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Roadmap of my talk

|. What is the continuous method?
Il. Applications in numerical linear algebra (NLA).

[1l. Case study in symmetric eigenvalue problems.



l.- a) What is the continuous method

Target Problem:

min  f(x). (1)
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Conventional methods: iterative, {xx}, xr — z¥,
where x* is a local minimizer of (1).

Original idea of the continuous method: form a
continuous path (trajectory) from xg to z*.



l.- a) What is the continuous method (cont.)

A) Mathematician's route

e Started in 1950's — K. J. Arrow, L. Hurwicz
and H. Uzawa, Studies in Linear and Nonlinear

Programming, Stanford University Press, Stanford,
CA, 1958.

e Bear many names, ODE method, dynamic method,
etc.

e Mathematical model:

dx(t)
dt

= descent and feasible direction of f(x).

+: easy to construct the ODE;
—: difficult to prove the convergence of x(t);

—: difficult to solve constrained problems.



l.- a) What is the continuous method (cont.)

B) Engineer's route (Hopfield neural network)
Mathematical model:
{ Energy (or merit) function F(x)

_da;it) =p(z(t)), and —dE(da;“)) < 0.

+: introduce an energy function;
+: hardware implementation;
—: energy function E(x) must be a Lyapunov function;

— FE(z) and p(x) must be simple functions.

Ref.: L.-Z. Liao, H.-D. Qi, L. Qi, “Neurodynamical
optimization” J. Global Optim., 28, pp. 175-195,
2004.



l.- a) What is the continuous method (cont.)
Continuous method

Idea: take all the +’s and overcome all the —'s.

Geometric meaning: |f we view the conventional
method as that we put a person somewhere in a
mountain with both eyes covered and ask him to find
the bottom of the mountain, then we can view the
continuous method as that the person finds a large
metal ball and squeeze himself into the ball and let the
ball falls freely.



l.- b) Framework of the continuous method

A mathematical framework of the continuous method
for (1)

i) Define an energy function E(z);

ii) Construct an ODE in the form of

suchthat%<0and%ﬁ<t)):0 <—
p(z) = 0.

iii) Any local minimizer of (1) is an equilibrium point of
the ODE.



l.- ¢) Why is the continuous method attractive

Theoretical aspect:

I) strong convergence results;
ii) weak conditions or assumptions;

iii) suitable for many kinds of problems.

Computational aspect:

i) simple and neat ODE systems;
ii) relaxed ODE solvers;
iii) large-scale problems;

iv) parallelizable.



Il. Applications in NLA

a) Symmetric eigenvalue problems

Let A € R"*™ and AT = A.
From the Real Schur Decomposition, we have
A=UANUT,

where A = diag()\l,)\g, x ,)\n) with A1 < g <. <
An, and U = (uq,usg, - -+, uy,) is orthogonal.

Extreme eigenvalue problem: find A1 and ;.

Interior eigenvalue problem: find a \; and w; such that
A; € |a,b], where a and b are predefined constants.




Il. - b) Least squares problems

Let A be a given m x n matrix of rank r and let b a
given vector.

e Linear least squares:

Find £* so that

|16 — Az™||3 = min.

(Trivial)
e Least squares with linear constraints:
Find =* so that

|6 — Az™||2 = min

subject to
Clz* = 0.

(Trivial)



Il. - b) Least squares problems (Cont.)

e Least squares with linear and quadratic
constraints:

Find £* so that

|16 — Az™||2 = min

subject to

Clz*=0 and |z*||2 <o’

(Trivial)
e Total least squares:

Find ™, a matrix E, and a residual 7 so that

(IEIE + I7]13) = min

subject to

AN
A

(A+ E)z" =b+r.
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Il. - b) Least squares problems (Cont.)

e Regularized total least squares:

Need to solve the following problem

b~ a3
1+27Va

m

subject to

Ve =a?,

where V is a given symmetric positive definite
matrix.
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Il. - ¢) Nonnegative matrix factorization

Let A € R™*™ be nonnegative, i.e. A;; >0, Vi, j.
For any given k£ < min(m,n), find nonnegative
matrices W € R™** and H € R¥*" such that

|A - WH|% = min.

The extension of the above problem is the
nonnegative tensor factorization.
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I1l. Case study in symmetric eigenvalue problems

a) Conversion to optimization problems

Extreme eigenvalue problem:

min
(A,x)

s.t.

A
Ax = Az,
i =1.

min
reERM

s.t.

where ¢ > \,, + 1.
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I1l. - a) Conversion ... (Cont.)

Problem (2) has:

e concave objective function; and

e convex set constraint.
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I1l. - a) Conversion ... (Cont.)

Properties of problem (2):

x is a local minimizer of (2)

0

x is a global minimizer of (2)

0

x satisfies Ax = Mz, !

r=1.

See G. Golub and L.-Z. Liao, “Continuous methods for
extreme and interior eigenvalue problems”, LAA, 415,

pp. 31-51, 2006.
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I1l. - a) Conversion ... (Cont.)

Interior eigenvalue problem:

min 1 s.t. Az =Xz, ez =1, a <\ <b.

(A,x)
U
: T
A—al,)(A—bl,
min 77 (A —aln)( )
s.t. xlr =1.

0

m}g tT (A —al,)(A—bl)x —cxlz  (3)
TzeR"™

s.t. ole < 1,

where ¢ > max (\; —a)(\; — b) + 1.
1<i<n

Problem (3) has:

e concave objective function; and

® convex set constraint.
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I1l. - a) Conversion ... (Cont.)

Properties of problem (3):

1) x is a local minimizer of (3) <= «x is a global
minimizer of (3)

2) Let x* be a global minimizer of (3) and 7 =
(x*)1 (A — al,)(A — bl,)x*, then

2a) If 5 > 0, then there exists no eigenvalue of A in

[, 0].
2b) If n <0, then there exists at least one eigenvalue
of Ain [a,b].

2c) If n = 0, then one of the eigenvalues of A must
be a or b.

17



I1l. - a) Conversion ... (Cont.)

If we combine problems (2) and (3), we have

min v Hx — cxl'x (4)
rER™
s.t. ole <1,

where H = A for (2) and H = (A — al,)(A — bl,,)
for (3) and ¢ > Az (H) + 1. Note: the objective
function is a concave function, so the solution is always
on the boundary.
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I1l. - b) Continuous models for -eigenvalue
problems

Dynamic Model 1:

Merit function:

f(z) =2l Hx — calz. (5)

Dynamical system:

dx(t)
dt

= —{z— Polz — Vf(2)]} = —e(z), (6)

where Q@ = {z € R" | 212z < 1} and Py(:) is a
projection operation defined by

Po(y) = argmin [z —yl2, vy € R
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I1l. - b) Continuous models ...(Cont.)

Properties of Model 1:

1) For any zg € R", there exists a unique solution x(t)
of the dynamical system (6) with z(t = ty) = x¢ in
[t()? —I_OO)

2) If e(zg) =0 = x(t) = xg, Vt > to. If e(xg) #

0 = tl}inooe(x(t)) = 0.

3) e(x) =0 with x £ 0 <= =z is an eigenvector of
H with ||z]|2 = 1.

x(t)||2 is monotonically decreasing to
x(t)||2 is monotonically increasing
lz(t)||2 = 1.

4) If ||xo|l2 > 1, |
1. If HCC()HQ < 1,
to 1. If H$0H2 =1,
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Figure 1: Dynamical trajectory of (6)
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I1l. - b) Continuous models ...(Cont.)

5) If zp #0 = J z* such that t 11&’1 z(t) = x* and
lz* ]|z = 1.

5.1) For H = A, we have

lim ! (t)Ax(t) = A\,

t——+o0

where k = min{i | zfu; #0, i =1,---,n}.

Note: (A1,2*) is what we want!

5.2) For H = (A —al,)(A — bl,,), we have

lim 2'(¢)(A —al,)(A — bl,)xz(t) = 04,

t——4o0

where k = min{i | ziv; #0, i =1,---,n}, H =
vevt e = diag(01,0s,---,60,), and VIV =
I, with V = (v1,va, -+, v,).

Note: This ; may not be an eigenvalue of A.
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I1l. - b) Continuous models ...(Cont.)

Steps to obtain an eigenvalue of A in [a, b]:

1) If 8, =0, one of a or b is an eigenvalue of A. This
can be verified by checking the values of ||Ax* —
ar*||s or [|[Ax* — bx*||s.

2) If 6, < 0, solve
()\k — a)()\k — b) = (9k
Two A values can be obtained. Pick the one such
that ||Az* — Apx*||2 is very small. An eigenvalue of
Ain |a,b] is found.
3) If 8 > 0, a new starting point has to be selected to
start over. If after several tries, all 6;.'s are positive,

we may conclude that there is no eigenvalue of A in
a,b].
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I1l. - b) Continuous models ...(Cont.)
In numerical computation, we take
c=||H|+ 1.

But the numerical results seem to be sensitive to the
value of c. The larger, the worse.

Reason:

Let 61 be the smallest eigenvalue of H, 05 (> 6;)
be the second smallest eigenvalue of H. Then we have

2(01—93)
|z(t) — ¥z < € et - flog — 272

Can we improve this?
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I1l. - b) Continuous models ...(Cont.)

Dynamic Model 2:

Remember e(x) = x — Polx — V f(x)].

Now, we define

Merit function: (no change)

f(x) =2'Hx — calz.

Dynamical system:

dx(t)
dt

= —a(2)Vf(z) — e, (a), (7)

_plze@l g
Oé(il?) — T’V f(x) !
o4l x = 0.

It can be shown that «(z) is locally Lipschitz
continuous.
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I1l. - b) Continuous models ...(Cont.)

All the theoretical results of Model 1 are also held
for Model 2. In addition, Model 2 enjoys

df (x) o 1 2
o = —a@)[[VF(2)]z - ;H@w(l’)l\z-
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I11. - ¢) Numerical results for eigenvalue problems
Example 1:

We construct Example 1 in the following steps:

1. Select A = diag(—1e —4,—1e —4,0,0,1,---,1) €

2. Let B =rand(n,n) and (Q, R| = qr(B).
3. Define A = QTAQ.

Example 2:

Example 2 is similar to Example 1 except A =
diag(—1,—1,0,0,1,---,1) € R™*"™.

The two starting points used are 29 = (1,---,1)%
and —XI0.
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I1l. - ¢) Numerical ... (Cont.)

Stopping criterion: ||dazl§f)Hoo <1076,

Dynamical system solver: Matlab ODE45 with
RelTol= 107°% and AbsTol=10"".
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I1l. - ¢) Numerical ... (Cont.)
Extreme eigenvalue problem: Model 1

Test 1: sensitivity to the initial point

We fix n = 5,000 and ¢ = ||A|l1 + 1 (=5.32 for
Example 1 and =8.04 for Example 2).

Table 1 — Model 1

Example 1 Example 2
CPU(s) | AT+10=% | CPU(s) | AT +1
0 469.1 3.0e — 5 4756 | —6.5e — 6

Pao(zo) 298.6 3.0e — 5 306.3 | —5.8e —6
— X 469.0 3.0e — 5 4749 | —6.5e — 6
Po(—xg) | 301.3 3.0e — 5 305.6 | —5.8¢ —6

t: A= (z*)T Az* is the computed eigenvalue.
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I1l. - ¢) Numerical ... (Cont.)

Test 2: sensitivity to ¢

Table 2 — Model 1

Example 1 Example 2

c CPU(s) | AT 4+ 10"* | CPU(s) AT +1

10 423.5 3.0e — 5 361.8 3.8 — 7
H;oollz default | 298.6 3.0e — 5 306.3 —5.8e — 6

2 253.5 3.0e — 5 258.3 —4.0e — 9

10 422.4 3.0e — 5 362.0 3.8 — 7
ol | default | 3013 | 3.0e —5 | 3056 | —5.8¢—6

2 252.6 3.0e — 5 258.7 —4.0e — 9

t: A= (2*)T Ax* is the computed eigenvalue.
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I1l. - ¢) Numerical ... (Cont.)

Test 3: computational cost (we fix ¢ = 2)

Table 3 — Model 1

Example 1 Example 2
n CPU(s) | AT+ 10"* | CPU(s) AT +1
1,000 ”;ﬁ 13253 7.4e — 6 12.4 —1.8e — 9
ﬁ 13290 | 7.4e — 6 12.3 —1.8e — 9
2,500 ”;ﬁ 10694 1.7e — 5 68.4 1.7¢ — 9
ﬁ 10729 1.7e — 5 69.3 1.7e — 9
5,000 | o= | 2535 | 3.0e —5 | 2583 | —4.0e —9
||;§ﬁ)2 252.6 3.0e — 5 258.7 | —4.0e — 9
7,500 | - | 8575 | 7.le—5 | 9515 | 6.7e —9
ﬁ 861.8 7.1le — 5 953.8 6.7 — 9

t: A= (z*)T Az* is the computed eigenvalue.

The CPU time grows at a rate of n°T¢ where € > 0
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I1l. - ¢) Numerical ... (Cont.)

Interior eigenvalue problem: Model 1

Test 4: no eigenvalue in the defined interval

We select [a,b] = [-3 x 1074, -2 x 107%], and fix

n = 5,000.

Table 4 — Model 1

PQ(ZI;‘O) PQ(—ZL‘O)
c:def. | c=2 | c:def. | ¢c=2
Example 1
CPU(s) 280.6 | 105.2 | 279.5 | 107.7
A= (z*)TAz* | -Te5 | -Te5 | -Te5b | -Te-b
|Az* — Ax*||oo | 26 —5 | de—6 | 2¢e—5 | de — 6
0, le—6 | be—8 | le—6 | be — 8
Example 2
CPU(s) 538.3 | 111.0 | 534.4 | 106.0
A= (2")TAz* | le—5 | 2e—8 | le—5 | 2¢ — 8
|Az* — Ax*||oo | 6e—5 | 2e—6 | 6e—5 | 2¢e — 6
0. le—5 | 8 —8 | le—5 | 8¢ —8
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I1l. - ¢) Numerical ... (Cont.)
Test 5: one eigenvalue in the defined interval

We select [a,b] = [0.9,1.1], and fix n = 5, 000.

Table 5 — Model 1

Pa(xo) Po(—x0)

c : def. c=2 | c: def. c=2

Example 1
CPU(s) 85.5 45.6 105.6 30.6

A= ()T Ax* | 1-1e-6 | 1+4e9 | 1-1le-6 | 1+4e-9
|Ax* — Ax¥||0o | 2.9e-5 | 2.4e-6 | 2.9e-5 | 2.4e-6

O —-0.01 | —0.01 | —0.01 | —0.01
Example 2
CPU(s) 147.0 65.7 142.4 66.3

A= (z*)TAz* | 1-2e-6 | 1+6e-8 | 1-2e-6 | 1+6e-8
|Ax* — Ax¥||o | 6.4e-5 | 2.3e-6 | 6.4e-5 | 2.3e-6
0 —-0.01 | -0.01 | —0.01 | —0.01
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I1l. - ¢) Numerical ... (Cont.)

Extreme eigenvalue problem: Model 2

¢ = || Al + 107, i =0,1,2.

We fixed the initial value at Pn(xp) and select

Table 6 — CPUs for Model 1 (Model 2) of Example 1

n

1,000

3,000

5,000

11.69 (8.172)
18.08 (7.828)
61.33 (24.89)

102.0 (63.73)
155.1 (61.34)
518.6 (98.13)

281.1 (175.5)
458.4 (173.1)
1515 (666.1)

The CPU time grows at a rate of n? for Model 2.
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I1l. - ¢) Numerical ... (Cont.)
Interior eigenvalue problem: Model 2

We select [a,b](V) = [-3 x 1074, -2 x 1074],
[a,b]® =10.9,1.1], and [a,b]®® = [0,2]. In addition,

we fix n = 5,000, the initial value at Po(x() and select
c; = ||All1 +10%, i =0,1,2.

Table 7 — CPUs for Model 1 (Model 2) of Example 1

c a, b]

a, o] a, 0] a, 0]

co | 505.6 (230.6) | 91.03 (34.08) | 139.9 (30.52)
c1 | 603.2 (293.8) | 104.5 (32.30) | 157.9 (28.86)
co | 1343 (577.6) | 207.6 (26.34) | 313.2 (22.92)
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Why is Model 2 much better than Model 17

Answer: Don’t know yet, in process
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Concluding remarks

The continuous method is powerful, attractive, and
still under development.

37



