
Iterative Methods for Queueing Systems and

Markov Chains

Wai-Ki CHING

Department of Mathematics

University of Hong Kong

Abstract

Markovian queueing systems are widely used in the modeling of

telecommunication systems, manufacturing systems, inventory sys-

tems and many other practical systems. Very often, in the system

performance analysis, one faces the problem of solving the system

steady-state probability distribution of a large number of states.

Fast numerical algorithms based on Preconditioned Conjugate Gra-

dient (PCG) method will be presented to solve the problem. Other

efficient iterative methods for solving Markov chains will also be

discussed.
1

Introduction

(1) The Birth-and-Death Process.

(2) Examples of Markovian Queueing Systems.

(3) Numerical Algorithm (Preconditioned Conjugate Gradient Method).

(4) Numerical Examples.

(5) Queueing Systems and Markov Chains.

(6) Other Iterative Methods.

2

1. Birth-and-Death Processes

• We begin our discussion on the theory of birth-and-death pro-
cesses. The analysis of which is relatively simple and has important
applications in queueing theory.

• Let us consider a system that can be represented by a family of
random variables {N(t)} parameterized by the time variable t. This
is called a stochastic process.

• In particular, let us assume that for each t, N(t) is a non-negative
integral-valued random variable. For example, in a queue, where
N(t) is the number of customers waiting or in service at time t.

• We say that the system is in state Ej at time t if N(t) = j. Our
aim is then to compute the state probabilities

P{N(t) = j}, j = 0,1,2, · · · .

3

Definition: A process is called a birth-and-death process if at ant
time t

• (1) P{Ej → Ej+1 during (t, t + h)|Ej at t} = λjh + o(h) as h →
0 (j = 0,1,2, · · ·). Here λj (birth rate) is a constant depending on j.

• (2) P{Ej → Ej−1 during (t, t + h)|Ej at t} = µjh + o(h) as h →
0 (j = 1,2, · · ·). Here µj (death rate) is a constant depending on j.

• (3) P{Ej → Ej±k during (t, t + h)|Ej at t} = o(h) as h → 0 if
k ≥ 2 (j = 0,1, · · ·).

Remark: o(h) is a function of h such that

lim
h→0

o(h)

h
= 0.

Possible examples of o(h) are o(h) = h2 and o(h) = h sin(h). How-
ever, o(h) cannot take the form

√
h or h log(h).

4

Notation: Let Pj(t) = P{N(t) = j} and let λ−1 = µ0 = P−1(t) = 0.

• It follows from the above three postulates that (where h → 0; j =
0,1,)

Pj(t+h) = (λj−1h + o(h))︸ ︷︷ ︸
an arrival

Pj−1(t)+(µj+1h + o(h))︸ ︷︷ ︸
a departure

Pj+1(t)+[1− ((λj + µj)h + o(h))]︸ ︷︷ ︸
no arrival or departure

Pj(t)

Pj(t + h) = (λj−1h)Pj−1(t) + (µj+1)hPj+1(t) + [1− (λj + µj)h]Pj(t) + o(h) .

• Re-arranging terms, we have the following:

Pj(t + h)− Pj(t)

h
= λj−1Pj−1(t) + µj+1Pj+1(t)− (λj + µj)Pj(t) +

o(h)

h
.

Letting h → 0, we get the following set of differential-difference
equations

d

dt
Pj(t) = λj−1Pj−1(t) + µj+1Pj+1(t)− (λj + µj)Pj(t). (1)

5

• If at time t = 0 the system is in State Ei, the initial conditions are

then Pj(0) = δij where

δij =

{
1 if i = j
0 if i 6= j.

• Here the coefficients {λj} and {µj} are called the birth and death

rates respectively.

• When µj = 0 for all j, the process is called a pure birth process;

and when λj = 0 for all j, the process is called a pure death process.

• We remark that in the case of either a pure birth process or a

pure death process, the equations (1) can be solved by recurrence.

6

1.1 Pure Birth Process with Constant Rates

• We consider a Pure birth process (µi = 0) with constant birth rate

λj = λ and initial state E0.

• The equations in (1) become

d

dt
Pj(t) = λPj−1(t)− λPj(t) (j = 0,1, · · ·)

where P−1(t) = 0 and Pj(0) = δ0j.

• Here

j = 0, P ′0(t) = −λP0(t)

Hence

P0(t) = a0e−λt.

7

• From the initial conditions, we get a0 = 1.

• Inductively, we can prove that if

Pj−1(t) =
(λt)j−1

(j − 1)!
e−λt

then the equation

P ′j(t) = λ

(
(λt)j−1

(j − 1)!
e−λt

)
− λPj(t)

gives (exercise) the solution (Poisson Distribution)

Pj(t) =
(λt)j

j!
e−λt. (2)

8

Theorem: Suppose in a certain process, we let Ti (i = 1,2,3, · · ·)
be the epoch of the ith occurrence.

• Let Ai = Ti − Ti−1 (i = 1,2,3, · · ·); T0 = epoch that we start to
count the number of occurrences.

• Let N(t) = number of occurrences in a time interval of length t.
Then the following statements are equivalent.

(a) The process is Poisson (with coefficient λ).
(b) N(t) is a Poisson random variable with parameter λt, i.e.

P{N(t) = j} =
(λt)j

j!
e−λt , j = 0,1,2,

(c) Ai’s are mutually independent identically distributed exponential
random variables with mean λ−1, i.e.

P{Ai ≤ t} = 1− e−λt , i = 1,2, · · · .

9

1.2 Queueing System and Birth-and-Death Process

• We consider a queueing system with one server and no waiting
position, with

P{one customer arriving during (t, t + h)} = λh + o(h)

and

P{service ends in (t, t + h)| server busy at t} = µh + o(h).

It is a two-state birth-and-death process with j = 0,1.

• The arrival rates (birth rates) are λ0 = λ and λj = 0 for j 6= 0
and the departure rates (death rates) are µj = 0 when j 6= 1 and
µ1 = µ.

¾

-

µ

λ
¹¸

º·
0

¹¸

º·
1

Figure 1.1: The Two-state Birth and Death Process.

10

• The equations for the birth-and-death process are given by

d

dt
P0(t) = −λP0(t) + µP1(t) and

d

dt
P1(t) = λP0(t)− µP1(t).

(3)
One convenient way of solving this set of simultaneous linear differ-
ential equations is as follows:

• Adding the equations in (3), we get

d

dt
[P0(t) + P1(t)] = 0,

hence P0(t) + P1(t) = constant.

• Initial conditions are P0(0) + P1(0) = 1; thus P0(t) + P1(t) = 1.
Hence we get

d

dt
P0(t) + (λ + µ)P0(t) = µ.

11

• The solution (exercise) called the transient solution is given by

P0(t) =
µ

λ + µ
+ (P0(0)− µ

λ + µ
)e−(λ+µ)t.

Since P1(t) = 1− P0(t),

P1(t) =
λ

λ + µ
+ (P1(0)− λ

λ + µ
)e−(λ+µ)t. (4)

• Consider the state probabilities of the above example when t →∞,

from (4) we have




P0 = lim
t→∞P0(t) =

µ

λ + µ

P1 = lim
t→∞P1(t) =

λ

λ + µ
.

(5)

• We note that P0 + P1 = 1 and they are called the steady-state

probabilities of the system.

12

Note:

(i) P0 and P1 are independent of the initial values P0(0) and P1(0).

(ii) P0 and P1 satisfy the system of linear equations (generator
matrix)

(
−λ µ
λ −µ

) (
P0
P1

)
=

(
0
0

)
and P0 + P1 = 1.

• This leads us to the important notion of statistical equilibrium or
steady-state. We say that a system is in statistical equilibrium (or
stationary) if its state probabilities are constant in time.

• Note that the system still fluctuate from state to state, unless
P0(0) = P0 or P1(0) = P1.

• S. Ross, Introduction to Probability Models, Prentice-Hall, (2003).

13

2. Examples of Markovian Queueing Systems.

2.1 Single Markovian Queue (M/M/s/n-s-1)

• λ, input rate (Arrival Rate),

• µ, output rate (Service Rate, Production Rate etc).

• Set of possible states (number of customers): {0,1, . . . , n− 1}.

s
s− 1

...

3
2
1

m£¢p p

m£¢p p

m£¢p p

...

m£¢p p

m£¢p p

m£¢p p

1 2 3 · · · j · · · n− s− 1

p p p p p p · · · p p p p p p · · · λ¾

¾µ

¾µ

¾µ

¾µ

¾µ

¾µ

: empty buffer in queue

p p : customer waiting in queue
m£¢p p : customer being served

14

2.1.1 The Steady-state Probability Distribution

¾

-

µ

λ
¹¸

º·
0

¾

-

2µ

λ
¹¸

º·
1 · · · ¾

-

sµ

λ
¹¸

º·
s · · · ¹¸

º·
n-1

¾

-

sµ

λ

The Transition Diagram (Markov Chain) of the M/M/s/n-s-1 Queue

• Let pi be the steady-state probability that there are i customers
in the queueing system.

• p = (p0, . . . , pn−1)
t is the steady-state probability vector.

• Important for system performance analysis, e.g. average waiting
time of the customers in long run.

• B. Bunday, Introduction to Queueing Theory, Arnold, N.Y.,
(1996).

15

• The steady-state probability pi is governed by the Kolmogorov

equations which can be obtained by equating the expected outgo-

ing rate and the expected incoming rate at each of the state:

Out-going Rate Incoming Rate

¾ - - ¾pi−1 pi pi+1
λ

iµ
pi−1 pi pi+1

(i + 1)µ1

λ

¾

-

µ

λ
¹¸

º·
0

¾

-

2µ

λ
¹¸

º·
1 · · · ¾

-

sµ

λ
¹¸

º·
s · · · ¹¸

º·
n-1

¾

-

sµ

λ

The Transition Diagram (Markov Chain) of the M/M/s/n-s-1 Queue

16

• We are solving:




A0p0 = 0,∑
pi = 1,

pi ≥ 0.

• A0, the generator matrix, is given by the n× n tridiagonal matrix:

A0 =




λ −µ 0
−λ λ + µ −2µ

−λ λ + 2µ −3µ
· · ·
−λ λ + sµ −sµ

· · ·
−λ λ + sµ −sµ

0 −λ sµ




.

17

2.2 Two-Queue Free Models

s1

s1 − 1

...

3
2
1

m£¢p p

m£¢p p

m£¢p p

...

m£¢p p

m£¢p p

m£¢p p

1 2 3 · · · j · · · n1 − s1 − 1

p p p p p p · · · p p p p p p · · · λ1
¾

¾µ1

¾µ1

¾µ1

¾µ1

¾µ1

¾µ1

s2

s2 − 1

...

3
2
1

m£¢p p

m£¢p p

m£¢p p

...

m£¢p p

m£¢p p

m£¢p p

1 2 3 · · · k · · · n2 − s2 − 1

p p p p p p · · · p p · · · ¾ λ2

¾µ2

¾µ2

¾µ2

¾µ2

¾µ2

¾µ2

: empty buffer in queue

p p : customer waiting in queue
m£¢p p : customer being served

18

• Let pi,j be the probability that there are i customers in queue 1
and j customers in queue 2.

• Set of possible states (number of customers in each queue):

{(i, j) : i = 0,1, . . . , n1, j = 0,1, . . . , n2}.

• The Kolmogorov equations for the two-queue network:

Out-going Rate Incoming Rate

¾ -

?

6

- ¾

6

?

pi,j+1

pi,j−1

pi−1,j pi,j pi+1,j

jµ2

λ2
λ1

iµ1

pi,j+1

pi,j−1

pi−1,j pi,j pi+1,j

λ2

(j + 1)µ2

(i + 1)µ1

λ1

19

• Again we have to solve




A1p = 0,∑
pij = 1,

pij ≥ 0.

• The generator matrix A1 is separable (no interaction between the

queues): A1 = A0 ⊗ I + I ⊗A0.

• Kronecker tensor product of two matrices An×r and Bm×k:

An×r ⊗Bm×k =




a11B · · · · · · a1nB
a21B · · · · · · a2nB

...
am1B · · · · · · amnB




nm×rk

.

• It is easy to check that the underlying Markov chain of the queue-

ing system is irreducible and the unique solution is p = p0 ⊗ p0.

20

2.3 2-Queue Overflow Networks

s1

s1 − 1

...

3
2
1

m£¢p p

m£¢p p

m£¢p p

...

m£¢p p

m£¢p p

m£¢p p

1 2 3 · · · j · · · n1 − s1 − 1

p p p p p p · · · p p p p p p p p · · · p p λ1§

¥§

6

¾µ1

¾µ1

¾µ1

¾µ1

¾µ1

¾µ1

s2

s2 − 1

...

3
2
1

m£¢p p

m£¢p p

m£¢p p

...

m£¢p p

m£¢p p

m£¢p p

1 2 3 · · · k · · · n2 − s2 − 1

p p p p p p · · · p p · · · ¾ λ2

¾µ2

¾µ2

¾µ2

¾µ2

¾µ2

¾µ2

: empty buffer in queue

p p : customer waiting in queue
m£¢p p : customer being served

• L. Kaufman, SIAM J. Sci. Statist. Comput., 4 (1982).

21

• The generator matrix A2 is given by

A2 = A0 ⊗ I + I ⊗A0 +

(
0

1

)
⊗R0,

where

R0 = λ1




1 0
−1 1

· ·
· ·
−1 1

0 −1 0




describes the overflow discipline of the queueing system.

• In fact, we may write

A2 = A1 +

(
0

1

)
⊗R0.

• Unfortunately analytic solution for the steady-state distribution p

is not available.
22

• The generator matrices are sparse and have block structures.

• Direct method (LU decomposition will result in dense matrices L

and U) is not efficient in general.

• Fast algorithm should make use of the block structures and the

sparsity of the generator matrices.

• Block Gauss-Seidel (BGS) is an usual approach for mentioned

queueing problems. Its convergence rate is not fast and increase

linearly with respect to the size of the generator matrix in general.

• R. Varga, Matrix Iterative Analysis, Prentice-Hall, N.J., (1963).

23

2.4 The Telecommunication System

¾

µ1

¹¸

º·
s1 Queue 1

¾
λ1

@
@

@
@@R•••

¾

µn

¹¸

º·
sn Queue n ¾

λn

¡
¡

¡
¡¡µ

-λ Main Queue
¹¸

º·
s -

µ

Size N

• K. Hellstern, The Analysis of a Queue Arising in Overflow Models,

IEEE Trans. Commun., 37 (1989).

• W. Ching, R. Chan and X. Zhou, Circulant Preconditioners

for Markov Modulated Possion Processes and Their Applications to

Manufacturing Systems, SIAM J. Matrix Anal., 17 (1997).

24

• We may regard the telecommunication network as a

(MMPP/M/s/s + N) queueing system.

• An MMPP is a Poisson Process whose instantaneous rate itself is

a stationary random process which varies according to an irreducible

n-state Markov chain (When n = 1, it is just the Poisson Process).

• Important in analysis of blocking probability and system utilization.

• M. Neuts, Matrix-Geometric Solutions in Stochastic Models,

Johns Hopkins University Press, M.D., (1981).

• J. Flood, Telecommunication Switching Traffic and Networks,

Prentice-Hall, N.Y., (1995).

25

Generator matrix is given by:

A3 =




Q + Γ −µI 0
−Γ Q + Γ + µI −2µI

.
−Γ Q + Γ + sµI −sµI
.

−Γ Q + Γ + sµI −sµI
0 −Γ Q + sµI




,

((N + 1)-block by (N + 1)-block), where

Γ = Λ + λI2n,

Q = (Q1⊗I2⊗· · ·⊗I2)+(I2⊗Q2⊗I2⊗· · ·⊗I2)+· · ·+(I2⊗· · ·⊗I2⊗Qn),

Λ = (Λ1⊗I2⊗· · ·⊗I2)+(I2⊗Λ2⊗I2⊗· · ·⊗I2)+· · ·+(I2⊗· · ·⊗I2⊗Λn),

Qj =

(
σj1 −σj2
−σj1 σj2

)
and Λj =

(
λj 0
0 0

)
.

26

2.5 The Manufacturing System of Two Machines in Tandem

M1 -

µ1

¹¸

º·B1

size l

- M2 -

µ2

¹¸

º·B2

size N

-

λ

• Search for optimal buffer sizes l and N (N >> l), which minimizes

(1) the average running cost, (2) maximizes the throughput, or (3)

minimizes the blocking and the starving rate.

• G. Yamazaki, T. Kawashima and H. Sakasegawa, Reversibility

of Tandem Blocking Queueing Systems, Manag., Sci., 31 (1985).

• W. Ching, Iterative Methods for Manufacturing Systems of Two

Stations in Tandem, Applied Maths. Letters, 11 (1998).

27

The generator matrix is of the form:

A4 =




Λ + µ1I −Σ 0
−µ1I Λ + D + µ1I −Σ

...
−µ1I Λ + D + µ1I −Σ

0 −µ1I Λ + D




,

((l + 1)-block by (l + 1)-block), where

Λ =




0 −λ 0
λ . . .

. . . −λ
0 λ


 , Σ =




0 0
µ2

. . .

.
0 µ2 0


 ,

and

D = Diag(µ2, · · · , µ2,0).

28

2.6 The Re-Manufacturing System

-
λ

Q
?

-
µ

N

Procurement
Inventory

of Returns

-
γ Inventory

of Product

Re-manu-

facturing· · ·

• There are two types of inventory to manage: the serviceable prod-
uct and the returned product. The re-cycling process is modelled
by an M/M/1/N queue.

• The serviceable product inventory level and the outside procure-
ments are controlled by an (r, Q) continuous review policy. Here r

is the outside procurement level and Q is the procurement quantity.
We assume that N >> Q.

• M. Fleischmann, Quantitative Models for Reverse Logistics,
(501) LNEMS, Berlin, Springer (2001).

• W. Ching and W. Yuen, Iterative Methods for Re-manufacturing
Systems, Int. J. Appl. Maths (2002).

29

• The generator matrix is given by

A5 =




B −λI 0
−L B −λI

.
−L B −λI

−λI −L BQ




,

where

L =




0 µ 0
0 .. .

.
. . . µ

0 0




, B = λIN+1 +




γ 0
−γ γ + µ

.
. . . γ + µ

0 −γ µ




,

and

BQ = B −Diag(0, µ, . . . , µ).

30

3 Numerical Algorithm (Preconditioned Conjugate Gradient
(PCG) Method)

• Conjugate Gradient (CG) Method to solve Ax = b.

• Need preconditioning to accelerate convergence rate.

• O. Axelsson, Iterative Solution Methods, Cambridge University
Press, (1996).

• In the Preconditioned Conjugate Gradient(PCG) method with pre-
conditioner C, CG method is applied to solve

C−1Ax = C−1b

instead of

Ax = b.

31

• A Good preconditioner C is a matrix satisfying:

(a) Easy and fast to construct;

(b) The preconditioner system Cx = f can be solved very fast;

(c) The preconditioned matrix C−1A has singular values clustered

around one1.

Note:

(1) One sufficient condition for a sequence of matrices Bn (size

n×n) has singular values clustered around 1 : the number of singular

values of Bn different from 1 is bounded above and independent of

the matrix size of Bn.

32

3.1 Circulant-based Preconditioners

• Circulant matrices are Toeplitz matrices (constant diagonal en-

tries) such that each column is a cyclic shift of its preceding column.

• Class of circulant matrices denoted by F.

• C ∈ F implies C can be diagonalized by Fourier matrix F :

C = F ∗ΛF .

Hence

C−1x = F ∗Λ−1Fx.

• Eigenvalues of a circulant matrix has analytic form, therefore en-

hance the spectrum analysis of the preconditioned matrix.

• C−1x can be done in O(n logn) where n is the size of the matrix.

• P. Davis, Circulant Matrices, John Wiley and Sons, N.J. (1985).

33

3.2 Our Circulant-based Preconditioner

A =




λ −µ 0
−λ λ + µ −2µ

· · ·
−λ λ + sµ −sµ

· · ·
−λ λ + sµ −sµ

0 −λ sµ




.

s(A) =




λ + sµ −sµ −λ
−λ λ + sµ −sµ

· · ·
−λ λ + sµ −sµ

· · ·
−λ λ + sµ −sµ

−sµ −λ λ + sµ




.

We have rank(A− s(A)) = s + 1.

34

3.2.1 The Telecommunication System

•A3 = I ⊗Q + A⊗ I + R⊗ Λ where.

R =




1 0
−1 1

−1 .. .
. . . 1

0 −1 0




.

•s(A3) = s(I)⊗Q + s(A)⊗ I + s(R)⊗ Λ.

s(I) = I and s(R) =




1 −1
−1 1

−1 .. .
. . . 1

0 −1 1




.

35

3.2.2 The Manufacturing System of Two Machines in Tandem

• Circulant-based approximation of A4 : s(A4) =



s(Λ) + µ1I −s(Σ) 0
−µ1I s(Λ) + s(D) + µ1I −s(Σ)

..
−µ1I s(Λ) + s(D) + µ1I −s(Σ)

0 −µ1I s(Λ) + s(D)




,

((l + 1)-block by (l + 1)-block), where

s(Λ) =




λ −λ 0
λ . . .

. . . −λ
−λ λ


 , s(Σ) =




0 µ2
µ2

. . .

.
0 µ2 0


 ,

and

s(D) = Diag(µ2, · · · , µ2, µ2).

36

3.2.3 The Re-manufacturing System

• circulant-based approximation of A5:

s(A5) =




s(B) −λI 0
−s(L) s(B) −λI

.
−s(L) s(B) −λI

−λI −s(L) s(BQ)




,

where

s(L) =




0 µ 0
0 .. .

.
. . . µ

µ 0




, s(B) = λIN+1 +




γ + µ −γ
−γ γ + µ

.
0 −γ γ + µ


 ,

and

s(BQ) = s(B)− µI.

37

3.4 Stochastic Automata Networks

• In fact, all the generator matrices A take the form

A =
m∑

i=1

n⊗

j=1

Aij,

where Ai1 is relatively huge in size.

• Our preconditioner is defined as

C =
m∑

i=1

s(Ai1)
n⊗

j=2

Aij.

• We note that

[F
n⊗

j=2

I]∗C[F
n⊗

j=2

I] =
m∑

i=1

Λi1

n⊗

j=2

Aij =
⊕̀

k=1

[m∑

i=1

λk
i1

n⊗

j=2

Aij

]

which is a block-diagonal matrix.

38

• One of the advantages of our preconditioner is that it can be

inverted in parallel by using a parallel computer easily. This would

therefore save a lot of computational cost.

• Theorem: If all the parameters stay fixed then the preconditioned

matrix has singular values clustered around one. Thus we expect

our PCG method converges very fast.

• Ai1 ≈ Toeplitz except for rank (s + 1) perturbation

≈ s(Ai1) except for rank (s + 1) perturbation.

• R. Chan and W. Ching, Circulant Preconditioners for Stochastic

Automata Networks, Numerise Mathematik, (2000).

39

4. Numerical Results

• Since generator A is non-symmetric, we used the generalized CG
method, the Conjugate Gradient Squared (CGS) method. This
method does not require the multiplication of ATx.

• Our proposed method is applied to the following systems.

(1) The Telecomunications System.

(2) The Manufacturing Systems of Two Machines in Tandem.

(3) The Re-Manufacturing System.

• P. Sonneveld, A Fast Lanczos-type Solver for Non-symmetric
Linear Systems SIAM J. Sci. Comput., 10 (1989).

• Stopping Criteria: ||rn||2
||r0||2 < 10−10; ||rn||2 = nth step residual.

40

4.1 The Telecomunications System

• n, number of external queues; N , size of the main queue.

• Cost per Iteration:

I C BGS
O(n2nN) O(n2nN logN) O((2n)2N)

• Number of Iterations:

s = 2 n = 1 n = 4
N I C BGS I C BGS
32 155 8 171 161 13 110
64 ∗∗ 7 242 ∗∗ 13 199
128 ∗∗ 8 366 ∗∗ 14 317
256 ∗∗ 8 601 ∗∗ 14 530
512 ∗∗ 8 ∗∗ ∗∗ 14 958

• ’∗∗’ means greater than 1000 iterations.

41

4.2 The Manufacturing Systems of Two Machines in Tandem

• l, size of the first buffer; N , size of the second buffer.

• Cost per Iteration:

I C BGS
O(lN) O(lN logN) O(lN)

• Number of Iterations:

l = 1 l = 4
N I C BGS I C BGS
32 34 5 72 64 10 72
64 129 7 142 139 11 142
128 ∗∗ 8 345 ∗∗ 12 401
256 ∗∗ 8 645 ∗∗ 12 ∗∗
1024 ∗∗ 8 ∗∗ ∗∗ 12 ∗∗

• ’∗∗’ means greater than 1000 iterations.

42

4.3 The Re-Manufacturing System

• Q, size of the serviceable inventory; N , size of the return inventory.

• Cost per iteration:

I C BGS
O(QN) O(QN logN) O(QN)

• Number of Iterations:

Q = 2 Q = 3 Q = 4
N I C BGS I C BGS I C BGS

100 246 8 870 ∗∗ 14 1153 ∗∗ 19 1997
200 ∗∗ 10 1359 ∗∗ 14 ∗∗ ∗∗ 19 ∗∗
400 ∗∗ 10 ∗∗ ∗∗ 14 ∗∗ ∗∗ 19 ∗∗
800 ∗∗ 10 ∗∗ ∗∗ 14 ∗∗ ∗∗ 19 ∗∗

• ’∗∗’ means greater than 2000 iterations.

43

5. Queueing Systems and Markov Chains

• Given a generator matrix A of a queueing system:

A =




a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

an1 an2 · · · · · · ann




we have

aii = −
n∑

k=1,k 6=i

aki > 0 for i = 1,2, . . . , n.

• Now if we define a diagonal matrix

D = Diag(a11, a22, . . . , ann)

then the matrix I−AD−1 is a transition probability matrix with each

column sum being equal to one.

44

• To solve for

Ax = 0

it is equivalent to solve

AD−1(Dx) = 0.

Let y = Dx then the above linear system is equivalent to the fol-

lowing

AD−1y = 0

or

(I −AD−1 − I)y ≡ (P − I)y = 0

or

Py = y

where P is a transition probability matrix of a certain Markov chain.

45

6. Other Iterative Methods

6.1 Power Method

• Power method is a popular method for solving the steady-state

probability distribution of a Markov chain.

• In fact, the power method is an iterative method for solving the

largest eigenvalue in modulus (the dominant eigenvalue) and its cor-

responding eigenvector.

• The idea of the power method can be briefly explained as follows.

Given an n×n matrix A and suppose that there is a single eigenvalue

of maximum modulus and the eigenvalues λ1, λ2, · · · , λn be labeled

such that

|λ1|>|λ2| ≥ |λ3| ≥ · · · ≥ |λn|.
For the case of transition probability matrix, |λ| = 1.

46

• Suppose further that there is a linearly independent set of n unit

eigenvectors. This means that there is a basis
{
u(1),u(2), . . . ,u(n)

}

such that

Au(i) = λiu
(i), i = 1,2, . . . , n, and ‖u(i)‖ = 1.

Then begin with an initial vector x(0), one may write

x(0) = a1u
(1) + a2u

(2) + · · ·+ anu(n).

• Now we iterate the initial vector with the matrix A as follows:

Akx(0) = a1Aku(1) + . . . + anAku(n)

= a1λk
1u

(1) + . . . + anλk
nu(n)

= λk
1



a1u

(1) +

(
λ2

λ1

)k

anu(2) + . . . +

(
λn

λ1

)k

anu(n)





= a1u
(1) + λk

2anu(2) + . . . + λk
nanu(n).

47

Since

|λi| < 1 for i = 2, . . . , n

we have

lim
k→∞

|λi|k = 0 for i = 2, . . . , n.

Hence we have

Akx(0) ≈ a1λk
1u

(1).

• To get an approximation for λ1 and u(1), we can introduce a

normalization in the iteration:

rk+1 =
Ak+1x(0)

‖Akx(0)‖2
then we have

lim
k→∞

rk+1 = lim
k→∞

a1λk+1
1 u(1)

‖a1λk
1u

(1)‖2
= λ1u

(1).

48

• The main computational cost of this method comes from the

matrix-vector multiplication of the form Ax.

• It is clear from the above analysis that the convergence rate of

the power method depends on the ratio of

|λ2/λ1|
where λ1 and λ2 are respectively the largest and the second largest

eigenvalue in modulus of the matrix P .

• Since λ1 = 1 in the Markov chain problem, so it only depends on

|λ2|.

49

6.2. Extrapolation Method

• The idea of extrapolation method here is, instead of solving the
steady-state distribution x of a Markov chain satisfying Px = x we
consider the solution of the transition probability matrix:

M(c) = cP + (1− c)u1t where c ∈ [0,1] (6)

• Here 1 is the column vector of all ones and u is a given positive
probability distribution vector. Therefore u1t is a rank one transition
probability matrix. Moreover, x = x(1).

• It is known that the second largest eigenvalue in modulus of the
matrix (6) is bounded above by c.

• S. Haveliwala and and S. Kamvar, The Second Eigenvalue of
the Google Matrix, Stanford University, Technical Report (2003).

50

• We recall that the convergence rate of the power method when

apply to solving the steady-state probability distribution vector x(c)

of

M(c)x(c) = x(c) (7)

depends on c and the smaller the value of c, the faster the conver-

gence rate will be.

•We note that it is very efficient to solve the steady-state probability

distribution vectors of (7) for small values of c, say

x(0.1),x(0.2), . . . ,x(0.5).

Extrapolation methods can then be developed to get an approximate

for x(1).

• C. Brezinski, M. Redivo-Zaglia and S. Serra-Capizzano, Ex-

trapolation Methods for PageRank Computations, C.R. Acad. Sci.

Paris, Ser. I, 340 (2005).

51

Thank you for Your Attention

The Slides can be Obtained at

http://hkumath.hku.hk/ wkc/teaching.html

52

