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i Outline

= Structured matrices have been around
for a long time and are encountered In
various fields of application.

= Toeplitz matrices, circulant matrices,
Hankel matrices, semiseparable
matrices, Kronecker product matrices,
2-by-2 block matrices ...



i Outline

= Toeplitz Matrices

= Overview

= Theory

= Applications

= Research Problems
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i Toeplitz Matrices

= A matrix is said to be a Toeplitz matrix
If It Is constant along its diagonals
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i Background

= The name Toeplitz originates from the
work of Otto Toeplitz (1911) on blinear
forms related to Laurent series

= TIme series: Yule-Walker Equations
(1927)

= Levinson’s work (1947) in formulating
the Wiener filtering problem



i An example of Toeplitz system

= Linear prediction Is a particularly
Important topic in digital signal
processing

= The determination of the optimal linear
filter for prediction requires the solution
of a set of linear equations having a
Toeplitz structure

= Stationary time series



Tl
() == halk)z(t — k)
k=1

where —h,(k), kb = 1,...,n, represent the weights in the linear combination.
These weights are called the prediction coefficients of the one-step forward pre-

dictor of order n.
The difference between the value x(#) and the predicted value #{t) is called
the forward prediction error, and is denoted by e(t). Thus

e(t) = z(t) — &(t) = z(t) + Y ha(k)z(t — k).
k=1

The mean square value of the forward prediction error is

Ele(t)?) = E| [=(t) + > ha(k)z(t - k)| |,

k=1

where E 1= the expectation operator. Since this i= a quadratic function of the
predictor coefficients, the minimization of E(|e(t)|*) yields the set of linear equa-
tlons
Yzz(F) Zh,ﬂa Jyex(i— k), F=1,2...,n
k=1

Hers
Yex (k) = BE(z(t)z(t — k))



i Direct Methods

= Schur algorithm (1917) — a test for
determining the positive definiteness of
a Toeplitz matrix

= Levinson (1947)

= Durbin (1960)

= Trench (1964)

= O(n?) algorithms

= Small - Large systems (Recursive)




Direct Methods

= The Gohberg-Semencul Formula

L
TRl J—{L*Ll LY, m=0,1,...,n-1

Ly and L, are lower triangular Toeplitz matrices

given hy
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Superfast Direct Toeplitz

i Solvers

= Brent et al. (1980)

= Bitmead and Anderson (1980)

= Morf (1980)

= de Hong (1986)

= Ammar Gragg (1988)

= O(nlog?n) algorithms

= Recursive from n=>n/2->n/4->n/8->...




i Look-ahead algorithms

= Singular or ill-conditioned principal
submatrices

s Avoid breakdowns or near-breakdowns
by skipping such submatrices

= Gueguen (1981), Delsarte et al (1985),
Chan and Hansen (1992), Sweet (1993)

= Worst case: O(n3) algorithms



i Stability

= The stablility properties of symmetric
positive definite Toepltiz matrices:
Sweet (1984), Bunch (1985), Cybenko
(1987), Bojanczyk et al (1995)

= Weakly stable (residual is small for well-
conditioned matrices)

s Look-ahead methods are stable




i Stability

= Toeplitz matrices = Cauchy matrices

= Partial pivoting = stable ? Gohberg et al
(1995)

= Displacement representation = error growth

= Gu (1995), Chandrasekaran and Sayed
(1996), Park and Elden (1996): QR-type
algorithm on displacement representation -
stable




i Iterative Methods

= Rino (1970) and Ekstrom (1974): a
decomposition of Toeplitz matrix into a
circulant matrices and iterative methods

= Strang (1986), Olkin (1986): the use of
preconditioned conjugate gradient
method with circulant matrices as
preconditioners for Toeplitz systems




i Circulant Preconditioners

= Circulant matrices: Toeplitz matrices
where each column is a circular shift of
Its preceding column
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i Circulant Preconditioners

Cp = FfAnFy
where the Fourler matrix F,, is the matrix with entries given by
[Fnlix = ire—?ﬂi”ff’”, D<ik<n—1.
y 12
= Design of circulant matrices, Strang’s
oreconditioners (1986), R. Chan’s
preconditioners (1988), Ku and Kuo’s

oreconditioners (1992) ...




i Circulant Preconditioners

= T. Chan preconditioners (1988) -
optimal preconditioners

min || C—T ||
= Tyrtyshnikov preconditioners (1992) -
superoptimal preconditioners

min || 1 - CT |,




Results |

. T
te=— [ f(0)e™®d8, k=04£142,....
o

Theorem 4.10. (Performance of T. Chan's preconditioners) (Chan and
Yeung, 1992b) Let f be a 2m-periodic continuous positive function. Then the
spectra of ¢(T,) 1T, are clustered around 1 for large n.

[ ]
R

n |No S, oT,) R, K& R, Y, M,
6|8 8 8 6 6 8 8 14
1220 8 7 5 5 10 16 14
6437 6 7 5 5 7 18 11
12856 5 6 5 5 7 13 O
% |67 5 6 5 5 6 10 8
52|70 5 6 5 5 6 8§ 8

Table 4.1 Number of iterations for different preconditioned systems.
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i Circulant Preconditioners

= The eigenvalues of Strang’s
preconditioner Is the values of the
convolution product of the Dirichlet
kernel

= The eigenvalues of T. Chan’s
preconditioner Is the values of the
convolution product of the Fejer kernel

= Convergence results/different conditions



Transform-based
i Preconditioners

= Circulant matrices are precisely those
matrices that can diagonalized by the
discrete Fourier transform

= Sine transform

= Cosine transform

= Hartley transform

= A effective basis: shift matrices



i lll-conditioned systems

m Zeros of f

Theorem 3.8. (Spectra and Zeros) (Kac et dl., 1955; Kesten, 1069; Farter,
1962) Suppose that f(8) — fmin has a unique zero of order 2u at § = dy. Then
Nenin{ T ) has the asymptotic ezpansion

f["!f.l(ﬂ] —"u
(&)

where ¢ 15 a constant dependent on f and v.

( ] frmin + £ ——— '|'C"( mi 1] n=12...



i lll-conditioned Systems

s(d) = H[E — 2cos(f — §;)]"

Theorem 6.3. (Band-Toeplitz Preconditioner II) (Chan, 1338) Let f be
a nonnegative periodic function defined in [—m, 7| with zeros attained at {f;}%_,

and their orders are {vj}i_;. Define s(f) as in (6.6). Then there exist constants
1,02 = 0, such that

Faie

f

5

J < c, ¥0e€[-m7].

<
01 = t?] 2

i

In particular, k(T,[s]~ 1T, [f])

|.A

e2/ey for all n = 0.



i lll-conditioned Systems

= The generalized Jackson kernel forms
an approximate convolution identity -
match the zeros automatically

62 g4

1 32 B4 128 256 512 1024 (32 64 128 256 512 1024

I 36 7B 170 362 TH3 1h44 |63 200 TR0 2149 T

5 —_ —_ —_ —_ —_ —_ —_ —_ —_ —_ —_ —_

C 12 16 19 23 29 29 (26 42 T1 1681 167 247
Kyag|l &8 92 10 9 9 9 15 17 20 24 26 26
Ryg|10 10 10 10 9 & 15 16 18 15 17 18
Kyg| 2 10 10 10 10 10 (16 17 19 19 19 20

Table 6.1 Numbers of iterations required for difference preconditioners.



i Multigrid Methods

= Use projection/restriction operators to
generate a sequence of sub-systems

= The zeros can be matched (zeros of f)

Theorem 6.25. (Level-Independent Convergence) Let f(d) be such that
co(1 £ cos(18)) = f(8) = cq(1 £ cos(ld)),

for some integer | and positive constants c; and ¢a. Then for any 1 < m = g,

l_i
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i Recursive Preconditioners

= Use the principal submatrices as
preconditioners

= Match the zeros automatically
= Solve the subsystems recursively
= ldea of direct methods

= Use the Gohberg-Semencul formula to
represent the inverses of submatrices



Block-Toeplitz-Toeplitz-block

i Systems
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i Results

Block-circulant-circulant-block preconditioners

can be defined based on the block structure

Theorem 7.14. (Clustered Spectra) Let T,,, be given by (7.58) with an ab-
solutely summable generating sequence. Then for all ¢ > 0, there exists an
N = 0 such that for alln > N and dl m > 0, ot most O(m) eigenvalues of
EE?I:'(TM] — Ton have absolute values exceeding €. Therefore if Thny are positive
definite for all m and n and Ay (T ) = 8 > 0, then for all € > 0 there exists

an N >0 such that for alln > N and all m > 0, at most O(m) eigenvalues of
e (Tyun)| T — I have absolute value larger than €.



Toeplitz Least Squares

‘L Problems

s Min || Tx—=Db |]%

Example (i)
n | m ||no prec |disp prec | part prec
64 | 128 24 15 12
64 | 256 46 15 11
B4 [ 512 7o 13 10
64 | 1024 132 11 9
64 | 2048 177 10 Q




i Applications to PDEs

= An elliptic problem on the unit-square

with Diric
s Circulant

nlet boundary conditions
oreconditioners are not

optimal = condition number O(n)

= Sine transform based preconditioners
are optimal - condition number O(1)

= Boundary conditions are matched



Example

o o o £ o
—[(L+ ™) =] + =—[(1 + S sin(27(z )5-] =g(x
—[(1+ 5] T g+ 3 (2m(z 4+ ¥)) 50 g(z,y)
s = 0.0L =s=1.0
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2 12 0 3 T 2 15 10 5 & 3

= 25 12 3 0 5 20 13 T O 4

16 AT 15 3 13 T 54 15 0 14 &

32 a0 20 3 20 11 10v 25 11 20 10

B 1586 25 2 28 16 209 325 12 28 15

128 | 363 33 32 a1 24 A19 B0 13 A1 o2

Table 8.1 Number of terations for the unit square.

e = 0.01 e = 1.0
1/h | No P MMILTT MINV | No FP MMILTT MINV
=2 22 3 o 4 24 T D 4
1& 40 3 12 &} 45 o 13 &}
32 =0 4 1T o =6 10 18 2
Bd | 155 4 25 14 169 12 26 12
128 [ 311 4 26 21 238 14 2T 19

Table 8.2 Number of iterations for the L-shaped domain.



Sinc-Galerkin Methods for
BVPs

= Toeplitz-plus-diagonal systems
s Toeplitz <= known f / banded prec.

A No Eg F, B Fy Eo

4 7O 41=x107° B.09x107° |9 41=x10"° ED0x10""
8 522  3.7=107% 1.8=10~? |9 23.7=10"?% 1.8x10"?
16 | =1000 i ke B 1.1=1D0-% 1.4x=10—3
32 | =1000 i ke 0 T6x1D-8 22x1p—5

=1000 i i 8 1.1x10"? T4dx1p— 8

Table 8.3 Number of iterations regquired for convergence and the errors E; and
E, between the numerical approrimation and the true solution.

M| MNo E. F., B Fy F,
4 108 B.A=10"2 B85=10"° |17 B.6x10~2 BH=x1D—"
8 061  1.1=10—9% 13210421 1.1x=10% 1.2=10-4

16 | =1000 ke ke 25 BBx1D0-% T7.2wx10—%
22 | =1000 ke ke 30 6.0x10"2% 8O9x1D~7
4 | =1000 ok ek 3l 5.3=10"7 B.9x10"%

Table 8.4 Number of iterations required for convergence and the errors E_, and
E, between the numerical approrimation and the true solufion.



i PDEs

= Hyperbolic and parabolic equations

rEi]—u'-l—ﬂ:’:.r ]a—u-l—b’r ]ﬁ— (r,7)
rf.i't qu Iﬁ'.r H!y ay_glg'ly

= Block-circulant preconditioners by
Holmgren and Otto (1992), Jin and
Chan (1992), Hemmingsson (1996)



i Applications to ODEs

{ dﬂ?] = Jy(t) + &), t € (o, T},

¥ito) = =,

M, =A, @I, —hB,oJ,

Boundary value methods



Results

m | s || k(Ae) | k(AL | k(Ba) | k(Be) | ki M) | ki M)
10| 8 10.6 10.7 3.2 9.3 44.6 49.0
1016 | Z21L.0 21.0 3.7 9.5 44 .5 48.0
1032 41.3 41.0 2.9 9.3 44.1 48.0
20| B 10.6 10.7 3.2 9.3 164.2 | 1810
20116 | 21L.0 21.0 3.7 9.5 1638 [ 172.0
200 32 (| 41.3 41.0 3.9 9.5 163.6 | 1V8.0

Table 8.5 Heat eqguation. Condition numbers for different sizes of the underlying

Toeplitz matrices and their small rank perturbations counterparts.The formula
(8.52) with k= 4 is used here.

CGN | BiCGStab | GMRES
m|s| 1T |P|S| T | P | T |P
10| 8 [128[24[26[ 5L | 7 |63 9
10|16 |17L |23 |23| 63 | 7 | 79 | 8
10|32 |186 |20|20| 70 | 8 | 80 | 8
20| 8 (430 (2820 130| 7 |130| 8
20 | 16 |13 |31 |37 |162| 6 |173| 8
20|32 |670 |20 |31 |184| 6 |207| 8

Table 8.6 Number of iferations for the heat eguation problem. The formula
(8.52) with k= 4 is used here.



Applications to Integral
Equations

= Displacement kernel k(s,t)=k(s-t)
= Circulant integral operator
= Discretization schemes (modified prec.)

FRectangular Trapezoidal Simpson’s
Accuracy | B 5 I B 5 I B 5 T
1o” 8.1 612 4025 | 1.49 1.65 5.50 0.50 5.15 5.TH
101 ek ek ek o G2 .09 ol 28 | D.84 027 boga
10— ok wE wE 16,24 1835 15751 L.18 1344 1448
10—3 L Lt L B4 BE.AZ DAD.1D | 2868 2V.04 2021
10—4 ok ok Bk 1318.02 332.33 ok .61 5749 A8L.BB
10—"* ek ek ek ok ek ok 11.64 10298 116.66
10" ok ok ok ok ok ok 28.18 270.56 285.00

Table 12.2 Number of megafiops for different guadrature rules and precondi-

fioners.



i Boundary Integral Equations

L
glr)]=—— | log|r—yl|ely)dS, +1, =xedf.
2T Gy,

(Bu)(¢) = fr e — ¢lu(f)dd, 0<¢<2m

0

with 2r-periodic kernel function b{¢). The optimal circulant integral operator for
A is the unique circulant integral operator C that minimizes the Hilbert—Schmidt
norm |||8 — Al|| over all circulant integral operators &5, where

118 = Al zf f a(6,6) — b(8 — ¢)[2ddds,
o 0O

Theorem 12.12. (Spectra of the Preconditioned Operators) There erist
positive constants 7, > 7y > 0 such that the spectrum of C=1A lies in |, 74).



Applications to Queueing

‘L Networks

= The previous talk given by W. K. Ching




Applications to Signal
i Processing

= Linear prediction filter
= Circulant preconditioners can be applied
= Probabilistic convergence result

Theorem 10.1. (Clustered Spectra of Preconditioned Matrices) (Ngand
Chan, 1994) Let the discrete-time process satisfy the above assumptions. Then
for any given € > 0 and 0 < 5 < 1, there emist positive infegers p; and p,
such that for n > py, the probability that af most py eigenvalues of the matniz
I-c(A)~(A*A) have absolute value greater than ¢, is greater than 1—n, provided
that m = O(n®t") with v > 0.



Applications to Image
i Processing

= Deconvolution problem

= Point spread functions <> Toeplitz
matrices subject to boundary conditions

[ f—:r.ll-l—l
f—:".ll-l—j
h - Ap f_m
h h h_ 0 fo
. . i a1
E ' Fn In
0 h h h— fn-l—l
Rm ho -+ h_ :
fn-l—:-:l —
| fat




i Deconvolution Problems

= Reqgularization

= Very ill-conditioned Toeplitz matrices

= Direct inversion - noises amplification
= Many possible solutions

= Regularization restricts the set of
admissible solutions

= Tikhonov regularization: L, or H; norm



i Deconvolution Problems

= Periodic boundary condition
= Zero boundary condition
= Reflective boundary condition

i Tul| DE()|13 + lg — Af(w)|13}

(uD*D + A" A)f(u) = A'g.



Fic. 11.2. Gaussian (atmospheric turbulence) blur (1eft) and out-of-focus blur

(right).

Fic. 11.3. Noisy and blurred image by Gaussian (left) and out-cf-focus blur

(right).



i Example

rel, error = 1.24 % 10~ rel, error = 1.15 % 10~Y  rel. error = A.50 x 10~°

Fic. 114, Restoring Gaussian blur with zero boundary (left), periodic bound-
ary (middle) and Neumann boundary (right) conditions.



rel, error = 1.20 % 10°Y  rel error = 1.09 % 10°Y  rel error = 4.00 x 10°°

Fic. 11.5. Restoring out-offocus blur with zero boundary (left), periodic
boundary (middle) and Neumann boundary (right) conditions.



i Image Restoration Problems

Other deblurring matrices: spatial variant
matrices

Other measures In the fitting term: L1 norm
(non-Gaussian noises)

Other regularization methods: TV norm,
edge-preserving methods (convex,
nonconvex), Lipschitz regularization methods

Other constraints: nonnegativity



i Data-fitting term

= Data-fitting term is L1 norm
= || Af—g ||, + regularization
= Non-Guassian noises

= Nonlinear problems

= Nonsmooth

= honnegativity



i Spatial-variant Matrices

= Example: Superresolution imaging
= Several low-resolution images

= Downsampling, missing pixels, motions,
Zzooming, etc

= Transformed based preconditioners are
not effective



i TV-norm

min F(f) = min [ = gl + o [ V5] de dy

f
(£ = N .
G(f) =H'(Hf—g)— aV (I'ﬂl) 0, (z,y)ef
:—IJ;—D (r,y) € 90
1
3(f) JNErs o = =WV (ra(f)Vv)



() (d)

Figure 4: Multi-frame with a single blur. 4{a)-4({c) Observed image frames with blurring o = 0.8,
4(d) Restored image with A = 0.0004 reconstructed in 42.92 seconds, relative error = 0.0374
and PSNIL = 24.06 dB.



a) (b

P S
() (i §]

Figure 7: Random missing pixels without blur. 7(a)-7(e) Observed image frames. 7(d) Restored
image with A = 0.0052 reconstructed in 31.22 seconds, relative error = 0,110 and PSNR 22.91
1.



Results

Method Our method (s) | Artificial time marching scheme (s)
Multi-frame, no blur 2167 606,64
Multi-frame, single blur 42.92 050,55
Multi-frame, multi-blur 05,08 1&70.00
Single-frame, mmlti-hlur 110,47 1526.40

Table 3 Comparison with the artificial time marching scheme.




i Exact TV Computation

= Chambolle (JMIV 2004) studied the discrete
version of the exact total variation denoising
model

= Chambolle has shown that the solution can be
given by using the orthogonal projection of the
noisy image onto the convex set with the
magnitude of the discrete divergence being less
than or equal to 1.

= Constrained minimization problems - projected
gradient method (slow convergence)

= Semismooth Newton method (fast convergence)



Exact TV with Blur

1

; o £
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i Exact TV with Blur

= Alternating minimization algorithm
= Preconditioning techniques

i, i — pA A ()

i |:1r — 1"1";.“!j K :I [y, ,I'u'_-'11 E-.,-JI:I






Other Regularization Methods

Nenre 1: Original satellite image.

x| - P

Figure 2: Degraded image(left), image relative error=0.6622, out of focus PSF{middle) and 3D graph of
PSFiright).

¥

Figure 3: Recovered image using Lipschitz regularization method, o 0417, O (.99, image relative
error—0.2064, ISNIT—=10.124%8



_| Blind Deconvolution Example

x| - P

Figure 8: Recovered PSF(left). recovered image{middle) and 3D :_'_|';l|:|| of recovered PSEF, when munber
of AIM itteration=2. oy 10~2 and g SR 'q.ilnu_;v relative error=0.3601. [SNR=5.2003, PSF
relative error—0.2841, TV norm 1s used m both image and PSF.

- P

Figure 4: Recovered nmage(left), recovered PSE {(middle) and 31 graph of recovered PSE. when munber
of AIM iteration—2. aq 1.2 % 1075 and iva — G0 =< 10 . image relative error=0.3545, ISNR=5.4265.
PSE relative error—0.2055, Lipschitz regularization is nzed i image and TV norm s used in PSE.




i Research Problems

For svmmetric positive definite Toeplitz matrices, the spectra of the cir-
culant preconditioned Toeplitz matrices are shown to be clustered. It is
clear how this affects the convergence rate of the preconditioned conjugate
gradient method. However, for the indefinite or non-Hermitian case, it is
not clear how the clustered sigenvaluss affect the convergence rate of the
Ervlov space methods,

Begides trigonometric transforms, wavelet transforms recently have many ap-
plications in signal and image processing. Lin et al. (2003) have studied wavelet
transforms for Toeplitz matrices, The advantage 18 that the decay of the trans-
formed entriesis faster than that of the original entries. The wavelet-transformed
Toeplitz matrix is no longer a Toeplitz matrix, but it still retains some displace
ment structure. A good question is how to design more effective preconditioners
for Toeplitz matrices based on wavelet transforms.



Research Problems

e In the literature, the order of the zeros of generating functions is usually
assumed to be even., What is the performance of the best circulant pre
conditioners when the order of the zeros is odd, or not an integer. If the
preconditioners work, can we show that the spectra of these circulant pre
conditioned matrices are clustered around 1 or that the condition numbers
of these circulant preconditioned matrices are uniformly bounded? Cther-
wize, can we develop other iterative methods or preconditioners for Toeplitz
matrices that are generated by functions with zeros being odd or not in-
tegral? In B. Chan et al. (1998) some initial results show that multigrid
methods may be a promising approach for these Toeplitz matrices.

e What happens if generation functions have poles instead of zeroce? Can we
apply the established results to this case7 It iz interesting to note that there
are some applications in time series modelling where generating functions
have poles (Lu, 2003).

e Little attention has been given to block-Toeplitz matrices that are gen-
erated by matrix-valued functions. Some results can be found in Serra

(1999¢). He has studied the preconditioners based on matrix-valued func-
tions.



i Research Problems

e Circulant preconditioners can be applied effectively and efficiently to solv-
ing Toeplitz least squarss problems if Toeplitz matrices have full rank.
How can we handle the case when Toeplitz matrices do not have full rank?
One possibility is to consider the generalized inverses of Toeplitz matrices.
In the literature, computing the inverses and the generalized inverses of
structured matrices are important practical computational problems: see
for instance Pan and Rami (2001), Bini et al. (2003), and Wei et al. (2004).

o When Toeplitz matrices have full rank, Toeplitz least squares problems
min ||Tx — b||f are equivalent to solving the normal equation matrices
T*Tx = T'b. However, when we consider l-norms instead of 2-norms
in the computation we do not have this equivalence and cannot apply cir-
culant preconditioners straijghtforwardly to the problem. It iz still an open
gquestion how to solve min ||Tx — b||; efficiently.

e It iz interesting to find good preconditicners for Toeplitz-related svstems
with large displacement rank. Good examples are Toeplitz-plus-hand sys-
tems studied in Section 7.2, Direct Toeplitz-like solvers cannot be em-
ploved becanse of the large displacement rank. However, iterative methods



i Research Problems

are attractive since coefficient matrix—vector products can be computed
efficiently at each iteration. For instance, for the Toeplitz-plus-band ma-
trix, its matriz—vector product can be computed in O{nlogn) operations,
The main concern i how to design good preconditioners for such Toeplitz-
related systems with large displacement rank. Recently, Lin et al. (2003)
proposed and developed factorized banded inverse preconditioners for ma-
trices with Toeplitz structure. Also Lin et al. (2004) studied incomplete
factorization-based preconditioners for Toeplitz-like systems with large dis-
placement ranks in image processing,

¢ Other interesting areas are to design efficient algorithms based on precon-
ditioning techniques for finding eigenvalues and singular values of Toeplitz-
like matrices. Ng (2000) has emploved preconditioned Lanczos methods for
the minimum esigenvalue of a symmetric positive definite Toeplitz matrix,



!'_ Thank you very much |

Q/A
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