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Introduction

General considerations

A general theory of condition numbers was first given by Rice in 1966.
Let φ : Rs → Rt be a mapping, Rs and Rt are the s- and t-

dimensional Euclidean spaces equipped with some norms.

If φ is continuous and Fréchet differentiable in the neighborhood of
a0 ∈ Rs then, according to Rice, the relative normwise condition
number of a0 is given by

cond(a0) : = lim
ε→0

sup
‖∆a‖≤ε

(
‖φ(a0 + ∆a)− φ(a0)‖

‖φ(a0)‖
�
‖∆a‖
‖a0‖

)
=

‖φ′(a0)‖‖a0‖
‖φ(a0)‖

,

where φ′(a0) is the Fréchet derivative of φ at a0.
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A drawback of condition numbers is that they ignore the structure
of both input and output data with respect to scaling and/or sparsity.

To tackle this drawback, another approach known as component-
wise analysis, has been increasingly considered.

Two different kinds of condition number were studied. Firstly, those
measuring the errors in the output using norms and the input per-
turbations componentwise. Secondly, those measuring both the error
in the output and the perturbation in the input componentwise. The
resulting condition numbers are called mixed and componentwise, re-
spectively, by Gohberg and Koltracht in 1993.

By their very nature, condition numbers are defined as limits of
suprema. Therefore, their definition does not suggest a way to compute
them from the input data. To do so, equivalent explicit expressions are
sought or, alternatively, easy to compute and sufficiently sharp upper
bounds. This has been extensively done for many problems in linear
algebra, mostly for normwise condition numbers.
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Main Definitions and Results

To define mixed and componentwise condition numbers the following
form of “distance” function will be useful.

Let a, b ∈ Rn. We denote by a/b the element in Rn whose ith
component is ai/bi if bi 6= 0 and 0 otherwise. Then

d(a, b) =

∥∥∥∥a− b

b

∥∥∥∥
∞

= max
i=1,...,n

bi 6=0

{
|ai − bi|
|bi|

}
.

Note that

d(a, b) = min{ν ≥ 0 | |ai − bi| ≤ ν|bi| for i = 1, . . . , n}.

Also, if b = 0 then d(a, b) = 0. We can extend the function d to
matrices in an obvious manner. We introduce a notation allowing us
to do so smoothly. For a matrix A ∈ Rm×n we define vec(A) ∈ Rmn

by vec(A) = [aT
1 , . . . , a

T
n ]T, where A = [a1, . . . , an] with ai ∈ Rm,

i = 1, . . . , n. Then

d(A,B) = d(vec(A), vec(B)).
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Note that vec is a homeomorphism between Rm×n and Rmn. In
addition, it transforms norms in the sense that, for all A ∈ Rm×n,

‖vec(A)‖2 = ‖A‖F and ‖vec(A)‖∞ = ‖A‖max (1)

where ‖ ‖F is the Frobenius norm given by

‖A‖F =

(
m∑

i=1

n∑
j=1

A2
ij

)1/2

and ‖ ‖max is the max norm given by

‖A‖max = max
i,j

|Aij|.

Let ‖ ‖α be a norm in Rp. Denote Bα(a, ε) = {x ∈ Rp | ‖x−a‖α ≤ ε}
and B0(a, ε) = {x | d(x, a) ≤ ε}.

For a partial function F : Rp → Rq, denote by Dom(f ) its domain
of definition.
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Definition 2.1 Let F : Rp → Rq be a continuous mapping defined
on an open set Dom(F ) ⊂ Rp such that 0 /∈ Dom(F ). Let a ∈
Dom(F ) such that F (a) 6= 0.

(i) Let ‖ ‖α and ‖ ‖β be norms in Rp and Rq respectively. The
normwise condition number of F at a (with respect to the norms
‖ ‖α and ‖ ‖β) is defined by

κ(F, a) = lim
ε→0

sup
x∈Bα(a,ε)

x 6=a

‖F (x)− F (a)‖β

‖x− a‖α

‖a‖α

‖F (a)‖β

.

(ii) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x 6=a

‖F (x)− F (a)‖∞
‖F (a)‖∞

1

d(x, a)
.

(iii) Suppose F (a) = (f1(a), . . . , fq(a)) is such that fj(a) 6= 0 for
j = 1, . . . , q. Then the componentwise condition number of F at
a is

c(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x 6=a

d(F (x), F (a))

d(x, a)
.
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In this talk we consider several condition numbers for the Moore-
Penrose inverse of A ∈ Rm×n. This is the unique n ×m matrix A†

satisfying the following four matrix equations

AA†A = A, A†AA† = A†, (AA†)T = AA†, (A†A)T = A†A.

For a real matrix M , MT denotes its transpose matrix.

Firstly consider the normwise condition number for both the 2-norm
and the Frobenius norm in Rm×n. Definition 2.1 yields,

κ†2(A) := lim
ε→0

sup
‖∆A‖2≤ε

‖(A + ∆A)† − A†‖2

‖∆A‖2

‖A‖2

‖A†‖2

and

κ†F (A) := lim
ε→0

sup
‖∆A‖F≤ε

‖(A + ∆A)† − A†‖F

‖∆A‖F

‖A‖F

‖A†‖F

.

We are also interested in the mixed and componentwise condition num-
bers for the Moore-Penrose inverse.
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In these cases, identifying Rm×n with Rmn via vec and using (1),
Definition 2.1 yields

m†(A) := lim
ε→0

sup
‖∆A/A‖max≤ε

‖(A + ∆A)† − A†‖max

‖A†‖max

1

‖∆A/A‖max

and

c†(A) := lim
ε→0

sup
‖∆A/A‖max≤ε

1

‖∆A/A‖max

∥∥∥∥(A + ∆A)† − A†

A†

∥∥∥∥
max

.

B
A

is an entrywise division defined by B
A

:= vec−1(vec(B)/vec(A)).

In a similar way, one defines, given a full column rank matrix A and
a vector b, the condition numbers κls

2 (A, b), κ
ls
F (A, b), mls(A, b), and

cls(A, b) for the computation of the solution x of the least squares (LS)
problem

min
v∈Rn

‖Av − b‖2

and the condition numbers mres(A, b), and cres(A, b) for the computa-
tion of the residue ‖Ax− b‖.
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Preliminaries

Kronecker products

A ∈ Rm×n, B ∈ Rp×q, the Kronecker product A⊗B ∈ Rmp×nq is

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

... ... . . . ...
am1B am2B . . . amnB

 .
Note that we consider vectors u ∈ Rm and v ∈ Rn as matrices in

Rm×1 and Rn×1.

In this case, we have

u⊗ v = vec(uvT) ∈ Rmn.
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The following results can be found

(A +B)⊗ (C +D) = A⊗ C +B ⊗ C + A⊗D +B ⊗D,

(A⊗ C)(B ⊗D) = (AB)⊗ (CD),

A⊗ (B ⊗ C) = (A⊗B)⊗ C,

(A⊗B)T = AT ⊗BT,

‖A⊗B‖ = ‖A‖‖B‖,
|A⊗B| = |A| ⊗ |B|,

vec(AXB) = (BT ⊗ A)vec(X),

where |A| = (|Aij|), Aij is the (i, j)-th entry of A, and

‖A‖ denotes either ‖ ‖2 or ‖ ‖F .
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It is proven that there exists a matrix Π ∈ Rmn×mn such that, for
all A ∈ Rm×n,

Π(vec(A)) = vec(AT). (2)

The matrix Π is called the vec-permutation matrix. Here Π can be
represented explicitly

Π =

n∑
i=1

m∑
j=1

Eij(m× n)⊗ Eji(n×m). (3)

Here Eij(m×n) = e
(m)
i (e

(n)
j )T ∈ Rm×n denotes the (i, j)-th elemen-

tary matrix and e
(m)
i is the vector

[
0, . . . , 0, 1, 0, . . . , 0

]T ∈ Rm, the 1
in the i-th component.

Also it is proved that for any vector y ∈ Rp and matrix Y ∈ Rp×q,(
yT ⊗ Y

)
Π = Y ⊗ yT. (4)
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Singular Value Decomposition and Moore-Penrose Inverse

Assume that A ∈ Rm×n with rank(A) = n. The singular value decom-
position (SVD) of A is given by

A = U

[
Σ
0

]
V T, (5)

where U = (u1, . . . , um) ∈ Rm×m, V = (v1, . . . , vn) ∈ Rn×n,Σ =
diag(σ1, . . . , σn), σ1 > . . . > σn > 0. Express the Moore-Penrose
inverse of A by

A† = V
[
Σ−1, 0

]
UT =

(
ATA

)−1
AT,

and

A†A = In, Im − AA† = U

[
0 0
0 Im−n

]
UT, A†A†T = (ATA)−1,

where In is the identity matrix of order n.
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AA†, (Im − AA†) are the matrices of the orthogonal projections of
Rm onto R(A) and N (A†) = N (AT) respectively, where R(A) is the
range space of A and N (A†) is the null space of A†.

Proposition 1 Let U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . .,
vn] ∈ Rn×n. Then

R(A) = span{u1, . . . , un}, and N (A†) = span{un+1, . . . , um},

span{u1, . . . , un} =

{
u ∈ Rm | u =

n∑
i=1
αiui, αi ∈ R, i = 1, 2, . . . , n

}
.

In addition,

A†un = ‖A†‖2vn, vT
nA

† = ‖A†‖2u
T
n , ‖A†‖2 =

1

σn

,

A =

n∑
i=1

σiuiv
T
i , and A† =

n∑
i=1

1

σi

viu
T
i .
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Condition numbers and differentiability

The following lemma gives expressions for the normwise, mixed and
componentwise condition numbers for differentiable functions. In its
statement, and in all what follows, if a ∈ Rp we denote by Dg(a) the
p× p diagonal matrix with a1, . . . , ap in the diagonal.

Lemma 3.1 [6] Let F : Rp → Rq be as in Definition 2.1 and
a ∈ Dom(F ) be such that F is Fréchet differentiable at a. Then,

(a) κ(F, a) =
‖DF (a)‖αβ‖a‖α

‖F (a)‖β

.

(b) m(F, a) =
‖DF (a)Dg(a)‖∞

‖F (a)‖∞
.

(c) c(F, a) = ‖Dg(F (a))−1DF (a)Dg(a)‖∞. �

To use the lemma above for the Moore-Penrose inverse (of full-rank
matrices) we introduce some notation. Consider the sets

S = {G ∈ Rm×n | rank(G) = n}, V = {g ∈ Rmn | g = vec(G), G ∈ S}.
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Note that the set S is open in Rm×n since its complement is the union
of the sets det(Gs) = 0 where Gs runs over all n × n submatrices of
G. Moreover, since vec is a homeomorphism between Rm×n and Rmn,
it follows that V is open as well.

Now define the mapping Φ : S → Rn×m given by Φ(G) = G†. Also,
define φ : V → Rmn by φ(vec(G)) = vec(Φ(G)). By definition (and
taking ‖ ‖β to be the 2-norm in Rm and ‖ ‖α to be the operator norm
with respect to the 2-norm in both Rn and Rm) we have,

κ†2(A) = κ(Φ;A), κ†F (A) = κ(φ; vec(A)),

as well as

m†(A) = m(φ; vec(A)), and c†(A) = c(φ; vec(A)).

To make use of the above we would like to have explicit expressions
for the derivatives DΦ and Dφ. Lemma 3.3 below exhibits such ex-
pressions. Its proof uses the following well-known result.
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Lemma 3.2 Let A ∈ Rm×n and suppose {Ak} is a sequence of
m×n matrices satisfying lim

k→∞
Ak = A. A necessary and sufficient

condition for lim
k→∞

A†
k = A† is

rank(Ak) = rank(A)

for sufficiently large k.

Lemma 3.3 Both Φ and φ are continuous mappings and φ is
Fréchet differentiable at a for all a ∈ V . If a ∈ V and A ∈ S
are such that a = vec(A) then

Dφ(a)(e) =
[
−
(
A†T ⊗ A†

)
+
(
(I − AA†)⊗ (ATA)−1

)
Π
]
e,

DΦ(A)(E) = −A†EA† +
(
ATA

)−1
ET(I − AA†),

where e ∈ Rmn and E ∈ Rm×n.
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Moore Penrose inverse
Explicit expressions for the condition numbers for the Moore-Penrose

inverse computation.

Theorem 4.1 Let A ∈ Rm×n be such that rank(A) = n. Then

(a) κ†2(A) =
‖DΦ(A)‖2 ‖A‖2

‖A†‖2

(b) κ†F (A) =

∥∥∥(A†T ⊗ A†
)
− ((I − AA†)⊗ (ATA)−1) Π

∥∥∥
2
‖A‖F

‖A†‖F

=
‖A†‖2

2‖A‖F

‖A†‖F

(c) m†(A) =

∥∥∥∣∣∣[(A†T ⊗ A†
)
−
(
(I − AA†)⊗ (ATA)

−1
)

Π
]∣∣∣ vec(|A|)∥∥∥

∞
‖vec(A†)‖∞
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(d) c†(A) =

∥∥∥∥∥∥
∣∣∣[(A†T ⊗ A†

)
−
(
(I − AA†)⊗ (ATA)

−1
)

Π
]∣∣∣ vec(|A|)

vec(A†)

∥∥∥∥∥∥
∞

Remark 1 Theorem 4.1 provides explicit expressions for κ†F (A),
m†(A), and c†(A) but not for κ†2(A) due to the occurrence of the
factor ‖DΦ(A)‖2. The most explicit expression is

‖DΦ(A)‖2 = max
‖E‖2=1

∥∥∥A†EA† −
(
ATA

)−1
ET(I − AA†)

∥∥∥
2

which easily follows from Lemma 3.3. Yet, we will give sufficiently
tight upper and lower bounds for κ†2(A) in Corollary 4.3 below.

Lemma 4.2 Let A,∆A ∈ Rm×n be such that rank(A) = rank(A +
∆A) = n. Then

‖(A + ∆A)† − A†‖F ≤ ‖A†‖2‖(A + ∆A)†‖2‖∆A‖F ,

‖(A + ∆A)† − A†‖2 ≤
√

2‖A†‖2‖(A + ∆A)†‖2‖∆A‖2.
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Theorem 4.1 gives explicit expressions for the condition numbers
κ†F (A), m†(A), and c†(A). While these expressions are sharp, the
one for κ†2(A) may not be easy to compute by its dependance on the
derivative DΦ(A), and those for m†(A) and c†(A) may not be so by
their dependance on the (large) matrix Π and the need to compute
Kronecker products. The next corollary gives easier to compute upper
bounds for these three condition numbers. It also gives a lower bound
for κ†2(A).

Corollary 4.3 In the hypothesis of Theorem 4.1 we have

(a) ‖A‖2‖A†‖2 ≤ κ†2(A) ≤
√

2‖A‖2‖A†‖2,

(b) m†(A) ≤ ‖|A†||A||A†| + |(ATA)−1||AT||I − AA†|‖max

‖A†‖max

,

(c) c†(A) ≤
∥∥∥∥|A†||A||A†| + |(ATA)−1||AT||I − AA†|

A†

∥∥∥∥
max

.
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Linear Least Squares Problems
We consider linear least squares problems (LS)

min
v∈Rn

‖Av − b‖2, (6)

where A ∈ Rm×n, rank(A) = n, and b ∈ Rm. Since A, as a linear
map, is injective there is a unique minimizer x for (6). This minimizer
satisfies

ATAx = ATb, (7)

and therefore,
x = A†b = (ATA)−1ATb.

Let x be as above, ∆b ∈ Rm, and ∆A ∈ Rm×n such that rank(A +
∆A) = n. Consider the problem

min
w∈Rn

‖(A + ∆A)w − (b + ∆b)‖2 (8)
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Then there is a unique minimizer y and letting ∆x := y − x we have

∆x = (A + ∆A)†(b + ∆b)− x.

The normwise, mixed and componentwise condition numbers for LS
are defined as follows. Let ∆A1 = AA†∆A and ∆A2 = (I−AA†)∆A.
Then

κls
2 (A, b) := lim

ε→0
sup√

‖∆A1‖2
2+‖∆A2‖2

2≤ε‖A‖2

‖∆b‖2≤ε‖b‖2

‖∆x‖2

ε‖x‖2
,

κls
F (A, b) := lim

ε→0
sup

‖∆A‖F≤ε‖A‖F

‖∆b‖2≤ε‖b‖2

‖∆x‖2

ε‖x‖2
,

mls(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

‖∆x‖∞
ε‖x‖∞

,

cls(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

1

ε

∥∥∥∥∆x

x

∥∥∥∥
∞
.
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Just as in the previous section, to comfortably make use of Lemma 3.1,
we define the mappings Ψ : S × Rm → Rn by

Ψ : (G, f ) := G†f

and ψ : V × Rm → Rn by

ψ(g, f ) := (vec−1g)†f.

For the normwise condition numbers of the mapping Ψ, we consider
two norms defined on Rm×n × Rm. These norms depend on the pair
(A, b) and are respectively given by

‖(G, f )‖M = max

{
1

‖A‖2

√
‖G1‖2

2 + ‖G2‖2
2,

1

‖b‖2
‖f‖2

}
, (9)

‖(G, f )‖Fro = max

{
1

‖A‖F

‖G‖F ,
1

‖b‖2
‖f‖2

}
,

where (G, f ) ∈ Rm×n × Rm, G1 = AA†G and G2 = (I − AA†)G.
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Lemma 5.1 We have

κls
2 (A, b) = κM(Ψ;A, b), κls

F (A, b) = κFro(Ψ;A, b),

and
mls(A, b) = m(ψ; a, b), cls(A, b) = c(ψ; a, b).

Lemma 5.2 The set V ×Rm is open and ψ is a continuous map-
ping on V ×Rm. In addition, ψ is Fréchet differentiable at (A, b)
and Dψ(A, b) is given by

DΨ(A, b)(G, f ) = −A†Gx + (ATA)−1GTr + A†f,

Dψ(A, b)(G, f ) =
[
−
(
xT ⊗ A†) + (ATA)−1 ⊗ rT, A†] [vec(G)

f

]
.

where r = b− Ax.

We next combine Lemmas 3.1 and 5.2 to get expressions for norm-
wise, mixed and componentwise condition number of LS.
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Theorem 5.3 Let A ∈ Rm×n, rank(A) = n, and b ∈ Rm. We have

κls
2 (A, b) = ‖A‖2‖A†‖2

√
1 +

‖A†‖2
2‖r‖2

2

‖x‖2
2

+
‖A†‖2‖b‖2

‖x‖2
,

κls
F (A, b) = ‖A‖F‖A†‖2

√
1 +

‖A†‖2
2‖r‖2

2

‖x‖2
2

+
‖A†‖2‖b‖2

‖x‖2
,

mls(A, b) =
‖|[(xT ⊗ A†)− (ATA)−1 ⊗ rT]| vec(|A|) + |A†||b|‖∞

‖x‖∞
,

cls(A, b) =

∥∥∥∥|(xT ⊗ A†)− (ATA)−1 ⊗ rT| vec(|A|) + |A†||b|
x

∥∥∥∥
∞
.

Furthermore, if r = 0 (i.e., for consistent linear systems Ax = b)
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we have

κls
2 (A, b) = ‖A‖2‖A†‖2 +

‖A†‖2‖b‖2

‖x‖2
,

κls
F (A, b) = ‖A‖F‖A†‖2 +

‖A†‖2‖b‖2

‖x‖2
,

mls(A, b) =
‖|A†||A||x| + |A†||b|‖∞

‖x‖∞
,

cls(A, b) =

∥∥∥∥|A†||A||x| + |A†||b|
x

∥∥∥∥
∞
.

Remark 2 When n = m the consistent case of Theorem 5.3 re-
covers the known expressions [11] for normwise, mixed and com-
ponentwise condition numbers for nonsingular linear systems.
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Corollary 5.4 We have the following bounds

mls(A, b) ≤ ‖|A†||A||x| + |(ATA)−1||AT||r| + |A†||b|‖∞
‖x‖∞

,

cls(A, b) ≤
∥∥∥∥|A†||A||x| + |(ATA)−1||AT||r| + |A†||b|

|x|

∥∥∥∥
∞
.

Condition numbers bound the worst-case sensitivity of an input
data only to small perturbations. If ε is the size of the perturbation, a
termO(ε2) is neglected and therefore, the bound only holds for ε small
enough. One says that condition numbers are first order bounds for
these sensitivities. Occasionaly, one is interested in bounds for unre-
stricted perturbations. The following result exhibits such unrestricted
perturbation bounds for LS.
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Theorem 5.5 Let A,∆A ∈ Rm×n satisfying rank(A) = rank(A +
∆A) = n. Let ∆b ∈ Rm and x, y be the solutions of (6) and (8)
respectively. If for some E ∈ Rm×n and some f ∈ Rm we have
|∆A| ≤ εE and |∆b| ≤ εf then

‖y − x‖∞
‖x‖∞

≤ ε
‖|[(yT ⊗ A†)− (ATA)−1 ⊗ sT]| vec(E) + |A†|f‖∞

‖x‖∞
, (10)

‖s− r‖∞
‖r‖∞

≤ ε

∥∥∥∣∣∣[yT ⊗ (I − AA†) + A†T ⊗ sT
]∣∣∣ vec(E) + |I − AA†| f

∥∥∥
∞

‖r‖∞
,

where s = b + ∆b− (A + ∆A)y.

The next corollary gives (easier to compute, no occurrences of ⊗)
upper bounds for the residual vector mixed and componentwise con-
dition numbers.
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Corollary 5.6 Let A ∈ Rm×n satisfy rank(A) = n. Let b ∈ Rm, x
be the solution of (6) and r = Ax− b. Then

mres(A, b) ≤ mupper
res (A, b)

:=

∥∥∥|I − AA†| |A||x| +
∣∣∣AA†A†T

∣∣∣ |A|T|r| + |I − AA†| |b|
∥∥∥
∞

‖r‖∞
,

cres(A, b) ≤ = cupper
res (A, b)

:=

∥∥∥∥∥∥
|I − AA†| |A||x| +

∣∣∣AA†A†T
∣∣∣ |A|T|r| + |I − AA†| |b|

r

∥∥∥∥∥∥
∞

.
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Full row rank and underdetermined sys-
tems

Suppose A ∈ Rm×n with rank(A) = m. Then the Moore-Penrose
inverse of A can be written as

A† = AT(AAT)−1.

The next result exhibits expressions for the condition numbers of A
(for the Moore-Penrose inverse). The proof follows the same lines as
that of Theorem 4.1.
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Theorem 6.1 Let A ∈ Rm×n be such that rank(A) = m. Then

‖A‖2‖A†‖2 ≤ κ†2(A) =

max
‖E‖2=1

‖A†EA† − (I − A†A)ET(AAT)−1‖2 ‖A‖2

‖A†‖2

≤
√

2‖A‖2‖A†‖2,

κ†F (A) =

∥∥∥(A†T ⊗ A†
)
− ((AAT)−1 ⊗ (I − A†A)) Π

∥∥∥
2
‖A‖F

‖A†‖F

=
‖A†‖2

2‖A‖F

‖A†‖F

,

m†(A) =

∥∥∥∣∣∣[(A†T ⊗ A†
)
−
(
(AAT)

−1 ⊗ (I − A†A)
)

Π
]∣∣∣ vec(|A|)∥∥∥

∞
‖vec(A†)‖∞

,

c†(A) =

∥∥∥∥∥∥
∣∣∣[(A†T ⊗ A†

)
−
(
(AAT)

−1 ⊗ (I − A†A)
)

Π
]∣∣∣ vec(|A|)

vec(A†)

∥∥∥∥∥∥
∞

.
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Corollary 6.2 Let A ∈ Rm×n be such that rank(A) = m. Then

m†(A) ≤ ‖|A†||A||A†| + |I − A†A||AT||(AAT)−1|‖max

‖A†‖max

,

c†(A) ≤
∥∥∥∥|A†||A||A†| + |I − A†A||AT||(AAT)−1|

A†

∥∥∥∥
max

.

For underdetermined systems

Av = b,

where A ∈ Rm×n with rank(A) = m and b ∈ Rm, the set of solutions
is an affine subspace of Rn with the dimension of N (A). It contains
a unique point x minimizing the 2-norm. It is well known that this
solution is x = A†b. Consider the problem of, giving A and b, find
x. This problem induces condition numbers mmin(A, b) and cmin(A, b).
The following result exhibits expressions for these condition numbers.
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Theorem 6.3 Let A ∈ Rm×n with rank(A) = m and b ∈ Rm. Then

mmin(A, b) =
‖|[(xT ⊗ A†)− (I − A†A)⊗ (xTA†)]| vec(|A|) + |A†||b|‖∞

‖x‖∞
,

cmin(A, b) =

∥∥∥∥|(xT ⊗ A†)− (I − A†A)⊗ (xTA†)| vec(|A|) + |A†||b|
x

∥∥∥∥
∞
.

Corollary 6.4 Let A ∈ Rm×n with rank(A) = m and b ∈ Rm.
Then

mmin(A, b) ≤ m
upper
min (A, b)

:=

∥∥∥|A†||A||x| + |I − A†A||AT||A†Tx| + |A†||b|
∥∥∥
∞

‖x‖∞
,

cmin(A, b) ≤ c
upper
min (A, b)

:=

∥∥∥∥∥|A†||A||x| + |I − A†A||AT||A†Tx| + |A†||b|
x

∥∥∥∥∥
∞

.
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Numerical Examples and Comparisons
with Previous Work

A brief description of some previous work

Probably the first mixed perturbation analysis was done by Skeel [18].
He performed a mixed perturbation analysis for nonsingular linear sys-
tems of equations and a mixed error analysis for Gaussian elimination.
For nonsingular linear systems Ax = b, where A ∈ Rn×n Skeel defined
the (mixed) condition number as

κ∞(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

‖∆x‖∞
ε‖x‖∞

.

He then showed (see also [11, 12]) that

κ∞(A, b) =
‖|A−1||A||x| + |A−1||b|‖∞

‖x‖∞
.
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One can get the following relationship

cond∞(A, b) ≤ κ∞(A, b) ≤ 2cond∞(A, b),

where

cond∞(A, b) :=
‖|A−1||A||x|‖∞

‖x‖∞
,

(also introduced in [18]) and

cond∞(A) :=
∥∥|A−1||A|

∥∥
∞ ≤ κ∞(A) := ‖A‖∞‖A−1‖∞. (11)

A remarkable feature of cond∞(A) is that it is invariant under row
scaling (i.e., cond∞(A) = cond∞(DA) for all non-singular diagonal
matrix D).

Skeel’s condition number is of mixed type. It is defined using com-
ponentwise perturbations on the input data and infinity norm in the
solution. In [17], Rohn introduced a new relative condition number
measuring both perturbation in the input data and error in the com-
ponentwise. For the (i, j) entry of matrix inversion and i-th component
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of Ax = b Rohn defined

cij(A) := lim
ε→0

sup
|∆A|≤ε|A|

|(A + ∆A)−1 − A−1|ij
ε|A−1|ij

,

ci(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

|(A + ∆A)−1(b + ∆b)− A−1b|i
ε|A−1b|i

,

and showed that

cij(A) =
(|A−1||A||A−1|)ij

|A−1|ij
, ci(A, b) =

(|A−1||A||x| + |A−1||b|)i

|x|i
.

They were Gohberg and Koltracht [6] who named Skeel’s condition
number mixed to distinguish it from componentwise condition num-
bers. They also gave explicit expressions for both mixed and compo-
nentwise condition numbers, always for square systems of linear equa-
tions.

The work of Skeel was soon extended to rectangular systems and
matrices. Perturbation theory for rectangular matrices and linear least
squares problems already existed for the normwise case (cf. [19, 23]).
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Björck in [3] extended (11) to consistent systems Ax = b with A ∈
Rm×n and rank(A) = n (i.e., such that, for the solution x, r := Ax−
b = 0). He gave the following first order upper bound

‖∆x‖∞ ≤ 2ε
(∥∥|A†||A||x|

∥∥
∞

)
+O(ε2) ≤ 2cond†∞(A)‖x‖∞ +O(ε2),

where cond†∞(A) = ‖|A†||A|‖∞. Here the perturbation satisfies

|∆A| ≤ ε|A|, |∆b| ≤ ε|b|.

Geurts [5] first gave an expression for the normwise condition number
for full column rank linear least squares problems, with respect to
the Frobenius norm, when there is only perturbation on A (without
perturbations on b). He proved that

κG
F (A, b) := lim

ε→0
sup

‖∆A‖F≤ε‖A‖F

‖∆x‖2

ε‖x‖2

= ‖A‖F‖A†‖2

(
‖A†‖2

2‖b− Ax‖2
2

‖x‖2
2

+ 1

)1
2

. (12)
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Gratton [9] considered perturbations on both A and b and gave
an expression for the normwise condition number, with respect to a
“weighted” Frobenius norm of the pair (A, b), for full column rank
linear least squares problems. For α, β > 0 he showed that

κF (α,β)(A, b) := lim
ε→0

sup
‖[α∆A,β∆b]‖F≤ε‖[αA,βb]‖F

‖∆x‖2

ε‖x‖2

=
‖A†‖2

∥∥[αA, βb]∥∥
F

‖x‖2

√
‖x‖2

2 + ‖A†‖2
2‖r‖2

2

α2
+

1

β2
.

The authors claim they considered this weighted Frobenius norm due
to its flexibility. Taking large values of α amounts to perturb b only.

Malyshev [14] defined a normwise condition number for full column
rank LS problems when there is only perturbation on A as

κF,2(A) := lim
ε→0

sup
‖∆A‖F≤ε

(
‖∆x‖2

‖x‖2
�
‖∆A‖F

‖A‖2

)
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and proved that

κF,2(A) = ‖A‖2‖A†‖2

√
1 +

(
‖A†‖2

‖r‖2

‖x‖2

)2

.

Recently Grcar [10] gave an optimal backward error analysis for
full column rank linear least squares problems and introduced another
approach to obtain expressions for condition numbers. He used the
optimal backward error to define the condition number χLS,rel

F (A) and
obtained, in the normwise case and for the Frobenius norm, an expres-
sion for χLS,rel

F (A) similar to that by Geurts (12) above. More precisely,
assume rank(A) = n and let x be the solution of

min
u
‖b− Au‖2,

and x + ∆x be that of the same problem for the perturbed matrix
A + ∆A. Then the optimal backward error is defined as

µLS
2 (x + ∆x) = min

x+∆x=argmin
u

‖b−(A+E)u‖2

‖E‖2.
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The quantity µLS
F (x+∆x) is defined similarly but taking the Frobenius

norm instead of the spectral one. Grcar related this optimal backward
error to conditioning by proving that

χLS,rel
2 (A) := lim sup

‖∆x‖2→0

‖∆x‖2

‖∆A‖2
· ‖A‖2

‖x‖2
= lim sup

‖∆x‖2→0

‖∆x‖2

µLS
2 (x + ∆x)

· ‖A‖2

‖x‖2
,

χLS,rel
F (A) := lim sup

‖∆x‖2→0

‖∆x‖2

‖∆A‖F

· ‖A‖F

‖x‖2
= lim sup

‖∆x‖2→0

‖∆x‖2

µLS
F (x + ∆x)

· ‖A‖F

‖x‖2
.

He then proved [10, Theorem 5.1]

χLS,rel
F (A) = ‖A‖F‖A†‖2

(
1 +

‖A†|22‖r‖2
2

‖x‖2
2

)1/2

,(
1 +

‖A†‖2
2‖r‖2

2

‖x‖2
2

)1/2

‖A‖2‖A†‖2 ≤ χLS,rel
2 (A)

≤
(

1 +
‖A†‖2‖r‖2

‖x‖2

)
‖A‖2‖A†‖2.
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A mixed perturbation analysis for full column rank linear least squares
problems first appears in [3] and variations of it appear in [1]. The first
order perturbation bound shown in [3] is

‖∆x‖∞ ≤ ε
(∥∥|A†||A||x| + |A†||b|

∥∥
∞ +

∥∥∥∣∣∣(ATA
)−1
∣∣∣ ∣∣AT

∣∣ |r|∥∥∥
∞

)
+O(ε2).

Numerical Experiments

In this subsection we report the results of some numerical experiments
and we use them to compare the bounds obtained in this paper with
those obtained in previous works. All the computations were carried
out using MATLAB 7.0 with machine precision ε ≈ 2.2× 10−16.

(1) Björck [3] derived the following first order mixed1 perturbation
bound for LS,

‖∆x‖∞ ≤ ε
(∥∥|A†||A||x| + |A†||b|

∥∥
∞ +

∥∥∥∣∣∣(ATA
)−1
∣∣∣ ∣∣AT

∣∣ |r|∥∥∥
∞

)
+O(ε2).

1In [3] it is called “componentwise” but in this paper we follow the terminology introduced
in [6].



42/58

�

�

�

�

�

�

	

Recall, here the perturbation satisfies

|∆A| ≤ ε|A|, |∆b| ≤ ε|b|.

From Theorem 5.3 we can also deduce a first order mixed perturba-
tion bound for LS,

‖∆x‖∞ ≤ ε
∥∥∣∣[− (xT ⊗ A†) +

(
rT ⊗ (ATA)−1

)
Π
]∣∣ vec(|A|) + |A†||b|

∥∥
∞

+ O(ε2).

Let

µold =
∥∥|A†||A||x| + |A†||b|

∥∥
∞ +

∥∥∥∣∣∣(ATA
)−1
∣∣∣ ∣∣AT

∣∣ |r|∥∥∥
∞
,

and

µnew =
∥∥∣∣[− (xT ⊗ A†) +

(
rT ⊗ (ATA)−1

)
Π
]∣∣ vec(|A|) + |A†||b|

∥∥
∞ .

By Corollary 5.4 and using the triangular inequality, we have that

µnew ≤ µold.

The following example shows that µnew can be substantially smaller
than µold.



43/58

�

�

�

�

�

�

	

Example 1 Let A =

 2.2288 −0.5756
−0.2108 0.0557
−2.1716 0.5622

 and b =

0.001
0
0

. Then

A† =

[
82.0630 125.0857 71.6261
316.4566 483.7978 277.8458

]
, x =

[
0.0808
0.3115

]
,

r = 1.0e-003×

 0.2577
−0.3222
0.2958


and

µold = 494.1189, µnew = 65.1780,
µold − µnew

µold
= 0.8681.

(2) Example 1 shows that µnew can be substantially smaller than
µold. A natural question is how much smaller is “in general.” A possible
answer to this question could be obtained by considering the average
of both µold and µnew for random pairs (A, b).

The following table does so. We considered pairs (A, b) with A a
m×n random matrix whose entries are independent random variables
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normally distributed (mean zero, variance one) and b a n-dimensional
random vector with the same distribution. Each row in the table
corresponds to a pair (m,n). Averages are over a sample of 1000 pairs
(A, b).
(3) N. Higham obtained unrestricted mixed bounds for the solution
and residue of full-column rank LS problems.

Theorem 7.1 [12, Theorem 19.2 ] Let A ∈ Rm×n, m ≥ n and
A + ∆A be of full rank. Let x, y ∈ Rn be the solutions of (6) and
(8), respectively and let r = Ax − b, s = (A + ∆A)y − (b + ∆b).
Then, for any monotonic norm ‖ ‖,

‖y − x‖
‖x‖

≤ ε
‖|A†| (|b| + |A||y|)‖ + ‖|(ATA)−1| |AT||s|‖

‖x‖
,

‖r − s‖
‖r‖

≤ ε
‖|I − AA†| (|b| + |A||y|)‖ +

∥∥∥|A†T|AT||s|
∥∥∥

‖x‖
,

These bounds are approximately attainable.

The following example demonstrates that our bound (10) is sharper
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m n µav
old µav

new (µav
old − µav

new)/µav
old

4 3 19.6395 15.5837 0.2065
8 6 16.0568 13.0890 0.1848
12 9 15.6835 12.5166 0.2019
16 12 18.2260 14.4856 0.2052
20 15 19.5803 15.6184 0.2023
40 30 24.2459 19.2853 0.2046
50 33 27.1138 21.6387 0.2019
80 52 30.2019 24.0522 0.2036
100 57 23.0314 18.3845 0.2018
100 70 42.4747 33.7707 0.2049
200 100 21.8254 17.3910 0.2032
200 150 70.4169 55.6292 0.2100
250 150 35.8237 28.4127 0.2069
300 150 25.1857 20.0293 0.2047
400 200 28.0440 22.2526 0.2065
500 250 30.5930 24.2659 0.2068
600 200 16.6290 13.2902 0.2008
800 200 12.7852 10.2728 0.1965
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than the bound in Theorem 7.1. It also shows that the first order
bound µnew for mls(A, b) is attainable.

Example 2 Let ε = 10−4 and

A =

0 1 0
1 1 1
0 1 1
1 1 0

 , b =

1
0
0
0

 , ∆A = ε

 0 −1 0
−1 1 −1
0 −1 1
1 −1 0

 , ∆b = ε

1
0
0
0

 .
Then |∆A| = εA and |∆b| = εb. We can compute the solution

x = A†b =

−0.5
0.75
−0.5

 ,
and

y = (A + ∆A)†(b + ∆b) =

−0.50025005499999
0.75032507250149
−0.50025005499999

 .
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α 3.250725014936062 e-004
β 3.249999999999998 e-004
ηold 1.887415685321830 e+000
ηnew 3.250725014935217 e-004
γold 4.249999999999997 e-004
γnew 3.249999999999998 e-004

Now we denote

α = ‖y − x‖∞, β =
∥∥∥−A†∆Ax +

(
ATA

)−1
r + A†∆b

∥∥∥
∞
,

ηold = ε
∥∥|A†| (|b| + |A||y|)

∥∥ +
∥∥∣∣(ATA)−1

∣∣ |AT||s|
∥∥
∞ ,

ηnew = ε
∥∥∣∣[(yT ⊗ A†)− (sT ⊗ (ATA)−1

)
Π
]∣∣ vec(|A|) + |A†||b|

∥∥
∞ ,

γold = ε µold,

γnew = ε µnew,

and compare the results in the following table. We see that

α−γnew = 7.250149360645691×ε2, α ≈ ηnew, α < ηold, β < γold, β ≈ γnew.

Then, for the perturbation (∆A,∆b), the first order upper bound
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µnew is attainable (since β ≈ γnew). This means our bound is
sharper than the one shown in [3]. We also note that the bound
ηold shown in Theorem 7.1 is larger than ηnew. Actually,

ηold/ε = 1.887415685321829e+004, ηnew/ε = 3.250725014935217e+000.

(4) Wedin [23] proved the following normwise perturbation result
for full column rank LS (see also [12, Theorem 19.1]) when the per-
turbation (∆A,∆b) satisfies ‖∆A‖2 ≤ ε‖A‖2, ‖∆b‖2 ≤ ε‖b‖2 and
ε‖A‖2‖A†‖2 < 1,

‖∆x‖2

‖x‖2
≤ ε‖A‖2‖A†‖2

1− ε‖A‖2‖A†‖2

(
2 + (‖A‖2‖A†‖2 + 1)

‖r‖2

‖A‖2‖x‖2

)
= εUW +O(ε2).

Here UW = ‖A‖2‖A†‖2

(
2 + (1 + ‖A‖2‖A†‖2)

‖r‖2

‖A‖2‖x‖2

)
.

Taking α = β = 1 in Gratton’s result (13) we obtain the bound

κF (1,1)(A, b) =
‖A†‖2

∥∥[A b
]∥∥

F

‖x‖2

√
‖x‖2

2 + ‖A†‖2
2‖r‖2

2 + 1.
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UW κF (1,1)(A, b) κls
2 (A, b) κls

F (A, b)
1.0613e+006 1.0225e+006 6.7065e+005 7.6924e+005

mls(A, b) cls(A, b)
5.2061e+003 1.0495e+004

We compare our normwise, mixed and componentwise condition num-
bers with κF (1,1)(A, b) and the first order bound UW in the following
table. Here we take m = 25, n = 10 and A the m× n Vandermonde

matrix whose (i, j)-th element is given by
(
(j − 1)/(n− 1)

)i−1
. The

vector b was randomly generated.
In this table we can see that, for this particular example, mixed and

componentwise condition numbers are smaller than the normwise con-
dition number, and the new normwise κls

2 (A, b), κ
ls
F (A, b) are smaller

than the previous normwise bounds derived by Wedin and Gratton for
the relative error of the solution x.

We also used the pair (A, b) above to compare the upper bounds in
Corollary 5.4 with mls(A, b) and cls(A, b) as well as with Wedin and
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mls(A, b) mupper
ls (A, b) cls(A, b) cupper

ls (A, b)
5.2061e+003 1.0788e+004 1.0495e+004 1.0788e+004

mres(A, b) mupper
res (A, b) cres(A, b) cupper

res (A, b)
2.9734e+003 3.5654e+003 6.0366e+004 2.0788e+004

Gratton bounds above.
We can see that the bounds mupper

ls (A, b) and cupper
ls (A, b) are not too

far away from the quantities they bound and that they are sharper
than Wedin and Gratton bounds.

Similarly, the next table shows that, always for the pair (A, b) above,
the bounds mupper

res (A, b) and cupper
res (A, b) are, again, not too far away

from the quantities they bound.

Let ε = 10−8 and (E, f ) be random (the distribution of each entry
being uniform on the interval (−1, 1)). Then let ∆Aij = εEijAij

and ∆bi = εfibi. Note that |∆A| ≤ ε|A| and |∆b| ≤ ε|b|. Let
x+∆x = (A+∆A)†(b+∆b) be the solution of the perturbed problem.
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γ1 1.2198e-005 εUW 0.0106
γ1 1.2198e-005 ε κF (1,1)(A, b) 0.0102
γ1 1.2198e-005 ε κls

2 (A, b) 0.0067
γ1 1.2198e-005 ε κls

F (A, b)) 0.0077
γ2 1.2157e-005 εmls(A, b) 5.2061 e-005
γ3 2.5315e-005 ε cls(A, b) 1.0495 e-004
γ4 1.4204e-006 εmres(A, b) 2.9734e-005
γ5 8.8357e-006 ε cres(A, b) 6.0366e-004

Denote

γ1 =
‖∆x‖2

‖x‖2
, γ2 =

‖∆x‖∞
‖x‖∞

, γ3 =

∥∥∥∥∆x

x

∥∥∥∥
∞
, γ4 =

‖∆r‖∞
‖r‖∞

, γ5 =

∥∥∥∥∆r

r

∥∥∥∥
∞
.

Then (performing this experiment once) we obtained
Again, we see that mixed and componentwise perturbation bounds

are tighter than normwise perturbation bounds.
(5) In the sequel we consider underdetermined linear systems Ax =
b with A full row rank. In this case, Golub and Van Loan [7, Theo-
rem 5.7.1] proved the following normwise perturbation result.
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Theorem 7.2 Let A ∈ Rm×n and 0 6= b ∈ Rm. Suppose that
rank(A) = m ≤ n and that ∆A ∈ Rm×n and ∆b ∈ Rm satisfy

ε = max{‖∆A‖2/‖A‖2, ‖∆b‖2/‖b‖2} < σm(A).

If x and x + ∆x are the minimum norm solutions of Ax = b and
(A + ∆A)y = b + ∆b, respectively, then

‖∆x‖2

‖x‖2
≤ 3κ2(A)ε +O(ε2), (13)

where κ2(A) = ‖A‖2‖A†‖2.

Demmel and Higham got the following mixed (but, in contrast with
our exposition, with respect to the 2-norm) perturbation result.

Theorem 7.3 [4, Theorem 2.1] Let A ∈ Rm×n and 0 6= b ∈ Rm.
Suppose that rank(A) = m ≤ n and that

|∆A| ≤ εE, |∆b| ≤ εf,

where E ≥ 0, f ≥ 0 and ε‖E‖2‖A†‖2 < 1. If x and y are the
minimum norm solutions to Ax = b and (A + ∆A)y = b + ∆b
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respectively, then

‖∆x‖2

‖x‖2
≤ ε

‖x‖2

(∥∥∥|I − A†A|ET|A†Tx|
∥∥∥

2
+
∥∥|A†| (f + E|x|)

∥∥
2

)
+O(ε2).

(14)
When E = |A| and f = |b|,

‖∆x‖2

‖x‖2
≤ 3cond2(A)ε +O(ε2), (15)

where cond2(A) = ‖|A||A†|‖2.

From Theorem 6.3, we obtain the first order perturbation bounds

‖∆x‖∞
‖x‖∞

≤ εmmin(A, b) +O(ε2),∥∥∥∥∆x

x

∥∥∥∥
∞
≤ εcmin(A, b) +O(ε2).

The following table compare these bounds with 3κ2(A) and 3cond2(A)

(note, however, that 3cond2(A) and mmin(A, b) bound ‖∆x‖
ε‖x‖ for diferent
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3κ2(A) 3cond2(A) mmin(A, b) cmin(A, b)
6.0797e+004 5.0055 e+004 8.9969e+003 1.5667 e+004

mmin(A, b) mupper
min (A, b) cmin(A, b) cupper

min (A, b)
8.9969e+003 1.2449e+004 1.5667 e+004 1.6588e+004

norms). Here we took m = 7, n = 10 and A the m×n Vandermonde

matrix whose (i, j)-th element is given by
(
(j − 1)/(n− 1)

)i−1
. The

vector b was randomly generated.
We see again that mixed and componentwise condition numbers

are smaller than normwise condition numbers and that the bound
mmin(A, b) is sharper than 3cond2(A). Also, we can compare the upper
bounds in Corollary 6.4 both with mmin(A, b) and cmin(A, b) and with
3κ2(A) and 3cond2(A).

We find again that mupper
min (A, b) and cupper

min (A, b) are not too far away
from the quantities they bound and that they are sharper than the
bounds in Theorems 7.2 and 7.3.
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γ1 2.3592e-005 ε 3κ2(A) 6.0797 e-004
γ2 3.3334e-005 ε 3cond2(A) 5.0055 e-004
γ2 3.3334e-005 εmmin(A, b) 8.9969 e-005
γ3 5.8047e-005 ε cmin(A, b) 1.5667 e-004

Let (∆A,∆b) and ∆x be as in the end of (4) above. Denote

γ1 =
‖∆x‖2

‖x‖2
, γ2 =

‖∆x‖∞
‖x‖∞

, γ3 =

∥∥∥∥∆x

x

∥∥∥∥
∞
.

Comparing these quantities with their bounds we obtain
and verify, again, that mixed and componentwise give tighter bounds
on relative errors.
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