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What is a Radial Basis Function (RBF)?

In the Euclidean space Rn setting, an RBF is

(roughly) a function of the form:

x 7→
N∑

j=1

cjφ(|x− xj|),

where x1, . . . , xN are some scattered points,

and |x−xj| denotes the Euclidean distance be-

tween x and xj, c1, . . . , cN are some constants,

and φ is a univariate function. In fact,

φ : [0,∞) → R.

φ is called the basis. Therefore, Radial Basis.
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Example. Let φ(t) = exp(−t2). Then we have∑
cj exp

(
|x− xj|2

)
. This is called the Gaussian

Radial Basis Function.

Why RBF?

Recall Lagrange interpolation, or spline inter-

polation in elementary numerical analysis. Data

dealt with there are from R. This is univariate

interpolation. When the number of variables is

big, and dimension is high, traditional methods

become less efficient.
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In Finite Element Methods, for example, a “mesh”

or a “grid” is required before anything can be

done. This is not practical, and becomes ex-

tremely expensive in high dimensional spaces.

Complexity grows exponentially with dimen-

sions!

Radial Basis Functions or Radial Basic Func-

tions?

William Light (Leicester, UK) advocated the

latter.
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Many data collected from real world problems

have the following features:

1. Very stochastic!

2. Coming from spaces of high dimensions.

3. Scattered and noisy.

By using RBFs, we can establish many inex-

pensive probabilistic and deterministic error es-

timates for a variety of real world problems.
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Fitting a surface to scattered data arising from

sampling an unknown function defined on an

underlying manifold comes up frequently in ap-

plied problems. When the underlying manifold

is a sphere – or, more generally, the n-sphere Sn

–, there are applications to geodesy, meteorol-

ogy, astrophysics, geophysics, and other areas.

Several review articles ([Fasshauer and Schu-

maker, 1998], [Mhaskar, Narcowich and Ward,

2001] and books ([Freeden, Gervens and Schreiner,

1998], [Wendland, 2005]) and a recent volume

[21 (2004)] of the journal Advances in Com-

putational Mathematics have been devoted to

the topic itself or its applications.
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Currently, there are two main approaches to
solving such problems. One can use spher-
ical triangles and employ a local polynomial
approximation. This approach is described in
a review article by Fasshauer and Schumaker
[1998], and recently Neamtu and Schumaker
[2004] have derived error estimates for it.

Another approach, and the topic of this talk,
is to use RBFs. These functions go back to
work of Schoenberg [1937, 1938, 1942].

Advantages of RBF:

1. No “Curse of Dimensionality”. Excellent
performance in solving problems in high
dimensions, such as problems in Machine
Learning Theory.

2. Flexibility and robustness.

3. Less computational complexity.
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The RBF Interpolation Scheme:

Given data (xj, dj), j = 1, . . . , N , where xj ∈ Rn,

and dj ∈ R, and a prescribed basis function

φ, we intend to find the unknown coefficients

cj, j = 1, . . . , so that the radial basis function

N∑

j=1

cjφ(|x− xj|),

interpolates the data dj. That is

N∑

j=1

cjφ(|xi − xj|) = di, i = 1, . . . , N.
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Is the problem well-posed?

This amounts to asking: Is the N×N matrix A

with ij−entry Aij = φ(|xi − xj|), nonsingular?

If φ is “strictly positive definite”, or “strictly

conditionally positive definite of order one”,

then the answer is yes; see Schoenberg [1938,

1942], Michelli [1986], Sun [1993] and the ref-

erences therein.
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The well-known Bochner’s theorem on positive

definite functions.

Definition 1. A continuous function

f : Rn → R

is said to positive definite if for any N points

x1, . . . , xN the matrix
(
f(xi − xj

)
is positive def-

inite.

Theorem 2. (S. Bochner) A continuous func-

tion f is positive definite on Rn if and only if

there is positive Borel measure µ on Rn such

that

f(x) =
∫

Rn
e−i〈x,ξ〉dµ(ξ).
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In particular, if f has nonnegative and inte-

grable Fourier transform, then f is positive def-

inite. One can get many useful positive defi-

nite functions this way.

Proof of the Sufficiency of Bochner’s The-

orem.

N∑

i=1

N∑

j=1

cicjf(xi − xj)

=
∫

Rn
|

N∑

j=1

cje
i〈ξ,xj〉|2dµ(ξ)

≥ 0.

The proof of the necessity, however, is not very

easy.
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Some of of the most useful radial basis func-

tions except the Gaussian.

φ(t) = tα, 0 < α < 2

= (1 + t2)α, α < 0, or 0 < α < 2.

In particular, (1 + t2)1/2 and (1 + t2)−1/2 are

called Hardy’s multiquadrics and the inverse

Hardy’s multiquadrics, respectively, in honor

of the Geologist Hardy who first employed the

function to perform interpolation. If one uses

the basis function φ(t) = t, then the interpo-

lation matrix is (|xi − xj|), called the distance

matrix.
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How to show that the distance matrix (|xi−xj|)
is non-singular? Using Fourier analysis tech-

nics, one can show that if
∑N

j=1 cj = 0, and
∑N

j=1 c2j > 0 then

N∑

i=1

N∑

j=1

cicj|xi − xj| < 0.

Using the Min-max Theorem, we know that

the distance matrix has (N−1) negative eigen-

values. The trace of the matric is 0. So the

matrix has at least one positive eigenvalue.

Thus, the matrix has exactly one positive eigen-

value and (N − 1) negative ones.

Similar argument can used to handle other con-

ditionally positive (negative) definite functions.
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Just being non-singular is not enough. In the

implementation of RBF interpolation, it is im-

portant to estimate the conditional number of

the interpolation matrix A, which is a challeng-

ing task! Even a reasonable estimate of the

smallest eigenvalue of the interpolation ma-

trix needs some sophisticated Fourier analysis

methods.

Another question, keen to mathematicians, is

the following: how the interpolating RBF ap-

proximate the original (unknown) function when

the data points become dense in the underlying

domain? This is an active research area.
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Regularization Scheme: Dealing with “Noisy

Data”.

Question: What are noisy data?

The Best Answer: All data are noisy in some

ways.

Lets face the reality: when data are inevitably

noisy, inaccurate, exact interpolation does not

make sense, or even worse, it could be mislead-

ing! Thus, a regularization scheme is preferred

in many real world problems.
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Find an RBF from a suitable function class HK

so that the functional:

N∑

j=1

(
f(xj)− dj

)2
+ γ‖f‖2

is minimized over f ∈ HK, where HK is a Re-

producing Kernel Hilbert Space (RKHS) with

reproducing kernel K(x − y). The most use-

ful reproducing kernels are again RBFs. This

minimization scheme is advocated by Poggio,

among others.
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Theorem 3. (Graven and Wabba [1979], Ev-

geniou, Pontil and Poggio [2000]) The func-

tion fz that minimizes the regularized empirical

error

1

N

N∑

i=1

(di − f(xi))
2 + γ‖f‖2

over f ∈ HK, can be expressed as

fz(x) =
N∑

i=1

ciK(x− xi),

where c := (c1, . . . , cN) is the unique solution

of the well-posed linear system

(γN Id + K[x])c = d.

Here K[x] denotes the interpolation matrix whose

ij−entry is K(xi − xj), and d := (d1, . . . , dN).
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This theorem demonstrates two important facts:

1. RBFs provide optimal solutions to many

problems.

2. Positive-definiteness bridges analysis (cal-

culus of variation in this setting) and linear

algebra.

Your Homework: Prove the above theorem.
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Two kinds of estimates:

1. Probabilistic estimates. Data sites can-

not be made uniform. Mathematical tools are

mostly probabilistic inequalities, such as Chebysh-

eff inequality, Bernstein inequality, Hoeffding

inequality.

2. Deterministic estimates. If the distribution

measure is known or mostly known, such as in

some Monte Carlo methods, one can cater to

the problem and select data sites, and get error

estimates in terms of the minimal separations

of the data sites.
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Let X = {xj}Nj=1 ⊂ Sn be a set of N distinct

points on the sphere, and we will call X a set of

centers. There are three useful quantities we

will associate with X: the separation radius,

qX, the mesh norm, hX, and the mesh ratio,

ρX. If d(x, y) is the geodesic distance between

two points x and y in Sn, then these quantities

are defined by

qX :=
1

2
min
j 6=k

d(xj, xk),

hX := max
x∈Sn

min
j

d(x, xj),

ρX := hX/qX .

Note that ρX ≥ 1.
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On the circle S1, a set of N equiangular points

has q = h = π/N , and ρ = 1. For n > 1, ρ = 1

cannot be achieved. Uniformly distributing a

large number of points on spheres or other

manifolds has been an extensively researched

subject; see [Conway and sloan, 1993], [Habicht

and waerden, 1951], [Hardin and Saff, 2004],

[Saff and Kuijlaars, 1997].

Three Major Approaches: 1) Best Packings,

2)Spherical Designs, 3)Minimal Energies. For

instance, Habicht and Van der Waerden [1951]

studied the best packing of N non-overlapping

hexagons on S2. A careful inspection of their

proof shows that the X they constructed has

a mesh ratio ρX ≤ 2/
√

3+CN−1/6, where C is

a constant independent of N .
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We sate without proof a simple algorithm of

constructing arbitrarily large, nested sets of

centers that also satisfy additional properties

we need in the approximation scheme that hap-

pens at a later time.

Proposition 4.There exists a sequence of sets

Xk ∈ F, k = 0,1, . . ., such that the sequence is

nested, Xk ⊂ Xk+1, and such that at each step

the mesh norms satisfy 1
4hXk

< hXk+1
≤ 1

2hXk
.

The proof does not involve any property spe-

cial to Sn, other than that it has a metric,

finite volume, and a few other things associ-

ated with compact, connected C∞ Riemannian

manifolds. Thus it holds for these spaces.
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Let L2(Sn) be the Hilbert space equipped with

the inner product

〈f, g〉 :=
∫

Sn
f(x)g(x)dµ(x),

where dµ is the standard volume element for

Sn, i.e., the restriction to Sn of the Lebesgue

measure in Rn+1. The Y`,m’s will be taken to

be the usual orthonormal basis of spherical har-

monics. For ` fixed, these span the eigenspace

of the Laplace-Beltrami operator on Sn corre-

sponding to the eigenvalue λ` = `(` + n − 1).

Here, m = 1, . . . , d`, where d` is the dimension

of the eigenspace corresponding to λ` and is

given by

d` =





1, ` = 0,

(2` + n− 1)Γ(` + n− 1)

Γ(` + 1)Γ(n)
, ` ≥ 1 .
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