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Abstract

Markovian queueing systems are widely used in the modeling of
telecommunication systems, manufacturing systems, inventory sys-
tems and many other practical systems. Very often, in the system
performance analysis, one faces the problem of solving the system
steady-state probability distribution of a large number of states.
Fast numerical algorithms based on Preconditioned Conjugate Gra-
dient (PCG) method will be presented to solve the problem. Other
efficient iterative methods for solving Markov chains will also be
discussed.
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1. Birth-and-Death Processes

e \We begin our discussion on the theory of birth-and-death pro-
cesses. T he analysis of which is relatively simple and has important
applications in queueing theory.

e Let us consider a system that can be represented by a family of
random variables {N(¢)} parameterized by the time variable t. This
IS called a stochastic process.

e In particular, let us assume that for each ¢, N(¢) is a non-negative
integral-valued random variable. For example, in a queue, where
N(t) is the number of customers waiting or in service at time ¢.

e We say that the system is in state E; at time ¢ if N(t) = j. Our
aim is then to compute the state probabilities




Definition: A process is called a birth-and-death process if at ant
time ¢

e (1) P{E; — E,;41 during (t,t+ h)|E; at t} = A\;jh 4+ o(h) as h —
0(j=0,1,2,---). Here )\, (birth rate) is a constant depending on j.

e (2) P{E; — E;_1 during (t,t + h)|E; at t} = pjh + o(h) as h —
0 (j=1,2,---). Here u; (death rate) is a constant depending on j.

° (3) P{EJ—>EJ:|:]€ during (t,t—|— h)|E] at t} = O(h) as h — 0 if
k>2(=0,1,---).

Remark: o(h) is a function of h such that
im 2
h—0 h

Possible examples of o(h) are o(h) = h? and o(h) = hsin(h). How-
ever, o(h) cannot take the form vh or hlog(h).

0.




Notation: Let P;(t) = P{N(t) =j} and let A_1 = pug = P_1(t) = 0.

e It follows from the above three postulates that (where h — 0;j =
0,1,....)

Py(t+h) = (-1 + o)) Pra(O)+(ph + o(h)) Prs D+ = (O + 1)l + o(h)] Py(t)

an arrival a departure no arrival or departure

Pij(t+h) = (N\j—1h)Pj_1(t) + (ujr1)hPj41 () + [1 — (Nj + p;)R]Pj(t) + o(h) |.

e Re-arranging terms, we have the following:

P:(t+ h) — P;(t
i€ 2 i () =1 P11 () + i1 Py (t) — (O + 1) Pi(¢) +

Letting h — 0, we get the following set of differential-difference
equations

%Pj(t) = Xj—1Pj1(0) + i1 Pjga (8) — Oy + ) P(@). - (1)

o(h)
-




e If at time t = O the system is in State Ej;, the initial conditions are
then P;(0) = d;; where

5. )1 ifi=yj
Wl 0 ifi#Eg.

e Here the coefficients {);} and {u;} are called the birth and death
rates respectively.

e When p; = 0 for all 5, the process is called a pure birth process;
and when A; = 0O for all j, the process is called a pure death process.

e We remark that in the case of either a pure birth process or a
pure death process, the equations (1) can be solved by recurrence.



1.1 Pure Birth Process with Constant Rates

e We consider a Pure birth process (u; = 0) with constant birth rate
A; = A and initial state Eg.

e The equations in (1) become

%Pj(t) = AP;_1(t) = AP;(t) (G =0,1,--)

where P_1(t) = 0 and P;(0) = do;.

e Here

j =0, Py(t)=-APy(t)

Hence

Py(t) = a0€_>\t.




e From the initial conditions, we get ag = 1.

e Inductively, we can prove that if

—1
Pj_l(t) — ((;\?]1)!@_>\t
then the equation
—1
Pi(t) = X (8 ?Jl)!e—/\t> — AP;(t)

gives (exercise) the solution (Poisson Distribution)

(At)je—At.

J:

(2)



Theorem: Suppose in a certain process, we let T; (i =1,2,3,---)
be the epoch of the i*" occurrence.

o let A, =T,—-T;, 1 (1=1,2,3,---); Top = epoch that we start to
count the number of occurrences.

e Let N(t) = number of occurrences in a time interval of length ¢.
Then the following statements are equivalent.

(a) The process is Poisson (with coefficient \).
(b) N(t) is a Poisson random variable with parameter X, i.e.

(At)/ oAt

PIN() = j} = 7™

(c) A;'s are mutually independent identically distributed exponential
random variables with mean A1, i.e.

P{A; <t}=1—eM, 6 i=1,2,...

j=0,1,2,....



1.2 Queueing System and Birth-and-Death Process

e \We consider a queueing system with one server and no waiting
position, with

P{one customer arriving during (t,t + h)} = Ah + o(h)
and
P{service ends in (t,t + h)| server busy at t} = uh + o(h).

It is a two-state birth-and-death process with 5y =0, 1.

e The arrival rates (birth rates) are \g = A and A\; = 0 for j # 0
and the departure rates (death rates) are pu; = 0 when j 7 1 and

H1 = p.

OO
A
Figure 1.1: The Two-state Birth and Death Process.
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e T he equations for the birth-and-death process are given by

%Po(t) = —APy(t) + pP1(t) and %ﬂ (t) = APo(t) — pPy(2).

(3)
One convenient way of solving this set of simultaneous linear differ-
ential equations is as follows:

e Adding the equations in (3), we get

d
~[Po() + P1(D] =0,
hence  Py(t) + P;(t) = constant.

e Initial conditions are Py(0) + P1(0) = 1; thus Py(t) + P1(t) = 1.
Hence we get

@ Po(t) + O+ mPo(t) = .
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e The solution (exercise) called the transient solution is given by

Po(t) = - j“ + (Po(0) — iﬂ)e—@ﬂ”t.

Since Pi(t) = 1 — Py(t),

Pi(t) = ﬁ +(P1(0) — ﬁ)e_(/\ﬂb)t. (4)

e Consider the state probabilities of the above example when ¢t — oo,
from (4) we have

g . M
Py = lim Py(t) =
t—
) 00 )\—)I\—,u (5)
P = Ilim Pi(t) = :
L t—o00 A+ u

e We note that FPp + P = 1 and they are called the steady-state
probabilities of the system.

12



Note:
(i) Pp and P are independent of the initial values Py(0) and P;(0).

(ii)) Pp and Py satisfy the system of linear equations (generator

matrix)
—A U PR\ _ (0 .
() (2)=(3) e mrmemt

e T his leads us to the important notion of statistical equilibrium or
steady-state. We say that a system is in statistical equilibrium (or
stationary) if its state probabilities are constant in time.

e Note that the system still fluctuate from state to state, unless
PO(O) = Py or Pl(O) = P;.

e S. Ross, Introduction to Probability Models, Prentice-Hall, (2003).
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2. Examples of Markovian Queueing Systems.
2.1 Single Markovian Queue (M/M/s/n-s-1)

e )\, input rate (Arrival Rate),
e 11, output rate (Service Rate, Production Rate etc).

e Set of possible states (number of customers): {0,1,...,n— 1}.
po— o1
po— @ 2
po— w3
i O A B el
B 1 23 cer m—s—1
—1

S .

< @ - customer being served

= . customer waiting in queue
1 empty buffer in queue
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2.1.1 The Steady-state Probability Distribution

Sl Sl

O e &
A TN N \

The Transition Diagram (Markov Chain) of the M/M/s/n-s-1 Queue

e Let p; be the steady-state probability that there are ¢ customers
in the queueing system.

e p=1(po,...,pn_1)! is the steady-state probability vector.

e Important for system performance analysis, e.g. average waiting
time of the customers in long run.

e B. Bunday, Introduction to Queueing Theory, Arnold, N.Y.,
(1996).
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e [ he steady-state probability p; is governed by the Kolmogorov
equations which can be obtained by equating the expected outgo-
iNng rate and the expected incoming rate at each of the state:

Out-going Rate Incoming Rate

i1 Pi D piiq Pie1 2D -

, i
W (i + 1)

+1

O O s
A A A A
The Transition Diagram (Markov Chain) of the M/M/s/n-s-1 Queue
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e \We are solving:

Apgpg =0,
sz — 17
p; = 0.

e Ap, the generator matrix, is given by the n x n tridiagonal matrix:

A —p 0 )
—A At+tup 2
X A+2p —-3u

—A A+ s —su

—A A+ sy —su
K 0 —A Sl /

17



po-—

H2-—

po—
po-
po-

p1-—
p1-—
1

p1-
p1-—
p1-—

2.2 Two-Queue Free Models

© © ©
WN =

L OO
0 mp—sp—1

E@@...

s> — 1

© e ©

© © ©
WN =

N EEO g —A

o o y o o nl —_— 81 —_— 1

. customer being served

. customer waiting in queue

. empty buffer in queue

© e ©



o Let Pij be the probability that there are : customers in queue 1
and j customers in queue 2.

e Set of possible states (number of customers in each queue):

{(i,j):izo,l,...,’nl, j=O,1,...,n2}.

e T he Kolmogorov equations for the two-queue network:

Out-going Rate Incoming Rate
Pij+1 Pij+1
A2 | G+ Duo
A A
Pi-1j— Pij "t piyq j Pi-1j "t DPij- Pit1,
1o (i 4+ pa
JH2 Ao

Pij—1 Pi,j—1
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e Again we have to solve

Aip =0,
pij = 0.

e The generator matrix Ay is separable (no interaction between the
queues): A1 = Ag® 1+ 1® Ap.

e Kronecker tensor product of two matrices A, «, and B,,«x:

a11B --- -+ a1,B
. a>1B --- -+ ao,B
Apxr @ Byl = : : : "
an1B -+ -+ amnB ek

e It is easy to check that the underlying Markov chain of the queue-
ing system is irreducible and the unique solution is p = pg ® pg-.

20



po— @ 1
o () 2 2.3 2-Queue Overflow Networks
po— @ 3
IEE-EO00 0 —A2
o o 123k o mo—so—1
po— @ s2 — 1
H2-— (v 52
p1— @ 1
p1— @ 2
p1— @ 3
o 0 s R o s [ N s R T ¥
pe o 1230 G o mp—si—1
- —1 ,
Zi 82 @ - customer being served

= . customer waiting in queue
1 : empty buffer in queue

e L. Kaufman, SIAM J. Sci. Statist. Comput., 4 (1982).
21



e [ he generator matrix A, is given by

0
A22A0®I—|—I®AO—|—< 1>®Ro,

where
[ 1 0 )
-1 1

-1 1
\ O -1 0
describes the overflow discipline of the queueing system.

e In fact, we may write

0
A2=A1—|—< 1>®R0.

e Unfortunately analytic solution for the steady-state distribution p

iIs not available.
22



e [ he generator matrices are sparse and have block structures.

e Direct method (LU decomposition will result in dense matrices L
and U) is not efficient in general.

e Fast algorithm should make use of the block structures and the
sparsity of the generator matrices.

e Block Gauss-Seidel (BGS) is an usual approach for mentioned
queueing problems. Its convergence rate is not fast and increase
linearly with respect to the size of the generator matrix in general.

e R. VVarga, Matrix Iterative Analysis, Prentice-Hall, N.J., (1963).
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2.4 The Telecommunication System

751 A1

— @ Queue 1 \
Main Queue @ .

Mn, / Size N

- Q .
@ ueue n v

|

e K. Hellstern, T he Analysis of a Queue Arising in Overflow Models,
IEEE Trans. Commun., 37 (1989).

e W. Ching, R. Chan and X. Zhou, Circulant Preconditioners
for Markov Modulated Possion Processes and Their Applications to
Manufacturing Systems, SIAM J. Matrix Anal., 17 (1997).
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e \We may regard the telecommunication network as a
(MMPP/M/s/s + N) queueing system.

e An MMPP is a Poisson Process whose instantaneous rate itself is
a stationary random process which varies according to an irreducible
n-state Markov chain (When n =1, it is just the Poisson Process).

e Important in analysis of blocking probability and system utilization.

e M. Neuts, Matrix-Geometric Solutions in Stochastic Models,
Johns Hopkins University Press, M.D., (1981).

e J. Flood, Telecommunication Switching Traffic and Networks,
Prentice-Hall, N.Y., (1995).
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Generator matrix is given by:

(Q+T  —ul 0 )
- Q4T +pul —2ul

Az = | —I; Q-+ —I— sl —sul
| —I; Q—I—I_—.I—S,LLI —sul
K 0 — Q—I—s,u[/

((N 4+ 1)-block by (N 4+ 1)-block), where

[ =A + )\Izn,
Q=(Q1®[1L® Q)+ (120Q20I>2®---®Iz)+  +(12®: - ®I>QQn),

N=MNMOL® QL)+ (LN @)+ +([2® - @I>2®Nn),
_ [ o1 —oj2 (N O
s <—0j1 72 ) nd N ( 0 0 )
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2.5 The Manufacturing System of Two Machines in Tandem

B B

M, 1 1 | Mo 42 2 A
\_/ \_/
size | size N

e Search for optimal buffer sizes I and N (N >> 1), which minimizes
(1) the average running cost, (2) maximizes the throughput, or (3)
minimizes the blocking and the starving rate.

e G. Yamazaki, T. Kawashima and H. Sakasegawa, Reversibility
of Tandem Blocking Queueing Systems, Manag., Sci., 31 (1985).

e W. Ching, Iterative Methods for Manufacturing Systems of Two
Stations in Tandem, Applied Maths. Letters, 11 (1998).
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The generator matrix is of the form:

[N+ sl -3 0
—p1l A+D+pl —X

A4 = .. e
—pu1l N+D+pl —X
\ O —pql A+ D )
((I 4+ 1)-block by (I 4+ 1)-block), where
0 —A\ 0 0 0
_ A _ | m2
A= N Cel el ’
0 A 0 us 0
and

D = Dlag(,UQ, 7“27O)°

28



2.6 The Re-Manufacturing System

Procurement
Inventory Q
of Returns
Y Re-manu- v’ Inventory A
e facturing of Product |~ =
N

e [ here are two types of inventory to manage: the serviceable prod-
uct and the returned product. The re-cycling process is modelled
by an M/M/1/N queue.

e [ he serviceable product inventory level and the outside procure-
ments are controlled by an (r,Q) continuous review policy. Here r
is the outside procurement level and @ is the procurement quantity.
We assume that N >> Q.

e M. Fleischmann, Quantitative Models for Reverse Logistics,
(501) LNEMS, Berlin, Springer (2001).

e W. Ching and W. Yuen, Iterative Methods for Re-manufacturing
Systems, Int. J. Appl. Maths (2002).
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e [ he generator matrix is given by

[ B -\ 0 )
L B =)\
As = . ,
L B =\
\ —AI —-L Bg |
where
(O L4 O\ (’Y
o --. —y v+ u
L = ’ B:)‘IN—|—1+ .
S
\ O 0 ) \ O
and

Bg = B — Diag(0, , ..., ).

eyt

-
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3 Numerical Algorithm (Preconditioned Conjugate Gradient
(PCG) Method)

e Conjugate Gradient (CG) Method to solve Ax = b.

e Need preconditioning to accelerate convergence rate.

e O. AXxelsson, Iterative Solution Methods, Cambridge University
Press, (1996).

e In the Preconditioned Conjugate Gradient(PCG) method with pre-
conditioner ', CG method is applied to solve

Clax=c"1b
instead of
Ax = b.

31



e A Good preconditioner C' is a matrix satisfying:
(a) Easy and fast to construct;
(b) The preconditioner system Cx = f can be solved very fast;

(c) The preconditioned matrix C~1A has singular values clustered
around onel.

Note:

(1) One sufficient condition for a sequence of matrices B, (size
nxn) has singular values clustered around 1 : the number of singular
values of B, different from 1 is bounded above and independent of
the matrix size of Bj.

32



3.1 Circulant-based Preconditioners

e Circulant matrices are Toeplitz matrices (constant diagonal en-
tries) such that each column is a cyclic shift of its preceding column.

e Class of circulant matrices denoted by F.

o C € F implies C' can be diagonalized by Fourier matrix F
C = F*N\F.
Hence
Ccx = F*A~1Px.

e Eigenvalues of a circulant matrix has analytic form, therefore en-
hance the spectrum analysis of the preconditioned matrix.

e C~1x can be done in O(nlogn) where n is the size of the matrix.

e P. Davis, Circulant Matrices, John Wiley and Sons, N.J. (1985).
33



3.2 Qur Circulant-based Preconditioner

A — U 0 \
—A A+p —2p
A= —A A+su —su
—A A+ sy —su
\ O ~X sp )
()\—|—s,u —Su —A )

We have rank(A —s(A)) = s+ 1.

34



3.2.1 The Telecommunication System

A3 =1QRQ+ AR T+ R® N where.

1
—1

= 0 )

1

\ © ..'—10)

0s(A3)=s(1)R®RQ+s(A) I+ s(R) ®A.

s(I)=1

and

[ 1
~1

s(R) = -1

\ O —1
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3.2.2 The Manufacturing System of Two Machines in Tandem

e Circulant-based approximation of Ay : s(Ag) =

[ s(A) + —s(2) 0 )
—p1l  s(A) +s(D) +prl —s(X)

il s(A) 4 s(D)+ il —s()

\ 0 —ul s(A\) + (D)
((I + 1)-block by (I 4+ 1)-block), where
A=A 0] 0 o
s(A) = V] = ,
—A | A 0 | ,LLQ. 0

and

S(D) — Diag(/'LQ) T 7:“27:“/2)'
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3.2.3 The Re-manufacturing System

e Circulant-based approximation of As:

[ s(B) -\ 0
—s(L) s(B) —\I
s(As) = )
—s(L) s(B) =M\l
\ Al —s(L) s(Bg) |
where
[ O g 0 ) v+ —
=] | amoana| o e
v g) 0 -y ¥+ u
and

s(Bg) = s(B) — ul.
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3.4 Stochastic Automata Networks

e In fact, all the generator matrices A take the form
m n
A=) &K Ay
i=15=1
where A;q is relatively huge in size.

e Our preconditioner is defined as

m n
i=1 j=2

e \We note that

m n

n n m n 14
[FQII'"CIF Q) I1= > N1 Aij = P [Z&]ﬁ ®Az’j]
-1 =2 k=1

§=2 j=2 i= i=1 j=2
which is a block-diagonal matrix.
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e One of the advantages of our preconditioner is that it can be
inverted in parallel by using a parallel computer easily. This would
therefore save a lot of computational cost.

e [ heorem: If all the parameters stay fixed then the preconditioned
matrix has singular values clustered around one. Thus we expect
our PCG method converges very fast.

e A1 =~ Toeplitz except for rank (s + 1) perturbation
~ s(A;1) except for rank (s+ 1) perturbation.

e R. Chan and W. Ching, Circulant Preconditioners for Stochastic
Automata Networks, Numerise Mathematik, (2000).
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4, Numerical Results

e Since generator A is non-symmetric, we used the generalized CG
method, the Conjugate Gradient Squared (CGS) method. This
method does not require the multiplication of A%x.

e Our proposed method is applied to the following systems.

(1) The Telecomunications System.

(2) The Manufacturing Systems of Two Machines in Tandem.

(3) The Re-Manufacturing System.

e P. Sonneveld, A Fast Lanczos-type Solver for Non-symmetric
Linear Systems SIAM J. Sci. Comput., 10 (1989).

e Stopping Criteria: Hig”g < 10719: ||rp||o = nth step residual.
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4.1 The Telecomunications System

e n, number of external queues; N, size of the main queue.

e Cost per Iteration:

I C BGS
O(n2"N) | O(n2"N log N) | O((2™)“N)

e Number of Iterations:

s =2 n=1 n—=4a4
N I C BGS | I C BGS
32 155 8 171 [161 13 110

64 xk ([ 242 xk 13 199
128 xk 8 366 xx 14 317
256 xx 8 601 *x 14 530
512 *k 3 * ok xx 14 9OB8

e 'xx' Mmeans greater than 1000 iterations.



4.2 The Manufacturing Systems of Two Machines in Tandem
e [, size of the first buffer; N, size of the second buffer.

e Cost per Iteration:

I C BGS
O(IN) | O(INlog N) | O(IN)

e Number of Iterations:

[=1 [ =4
N I C BGS I C BGS
32 34 5 72 64 10 72
64 129 7 142 | 139 11 142
128 xk 8 345 xx 12 401
256 xk 8 645 xx 12 ok
1024 | *xx 8 * %k xx 12 * 5k

e 'xx' Mmeans greater than 1000 iterations.
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4.3 The Re-Manufacturing System

e (), size of the serviceable inventory; N, size of the return inventory.

e Cost per iteration:

I C BGS
O(QN) | O(QNIog N) | O(QN)

e Number of Iterations:

Q=2 Q=3 Q=4
N I C BGS| I C BGS | I C BGS
100 | 246 8 870 | xx 14 1153 | xx 19 1997
200 | xx 10 1359 | xx 14 ok *x 19 ok
400 | *x 10 * ok xx 14 * ok xk 19 ok
800 | *x 10 * 5k xx 14 * ok xx 19 %k

e 'xx' Mmeans greater than 2000 iterations.
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5. Queueing Systems and Markov Chains

e Given a generator matrix A of a queueing system:

a11 aio -+ -+ ain
A= agl &22 a?n
anl Ano -+ - Gnn
we have
n
A5 = — Z ap, >0 for 1=1,2, ... n.
k=1 ki

e Now if we define a diagonal matrix

D = Diag(all, ano, ..., ann)
then the matrix I — AD~ 1 is a transition probability matrix with each
column sum being equal to one.

44



e [0 solve for
Ax =0
it is equivalent to solve
AD Y(Dx) =o.

Let y = Dx then the above linear system is equivalent to the fol-
lowing

AD_ly =0
or
(I—AD 1 —DDy=(P-Dy=0
or
Py =Yy

where P is a transition probability matrix of a certain Markov chain.

45



6. Other Iterative Methods
6.1 Power Method

e Power method is a popular method for solving the steady-state
probability distribution of a Markov chain.

e In fact, the power method is an iterative method for solving the
largest eigenvalue in modulus (the dominant eigenvalue) and its cor-
responding eigenvector.

e [ he idea of the power method can be briefly explained as follows.
Given an nxn matrix A and suppose that there is a single eigenvalue
of maximum modulus and the eigenvalues \q, \o,--- , A\ be labeled
such that

(A1|>|A2] > [A3] > - > A

For the case of transition probability matrix, |[A| = 1.
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e Suppose further that there is a linearly independent set of n unit
eigenvectors. This means that there is a basis

{u(l), ul®, .., u(”)}
such that
Aul) = )\iu(i), i=1,2,...,n, and ||u(i)|| = 1.
Then begin with an initial vector x(©) one may write
«© — a1u® 4 aou® 4 g u®,

e Now we iterate the initial vector with the matrix A as follows:

Akx(0) — a1 AFu D ..+ apafu™
aa NiuD .+ apAFu(

k
= M {alu(l) + <)\2> anul® 4+ ..+ <&> anu(")}
M ]\

= a1u® + Ma,u® + . 4+ Nguu™.
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Since
N <1 fori=2,....,n
we have

im [N[F=0 fori=2,... n.
k— o0

Hence we have

AFx(0) al)\lfu(l).

e TO get an approximation for A\; and u(l), we can introduce a
normalization in the iteration:

Ak+15(0)
LT AR O

then we have

: al)\]f_l_lu(l)
lim 41 = lim

= )\111(1).
k— 00 k— 00 ||a1)\l]€_u(1)||2
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e T he main computational cost of this method comes from the
matrix-vector multiplication of the form Ax.

e It is clear from the above analysis that the convergence rate of
the power method depends on the ratio of

[ A2/ A1

where A1 and X\, are respectively the largest and the second largest
eigenvalue in modulus of the matrix P.

e Since A1 = 1 in the Markov chain problem, so it only depends on
[A2].
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6.2. Extrapolation Method

e [ he idea of extrapolation method here is, instead of solving the
steady-state distribution x of a Markov chain satisfying Px = x we
consider the solution of the transition probability matrix:

M(c) =cP + (1 —c)ul’ where ce[0,1] (6)

e Here 1 is the column vector of all ones and u is a given positive
probability distribution vector. Therefore ul! is a rank one transition
probability matrix. Moreover, x = x(1).

e It is known that the second largest eigenvalue in modulus of the
matrix (6) is bounded above by c.

e S. Haveliwala and and S. Kamvar, T he Second Eigenvalue of
the Google Matrix, Stanford University, Technical Report (2003).
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e \We recall that the convergence rate of the power method when
apply to solving the steady-state probability distribution vector x(c¢)
of

M (c)x(c) = x(c) (7)

depends on ¢ and the smaller the value of ¢, the faster the conver-
gence rate will be.

e \We note that it is very efficient to solve the steady-state probability
distribution vectors of (7) for small values of ¢, say

x(0.1),x(0.2),...,x(0.5).

Extrapolation methods can then be developed to get an approximate
for x(1).

e C. Brezinski, M. Redivo-Zaglia and S. Serra-Capizzano, Ex-
trapolation Methods for PageRank Computations, C.R. Acad. Sci.
Paris, Ser. I, 340 (2005).
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Thank you for Your Attention
The Slides can be Obtained at
http://hkumath.hku.hk/ wkc/teaching.html
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