 s=29

ki | 12.7586 | 13.6628 | 13.2621 | 12.6760 | 12.7209
ko | 10.6233 | 11.9998 | 11.2915 | 10.5859 | 10.6227
k3 7.8552 8.8830 8.2406 7.7914 7.8335
ka | 13.6456 | 16.7363 | 14.3518 | 13.6887 | 13.6628
ks | 13.4818 | 17.7558 | 14.1613 | 13.3454 | 13.4253
ke | 10.0050 9.9822 | 10.5008 0.9262 | 10.0035
kz | 11.5915 6.1531 | 12.2609 | 11.5661 | 11.6238
ks 9.4480 0.6472 9.9126 9.3929 9.4562
ko | 10.1156 | —2.8647 | 10.5204 | 10.0472 | 10.1181
k1o 7.3799 | —2.0449 7.7082 7.3428 7.3947
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Comparison using data {\;,u)}; (large error)

LS.
Exact s=3 s=5 s=7T s=29
mi | 1.4360 | 12.9057 10.9010 6.8952 1.7398
mo | 1.5401 | —8.2321 | —10.0628 | —4.8752 | —0.9282
m3 | 1.1141 8.7035 13.3456 5.9059 2.2882
mg | 1.0754 | —7.8355 | —12.6486 | —4.9820 | —0.9015
ms | 1.4964 7.4295 14.0211 6.0671 2.5244
me | 1.3537 0.6405 | —12.0545 | —2.4680 0.4464
m7 | 1.8337 0.0262 6.2632 4.4962 2.0392
mg | 1.3974 | —0.0016 —2.1849 | —2.2597 1.8613
mo | 1.2314 0.0047 2.8448 2.5797 2.3767
mio | 1.1680 0.0052 3.2213 2.2868 2.1998
LSP. with ¢ = 0.5
m1 | 1.4360 0.7274 1.0949 1.0949 1.0949
mo | 1.5401 0.7274 1.0949 1.0949 1.0949
m3 | 1.1141 0.7274 1.0949 1.0949 1.0949
mq | 1.0754 0.7274 1.0949 1.0949 1.0949
ms | 1.4964 0.7274 1.5467 1.5467 1.5467
me | 1.3537 0.7274 1.0949 1.0949 1.0949
m7 | 1.8337 5.0765 1.0949 1.0949 1.0949
mg | 1.3974 0.7274 1.0949 1.0949 1.0949 77
mo | 1.2314 2.0229 2.2457 2.2457 2.2457
mio | 1.1680 1.4549 2.1897 2.1897 2.1897




Comparison using data {\;,u)}; (large error)

LS.

Ex s=3 s=5 s=17 s=9

c1 | 4.3780 | —1.8481 —6.1334 | —0.2534 | —0.0546
co | 4.0110 | 33.9379 —5.0655 0.5326 | —1.0893
c3 | 3.1299 1.3655 | —15.1989 | —1.7273 1.2321
cq | 5.6259 | —6.6282 27.1637 6.1650 5.2688
cs | 5.2197 | —3.2575 | —16.1711 2.4353 5.0864
ce | 5.0297 | —1.4070 9.0094 3.1657 4.5888
c7 | 5.9495 0.0985 15.2712 7.4984 | 12.8800
cg | 3.6815 | —0.0104 13.6657 5.1899 7.1767
co | 3.4181 | —0.0210 —2.1159 6.2126 4.0477
c1o | 5.9454 0.0123 12.2913 | 11.3894 | 11.0405
LSP. with ¢ = 0.5

c1 | 4.3780 6.7863 9.7403 9.7403 9.7403
co> | 4.0110 0.7274 1.0949 1.0949 1.0949
c3 | 3.1299 0.7274 1.0949 1.0949 1.0949
cg | 5.6259 | 14.3470 6.4661 6.4661 6.4661
cs | 5.2197 | 10.2324 2.9924 2.9924 2.9924
ce | 5.0297 0.7274 6.5217 6.5217 6.5217
cy | 5.9495 | 24.3331 13.1154 | 13.1154 | 13.1154
cg | 3.6815 0.7274 11.6797 | 11.6797 | 11.6797
co | 3.4181 0.7274 1.0949 1.0949 1.0949
c1o0 | 5.9454 3.4087 3.3552 8.3552 3.3552
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Comparison using data {\;,u)}; (large error)

LS.

Exact s=3 s=5 s=17 s=29

ki | 12.7586 24771 2.3744 | —0.2132 1.7622
ko | 10.6233 | —1.0043 7.5856 4.0691 4.6821
k3 7.8552 2.2522 | —1.9176 | —0.1602 1.9632
ks | 13.6456 5.6359 6.1022 | 13.9451 | 10.3818
ks | 13.4818 5.1054 9.2500 2.5029 6.0708
ke | 10.0050 0.3162 | 11.1928 6.4722 9.8678
k7 | 11.5915 0.0074 0.3144 | 11.9589 | 12.5322
ks 9.4480 0.0065 7.9727 | 12.4826 | 12.2428
ko | 10.1156 | —0.0095 | 13.4619 | 15.2008 | 15.0072
k1o 7.3799 0.0031 | 11.5439 | 13.4617 | 12.5696
LSP. with ¢ = 0.5

ki | 12.7586 0.7274 4.5823 4.5823 4.5823
ko | 10.6233 1.6018 5.0356 5.0356 5.0356
k3 7.8552 7.7955 3.5757 3.5757 3.5757
ks | 13.6456 | 18.1074 1.0949 1.0949 1.0949
ks | 13.4818 | 16.3208 7.9030 7.9030 7.9030
ke | 10.0050 | 15.6725 3.7800 3.7800 3.7800
kz | 11.5915 1.0196 9.9123 9.9123 9.9123
ks 9.4480 1.6321 7.1326 7.1326 7.1326
ko | 10.1156 0.7274 9.8310 9.8310 9.8310
k1o 7.3799 0.8555 7.8472 7.8472 7.8472
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Concluding Remarks I

In this talk, we considered two types of IQEPSs:

For the first IQEP:

e EXxpress the IQEP as a semidefinite constraint nonlinear opti-
mization problem.

e A dual optimization method proposed
e Quadratically convergent Newton's method
e Efficiency observed from our numerical experiments

e Positive Semidefiniteness of mass and stiffness preserved
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For the second IQEP:

e Direct Construction

e Data with minor error: Least squares solution, feasible in prac-
tice but physical realistic model not guaranteed

e Data with large error: Positivity-constrained least squares so-
lution, the constructed model is physical realizable.
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Future Work:

e Sensitivity analysis in the case of a unique solution

e Robustness in the case of multiple solutions

e EXxistence theory where M, C or K is other specially structured

e | he necessary and sufficient conditions for the mass, damping,
and stiffness to be positive
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