Continuous methods for numerical linear algebra problems

Li-Zhi Liao
(http://www.math.hkbu.edu.hk/~liliao)
Department of Mathematics
Hong Kong Baptist University

The First International Summer School on Numerical Linear Algebra, Guangzhou and Hong Kong, July 17 - August 5, 2006

Roadmap of my talk

- I. What is the continuous method?
- II. Applications in numerical linear algebra (NLA).
- III. Case study in symmetric eigenvalue problems.

I.- a) What is the continuous method

Target Problem:

$$\min_{x \in \Omega \subset R^n} f(x). \tag{1}$$

Conventional methods: iterative, $\{x_k\}$, $x_k \to x^*$, where x^* is a local minimizer of (1).

Original idea of the continuous method: form a continuous path (trajectory) from x_0 to x^* .

I.- a) What is the continuous method (cont.)

- A) Mathematician's route
- Started in 1950's K. J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, CA, 1958.
- Bear many names, ODE method, dynamic method, etc.
- Mathematical model:

$$\frac{dx(t)}{dt}$$
 = descent and feasible direction of $f(x)$.

- +: easy to construct the ODE;
- -: difficult to prove the convergence of x(t);
- -: difficult to solve constrained problems.

I.- a) What is the continuous method (cont.)

B) Engineer's route (Hopfield neural network)

Mathematical model:

$$\begin{cases} \text{Energy (or merit) function } E(x) \\ \frac{dx(t)}{dt} = p(x(t)), \text{ and } \frac{dE(x(t))}{dt} < 0. \end{cases}$$

+: introduce an energy function;

+: hardware implementation;

-: energy function E(x) must be a Lyapunov function;

-: E(x) and p(x) must be simple functions.

Ref.: L.-Z. Liao, H.-D. Qi, L. Qi, "Neurodynamical optimization" *J. Global Optim.*, 28, pp. 175-195, 2004.

I.- a) What is the continuous method (cont.)

Continuous method

Idea: take all the +'s and overcome all the -'s.

Geometric meaning: If we view the conventional method as that we put a person somewhere in a mountain with both eyes covered and ask him to find the bottom of the mountain, then we can view the continuous method as that the person finds a large metal ball and squeeze himself into the ball and let the ball falls freely.

I.- b) Framework of the continuous method

A mathematical framework of the continuous method for (1)

- i) Define an energy function E(x);
- ii) Construct an ODE in the form of

$$\frac{dx(t)}{dt} = p(x(t))$$

such that $\frac{dE(x(t))}{dt} < 0$ and $\frac{dE(x(t))}{dt} = 0$ \iff p(x) = 0.

iii) Any local minimizer of (1) is an equilibrium point of the ODE.

I.- c) Why is the continuous method attractive

Theoretical aspect:

- i) strong convergence results;
- ii) weak conditions or assumptions;
- iii) suitable for many kinds of problems.

Computational aspect:

- i) simple and neat ODE systems;
- ii) relaxed ODE solvers;
- iii) large-scale problems;
- iv) parallelizable.

II. Applications in NLA

a) Symmetric eigenvalue problems

Let $A \in \mathbb{R}^{n \times n}$ and $A^T = A$.

From the Real Schur Decomposition, we have

$$A = U\Lambda U^T$$
,

where $\Lambda = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$ with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, and $U = (u_1, u_2, \cdots, u_n)$ is orthogonal.

Extreme eigenvalue problem: find λ_1 and u_1 .

Interior eigenvalue problem: find a λ_i and u_i such that $\lambda_i \in [a,b]$, where a and b are predefined constants.

II. - b) Least squares problems

Let A be a given $m \times n$ matrix of rank r and let b a given vector.

• Linear least squares:

Find x^* so that

$$||b - Ax^*||_2 = min.$$

(Trivial)

• Least squares with linear constraints:

Find x^* so that

$$||b - Ax^*||_2 = min$$

subject to

$$C^T x^* = 0.$$

(Trivial)

II. - b) Least squares problems (Cont.)

• Least squares with linear and quadratic constraints:

Find x^* so that

$$||b - Ax^*||_2 = min$$

subject to

$$C^T x^* = 0$$
 and $||x^*||_2^2 \le \alpha^2$.

(Trivial)

• Total least squares:

Find x^* , a matrix \hat{E} , and a residual \hat{r} so that

$$(\|\hat{E}\|_F^2 + \|\hat{r}\|_2^2) = min$$

subject to

$$(A + \hat{E})x^* = b + \hat{r}.$$

II. - b) Least squares problems (Cont.)

• Regularized total least squares:

Need to solve the following problem

$$\min \frac{\|b - Ax\|_2^2}{1 + x^T V x}$$

subject to

$$x^T V x = \alpha^2,$$

where V is a given symmetric positive definite matrix.

II. - c) Nonnegative matrix factorization

Let $A \in R^{m \times n}$ be nonnegative, i.e. $A_{ij} \geq 0, \ \forall i, j$. For any given $k \leq \min(m,n)$, find nonnegative matrices $W \in R^{m \times k}$ and $H \in R^{k \times n}$ such that

$$||A - WH||_F^2 = min.$$

The extension of the above problem is the nonnegative tensor factorization.

III. Case study in symmetric eigenvalue problems

a) Conversion to optimization problems

Extreme eigenvalue problem:

$$\min_{(\lambda,x)} \lambda \\
s.t. \quad Ax = \lambda x, \\
x^T x = 1.$$

$$\lim_{x \in R^n} x^T A x \\
s.t. \quad x^T x = 1.$$

$$\updownarrow$$

$$\min_{x \in R^n} x^T A x - c x^T x \\
s.t. \quad x^T x \le 1,$$

$$(2)$$

where $c \geq \lambda_n + 1$.

(2)

Problem (2) has:

- concave objective function; and
- convex set constraint.

Properties of problem (2):

x is a local minimizer of (2)

x is a global minimizer of (2)

x satisfies $Ax = \lambda_1 x$, $x^T x = 1$.

See G. Golub and L.-Z. Liao, "Continuous methods for extreme and interior eigenvalue problems", LAA, 415, pp. 31-51, 2006.

Interior eigenvalue problem:

$$\min_{(\lambda,x)} 1 \quad s.t. \quad Ax = \lambda x, \quad x^T x = 1, \quad a \le \lambda \le b.$$

$$\min_{x \in R^n} \quad x^T (A - aI_n)(A - bI_n) x$$

$$s.t. \quad x^T x = 1.$$

$$\lim_{x \in R^n} \quad x^T (A - aI_n)(A - bI_n) x - cx^T x$$

$$s.t. \quad x^T x \le 1,$$
(3)

where
$$c \ge \max_{1 \le i \le n} (\lambda_i - a)(\lambda_i - b) + 1$$
.

Problem (3) has:

- concave objective function; and
- convex set constraint.

Properties of problem (3):

- 1) x is a local minimizer of (3) $\iff x$ is a global minimizer of (3)
- 2) Let x^* be a global minimizer of (3) and $\eta = (x^*)^T (A aI_n)(A bI_n)x^*$, then
 - 2a) If $\eta > 0$, then there exists no eigenvalue of A in [a,b].
 - 2b) If $\eta \leq 0$, then there exists at least one eigenvalue of A in [a, b].
 - 2c) If $\eta = 0$, then one of the eigenvalues of A must be a or b.

If we combine problems (2) and (3), we have

$$\min_{x \in R^n} \qquad x^T H x - c x^T x \tag{4}$$

$$s.t. \qquad x^T x \le 1,$$

where H=A for (2) and $H=(A-aI_n)(A-bI_n)$ for (3) and $c \geq \lambda_{max}(H)+1$. Note: the objective function is a concave function, so the solution is always on the boundary.

III. - b) Continuous models for eigenvalue problems

Dynamic Model 1:

Merit function:

$$f(x) = x^T H x - c x^T x. (5)$$

Dynamical system:

$$\frac{dx(t)}{dt} = -\left\{x - P_{\Omega}[x - \nabla f(x)]\right\} :\equiv -e(x), \quad (6)$$

where $\Omega=\{x\in R^n\mid x^Tx\leq 1\}$ and $P_{\Omega}(\cdot)$ is a projection operation defined by

$$P_{\Omega}(y) = arg \min_{x \in \Omega} ||x - y||_2, \quad \forall y \in \mathbb{R}^n.$$

Properties of Model 1:

- 1) For any $x_0 \in \mathbb{R}^n$, there exists a unique solution x(t) of the dynamical system (6) with $x(t=t_0)=x_0$ in $[t_0,+\infty)$.
- 2) If $e(x_0) = 0 \implies x(t) \equiv x_0$, $\forall t \ge t_0$. If $e(x_0) \ne 0 \implies \lim_{t \to +\infty} e(x(t)) = 0$.
- 3) e(x) = 0 with $x \neq 0 \iff x$ is an eigenvector of H with $||x||_2 = 1$.
- 4) If $||x_0||_2 > 1$, $||x(t)||_2$ is monotonically decreasing to 1. If $||x_0||_2 < 1$, $||x(t)||_2$ is monotonically increasing to 1. If $||x_0||_2 = 1$, $||x(t)||_2 \equiv 1$.

Figure 1: Dynamical trajectory of (6)

- 5) If $x_0 \neq 0 \implies \exists x^*$ such that $\lim_{t \to +\infty} x(t) = x^*$ and $||x^*||_2 = 1$.
- 5.1) For H = A, we have

$$\lim_{t \to +\infty} x^T(t) A x(t) = \lambda_k,$$

where $k = \min\{i \mid x_0^T u_i \neq 0, i = 1, \dots, n\}.$

Note: (λ_1, x^*) is what we want!

5.2) For $H = (A - aI_n)(A - bI_n)$, we have

$$\lim_{t \to +\infty} x^{T}(t)(A - aI_n)(A - bI_n)x(t) = \theta_k,$$

where $k=\min\{i\mid x_0^Tv_i\neq 0,\ i=1,\cdots,n\},\ H=V\Theta V^T,\ \Theta=diag(\theta_1,\theta_2,\cdots,\theta_n),\ \text{and}\ V^TV=I_n\ \text{with}\ V=(v_1,v_2,\cdots,v_n).$

Note: This θ_k may not be an eigenvalue of A.

Steps to obtain an eigenvalue of A in [a, b]:

- 1) If $\theta_k = 0$, one of a or b is an eigenvalue of A. This can be verified by checking the values of $||Ax^* ax^*||_2$ or $||Ax^* bx^*||_2$.
- 2) If $\theta_k < 0$, solve

$$(\lambda_k - a)(\lambda_k - b) = \theta_k.$$

Two λ_k values can be obtained. Pick the one such that $||Ax^* - \lambda_k x^*||_2$ is very small. An eigenvalue of A in [a,b] is found.

3) If $\theta_k > 0$, a new starting point has to be selected to start over. If after several tries, all θ_k 's are positive, we may conclude that there is no eigenvalue of A in [a,b].

In numerical computation, we take

$$c = ||H||_1 + 1.$$

But the numerical results seem to be sensitive to the value of c. The larger, the worse.

Reason:

Let θ_1 be the smallest eigenvalue of H, θ_s $(> \theta_1)$ be the second smallest eigenvalue of H. Then we have

$$||x(t) - x^*||_2 \le \epsilon \cdot e^{\frac{2(\theta_1 - \theta_s)}{1 + 2(c - \theta_1)}} \cdot ||x_0 - x^*||_2.$$

Can we improve this?

Dynamic Model 2:

Remember $e(x) = x - P_{\Omega}[x - \nabla f(x)].$

Now, we define

$$e_{\gamma} = x - P_{\Omega}[x - \gamma \nabla f(x)], \quad 0 \le \gamma \le 1.$$

Merit function: (no change)

$$f(x) = x^T H x - c x^T x.$$

Dynamical system:

$$\frac{dx(t)}{dt} = -\alpha(x)\nabla f(x) - e_{\gamma}(x),\tag{7}$$

where

$$\alpha(x) = \begin{cases} -\eta \frac{|x^T e_{\gamma}(x)|}{x^T \nabla f(x)} & x \neq 0, \\ \gamma \eta & x = 0. \end{cases}$$

It can be shown that $\alpha(x)$ is locally Lipschitz continuous.

All the theoretical results of Model 1 are also held for Model 2. In addition, Model 2 enjoys

$$\frac{df(x)}{dt} \le -\alpha(x) \|\nabla f(x)\|_2^2 - \frac{1}{\gamma} \|e_{\gamma}(x)\|_2^2.$$

III. - c) Numerical results for eigenvalue problems

Example 1:

We construct Example 1 in the following steps:

- 1. Select $\Lambda = diag(-1e-4,-1e-4,0,0,1,\cdots,1) \in \mathbb{R}^{n \times n}$.
- 2. Let B = rand(n, n) and [Q, R] = qr(B).
- 3. Define $A = Q^T \Lambda Q$.

Example 2:

Example 2 is similar to Example 1 except $\Lambda = diag(-1, -1, 0, 0, 1, \dots, 1) \in \mathbb{R}^{n \times n}$.

The two starting points used are $x_0 = (1, \dots, 1)^T$ and $-x_0$.

Stopping criterion: $\|\frac{dx(t)}{dt}\|_{\infty} \le 10^{-6}$.

Dynamical system solver: Matlab **ODE45** with $\mathbf{RelTol} = 10^{-6}$ and $\mathbf{AbsTol} = 10^{-9}$.

Extreme eigenvalue problem: Model 1

Test 1: sensitivity to the initial point

We fix n = 5,000 and $c = ||A||_1 + 1$ (=5.32 for Example 1 and =8.04 for Example 2).

Table 1 - Model 1

	Example 1		Example 2	
	CPU(s)	$\lambda^{\dagger} + 10^{-4}$	CPU(s)	$\lambda^{\dagger} + 1$
x_0	469.1	3.0e - 5	475.6	-6.5e - 6
$P_{\Omega}(x_0)$	298.6	3.0e - 5	306.3	-5.8e - 6
$-x_0$	469.0	3.0e - 5	474.9	-6.5e - 6
$P_{\Omega}(-x_0)$	301.3	3.0e - 5	305.6	-5.8e - 6

†: $\lambda = (x^*)^T A x^*$ is the computed eigenvalue.

 $\underline{\mathsf{Test}\ 2:}$ sensitivity to c

Table 2 – Model 1

		Exa	mple 1	Example 2	
	c	CPU(s)	$\lambda^{\dagger} + 10^{-4}$	CPU(s)	$\lambda^{\dagger} + 1$
	10	423.5	3.0e - 5	361.8	3.8e - 7
$\frac{x_0}{\ x_0\ _2}$	default	298.6	3.0e - 5	306.3	-5.8e - 6
	2	253.5	3.0e - 5	258.3	-4.0e - 9
	10	422.4	3.0e - 5	362.0	3.8e - 7
$\frac{-x_0}{\ x_0\ _2}$	default	301.3	3.0e - 5	305.6	-5.8e - 6
	2	252.6	3.0e - 5	258.7	-4.0e - 9

†: $\lambda = (x^*)^T A x^*$ is the computed eigenvalue.

Test 3: computational cost (we fix c=2)

Table 3 – Model 1

		Exa	mple 1	ple 1 Example 2	
\overline{n}		CPU(s)	$\lambda^{\dagger} + 10^{-4}$	CPU(s)	$\lambda^{\dagger} + 1$
1,000	$\frac{x_0}{\ x_0\ _2}$	13253	7.4e - 6	12.4	-1.8e - 9
	$\frac{-x_0}{\ x_0\ _2}$	13290	7.4e - 6	12.3	-1.8e - 9
2,500	$\frac{x_0}{\ x_0\ _2}$	10694	1.7e - 5	68.4	1.7e - 9
	$\frac{-x_0}{\ x_0\ _2}$	10729	1.7e - 5	69.3	1.7e - 9
5,000	$\frac{x_0}{\ x_0\ _2}$	253.5	3.0e - 5	258.3	-4.0e - 9
	$\frac{-\ddot{x}_{0}}{\ x_{0}\ _{2}}$	252.6	3.0e - 5	258.7	-4.0e - 9
7,500	$\frac{x_0}{\ x_0\ _2}$	857.5	7.1e - 5	951.5	6.7e - 9
	$\frac{-x_0}{\ x_0\ _2}$	861.8	7.1e - 5	953.8	6.7e - 9

 $\dagger : \ \lambda = (x^*)^T A x^*$ is the computed eigenvalue.

The CPU time grows at a rate of $n^{2+\epsilon}$ where $\epsilon>0$

Interior eigenvalue problem: Model 1

Test 4: no eigenvalue in the defined interval

We select $[a,b]=[-3\times 10^{-4},-2\times 10^{-4}]$, and fix n=5,000.

Table 4 - Model 1

	$P_{\Omega}(x_0)$		$P_{\Omega}(-x_0)$	
	c: def.	c=2	c: def.	c=2
Example 1				
CPU(s)	280.6	105.2	279.5	107.7
$\lambda = (x^*)^T A x^*$	-7e-5	-7e-5	-7e-5	-7e-5
$\ Ax^* - \lambda x^*\ _{\infty}$	2e - 5	4e-6	2e - 5	4e-6
$ heta_k$	1e - 6	5e-8	1e - 6	5e-8
Example 2				
CPU(s)	538.3	111.0	534.4	106.0
$\lambda = (x^*)^T A x^*$	1e - 5	2e-8	1e-5	2e-8
$\ Ax^* - \lambda x^*\ _{\infty}$	6e - 5	2e-6	6e - 5	2e-6
$ heta_k$	1e - 5	8e-8	1e - 5	8e-8

Test 5: one eigenvalue in the defined interval

We select [a, b] = [0.9, 1.1], and fix n = 5,000.

Table 5 – Model 1

	$P_{\Omega}(x_0)$		$P_{\Omega}(-x_0)$	
	c : def.	c=2	c : def.	c=2
Example 1				
CPU(s)	85.5	45.6	105.6	30.6
$\lambda = (x^*)^T A x^*$	1-1e-6	1+4e-9	1-1e-6	1+4e-9
$\ Ax^* - \lambda x^*\ _{\infty}$	2.9e-5	2.4e-6	2.9e-5	2.4e-6
$ heta_k$	-0.01	-0.01	-0.01	-0.01
Example 2				
CPU(s)	147.0	65.7	142.4	66.3
$\lambda = (x^*)^T A x^*$	1-2e-6	1+6e-8	1-2e-6	1+6e-8
$\ Ax^* - \lambda x^*\ _{\infty}$	6.4e-5	2.3e-6	6.4e-5	2.3e-6
$ heta_k$	-0.01	-0.01	-0.01	-0.01

Extreme eigenvalue problem: Model 2

We fixed the initial value at $P_{\Omega}(x_0)$ and select $c_i = \|A\|_1 + 10^i, \ i = 0, 1, 2.$

Table 6 – CPUs for Model 1 (Model 2) of Example 1

c	n				
	1,000	3,000	5,000		
c_0	11.69 (8.172)	102.0 (63.73)	281.1 (175.5)		
c_1	18.08 (7.828)	155.1 (61.34)	458.4 (173.1)		
c_2	61.33 (24.89)	518.6 (98.13)	1515 (666.1)		

The CPU time grows at a rate of n^2 for Model 2.

Interior eigenvalue problem: Model 2

We select $[a,b]^{(1)}=[-3\times 10^{-4},-2\times 10^{-4}]$, $[a,b]^{(2)}=[0.9,1.1]$, and $[a,b]^{(3)}=[0,2]$. In addition, we fix n=5,000, the initial value at $P_{\Omega}(x_0)$ and select $c_i=\|A\|_1+10^i,\ i=0,1,2$.

Table 7 - CPUs for Model 1 (Model 2) of Example 1

c	[a,b]				
	$[a, b]^{(1)}$	$[a,b]^{(2)}$	$[a,b]^{(3)}$		
c_0	505.6 (230.6)	91.03 (34.08)	139.9 (30.52)		
c_1	603.2 (293.8)	104.5 (32.30)	157.9 (28.86)		
c_2	1343 (577.6)	207.6 (26.34)	313.2 (22.92)		

Why is Model 2 much better than Model 1?

Answer: Don't know yet, in process

Concluding remarks

The continuous method is powerful, attractive, and still under development.