
Sparse Matrix ComputationSparse Matrix Computation

Esmond G. Ng
(EGNg@lbl.gov)

Lawrence Berkeley National Laboratory

The First International Summer School on Numerical Linear Algebra

August 2006

1

OutlineOutline

Sparse matrices
What they are

Where they come from

Simple operations and representations

Sparse Gaussian elimination
Sparsity

Modeling and analysis

Ordering

Numerical computation

2

GoalsGoals

Not intend to be complete.

Cover the basics.

Show that it is multi-facet.
Theoretical

Algorithmic

Computational

Show that it is multi-disciplinary.
Numerical linear algebra

Combinatorial algorithms

Computer science

Computer architecture

3

What are sparse matricesWhat are sparse matrices

Most popular definition:
A matrix is sparse if most of the elements are zero.
• A subjective definition …

A better definition:
A matrix is sparse if there is substantial saving in storage,
operations, or execution time when the zero elements are
exploited.

4

QuizQuiz

Let u and v be two sparse vectors of length n.

Suppose u has s nonzeros and v has t nonzeros.

Suppose s, t << n, and s < t.

How many operations are required to compute uTv?
Counting additions, multiplications, and comparisons.

5

Where do sparse matrices come fromWhere do sparse matrices come from

computational fluid dynamics, finite-element methods, statistics,
time/frequency domain circuit simulation, dynamic and static
modeling of chemical processes, cryptography, magneto-
hydrodynamics, electrical power systems, differential equations,
quantum mechanics, structural mechanics (buildings, ships, aircraft,
human body parts...), heat transfer, MRI reconstructions,
vibroacoustics, linear and non-linear optimization, financial
portfolios, semiconductor process simulation, economic modeling, oil
reservoir modeling, subsurface flow, astrophysics, crack propagation,
Google page rank, 3D computer vision, image processing,
tomography, cell phone tower placement, multibody simulation,
model reduction, nano-technology, acoustic radiation, density
functional theory, quadratic assignment, elastic properties of
crystals, natural language processing, DNA electrophoresis,
information retrieval/data mining, nuclear structure calculations,
statistical calculations, economic modeling, …

6

What do we do with sparse matricesWhat do we do with sparse matrices

… Sparse matrices are at the heart of many scientific and
engineering simulations.

Solution of systems of linear equations (square, under/over-
determined)

A x = b

Eigenvalue analysis

(A I) x = 0

 F(,x) = 0

Singular value decomposition

A = U VT

Many others

7

Large sparse matricesLarge sparse matrices

These sparse matrix problems tend to be very large …
because of

need for high-fidelity modeling, and

availability of high performance computing resources.

Some characteristics …
of unknowns can reach hundreds of millions.

Some can be highly structured.

Some are badly scaled.

Some can be very ill-conditioned.

Some even require extra precision arithmetic.

8

What do we want to doWhat do we want to do

Efficient and robust solutions of these sparse matrix
problems are important.

Time to solution; parallel computing may be needed.

Enabling domain scientists to focus on their scientific
applications rather than linear algebra solvers.

Ensuring the success of scientific simulations.

Old and new are needed:
Need changes and improvements to existing algorithms/codes.

Investigate new algorithms/codes.

9

Examples of large-scale scientific simulationsExamples of large-scale scientific simulations

We will look at a few examples, which illustrate the role of
sparse matrices.

Atomic Physics.

Fusion.

Cosmology

Accelerator design.

Structural biology.

10

Atomic physicsAtomic physics

Rescigno, Baertschy, Isaacs, McCurdy,
Science, Dec 24, 1999.

First solution to quantum scattering
of 3 charged particles.

The main computational kernel is
the solution of sparse complex
nonsymmetric linear systems.

PDE’s are solved using a high-order
finite difference scheme.

A low order finite difference
approximation is used as a
preconditioner.

11

Atomic physicsAtomic physics

Resulting kernel is:

M, obtained from a low-order finite
difference scheme, is factored using
sparse Gaussian elimination.

The preconditioned linear system is
solved using one of the nosymmetric
iterative solvers, such as biconjugate
gradient or quasi minimal residual.

Largest linear system solved has 1.79
million unknowns.

 M
1
Ax = M

1
b

12

NIMROD is a parallel simulation code for fluid-based
modeling of nonlinear macroscopic electromagnetic
dynamics in fusion plasmas.

The kernel involves the solution of
very ill-conditioned sparse linear systems.

Iterative methods with preconditioning
exhibit poor convergence.

Explore sparse Gaussian elimination as
an alternative.

Large-scale fusion simulationsLarge-scale fusion simulations

13

Large-scale fusion simulationsLarge-scale fusion simulations

Gaussian elimination has resulted in >100x improvements.

The linear systems are large and sparse,
with millions of unknowns.

Parallel algorithms are required.

Physics-based preconditioners can be
constructed in some instances.

The preconditioned linear systems are
solved using conjugate gradient iterations.

Gaussian elimination is needed to handle
the preconditioners.

14

A flat universeA flat universe

International efforts in understanding
the origin and geometry of the universe.

Analysis of data from the 1997 North
American test flight of BOOMERanG
shows a pronounced peak in the CMB
“power spectrum” at an angular scale
of about one degree -- strong evidence
that the universe is flat, and suggest the
existence of a cosmological constant.

15

A flat universeA flat universe

Analysis is based on the maximum
likelihood approach.

Various statistics have to be computed,
including entries of the covariance
matrix.

Need dense matrix inversion.

Very compute-intensive …
BOOMERanG: 26K pixels, 10.8 Gb, 1015 flops
• Dimensions of matrices 45,000 to 50,000.

PLANCK: 10M pixels, 1.6 Pb, 1023 flops
• New algorithms are needed.

• In particular, approximations using sparse matrices or structured
matrices are required.

Sparse Matrix ComputationSparse Matrix Computation

Esmond G. Ng
(EGNg@lbl.gov)

Lawrence Berkeley National Laboratory

The First International Summer School on Numerical Linear Algebra

August 2006

17

Accelerator science and technologyAccelerator science and technology

Accelerators are expensive.
High cost in construction,
operations, and maintenance.

Represent major federal
investment.

Accelerators are important.
Research in particle physics.

Fundamental to understanding
of structure of matter.

18

Accelerator science and technologyAccelerator science and technology

Accelerator modeling and
simulations are indispensable.

Understanding the science of
accelerators for safe operations.

Improving performance and
reliability of existing accelerators.

Designing next generation of
accelerators accurately and
optimally.

19

Accelerator Science and TechnologyAccelerator Science and Technology

From SLAC Web Site (April 2003) …

SLAC Experiment Identifies New
Subatomic Particle

Physicist Antimo Palano representing
the BABAR experiment presented the
evidence for the identification of a
new subatomic particle named Ds
(2317) to a packed auditorium on
Monday, April 28 at SLAC. Initial
studies indicate that the particle is
an unusual configuration of a
“charm” quark and a “strange” anti-
quark.

20

The design of accelerator structures requires the solution of
Maxwell’s equations, which govern how the electric and
magnetic fields interact.

Finite element discretization
in frequency domain leads to
a large sparse generalized
eigenvalue problem.

E =
B

t
; H =

D

t

D = 0 ; B = 0

D = E ; B = μH

 Kx = Mx ; K 0,M > 0

Modeling accelerator structuresModeling accelerator structures

21

Modeling accelerator structuresModeling accelerator structures

Design of accelerator structures.
Modeling of a single accelerator cell suffices.
• Relatively small eigenvalue problem.

There is an optimization problem here …
• But need fast and reliable eigensolvers at every

iteration + other tools.

Understanding the wake field in the structure requires the
modeling of the full structure.

Need to compute a large number of frequency modes.

22

Shape optimization of accelerator structuresShape optimization of accelerator structures

Omega3P
Sensitivity

meshing
sensitivity

optimization
geometric

model

Omega3P meshing

(only for discrete sensitivity)

LBNL, CMU, Columbia, LLNL,

SLAC, SNL Collaboration

23

K M Mv

v
T
M

T
0

Shape optimization of accelerator structuresShape optimization of accelerator structures

Two computational kernels:
Large sparse eigenvalue calculations.

Sensitivity analysis of eigenpairs.
• Need to compute the adjoint variables.

• Solution of structured indefinite linear systems.

• K M is practically singular.
Need efficient and robust algorithms to solve the adjoint linear
systems.

24

3-D structures, high resolution simulations extremely
large matrices.

Need very accurate interior
eigenvalues that have
relatively small magnitudes.
• Tolerate only 0.01% error.

These eigenvalues are
tightly clustered.

When losses in structures
are considered, the problems
will become complex
symmetric.

Challenges in Challenges in eigenvalue eigenvalue calculationscalculations

25

 K x = M x M (K M) 1
M x = μ M x

Large-scale Large-scale eigenvalue eigenvalue calculationscalculations

Shift-invert Lanczos algorithm.
Ideal for computing interior and clustered eigenvalues.

Need accurate solution of sparse linear systems …

Need special care due to extreme scale of problems.

Parallel implementations are needed to speed the solution
process.

Issues to be resolved …
• Sparsity concerns

• Memory constraints

• Serial bottlenecks

• Accuracy

26

Alternative Alternative eigenvalue eigenvalue solvers solvers ……

Size of eigenvalue problems is expected to increase
substantially in near future …

Can be as large as 100 million degrees of freedom.

The solution of linear systems (K M) x = b will become the
bottleneck.

Memory …

In parallel implementations, communication requirements.

There are needs to look for alternative solutions.

27

Alternative Alternative eigenvalue eigenvalue solvers solvers ……

AMLS (Automatic Multi-Level Substructuring).
[Yang, Gao, Bai, Li, Lee, Husbands, Ng (2005)].

An eigenvalue solver proposed by Bennighof for frequency
response analysis.

Analogous to “domain-decomposition” techniques for linear
systems.

Issues:
• Analysis of the approximation properties.

• Memory saving optimizations.

• Developed mode selection strategies.

• Null space deflation.

Combine expertise in sparse eigenvalue calculations and sparse
Gaussian elimination.

28

Partition and congruence transform:

Subspace assembly:

K

11

K

22

M

11

M

22

 ̂K = L
1
KL

T

 ̂M = L
1
ML

T

S =

S
1

S
2

I

Algebraic sub-structuringAlgebraic sub-structuring

29

Structural biology - electron Structural biology - electron cryo cryo microscopymicroscopy

30

Structural biology - electron Structural biology - electron cryo cryo microscopymicroscopy

Electron beam

vitreous ice

photographic film (micrograph)

3-D macromolecules

2-D projections

31

Structural biology - electron Structural biology - electron cryo cryo microscopymicroscopy

32

““ParticlesParticles”” selected from a micrograph selected from a micrograph

33

Reconstruction of structure of macromoleculeReconstruction of structure of macromolecule

Determine the 3-D structure (i.e., density map) of
macromolecules from 2-D projections.

TFIID

34

Major steps in Major steps in cryo cryo EM reconstructionEM reconstruction

Specimen preparation
Embed many homogeneous molecules in a thin layer of vitreous
ice. (Also called “Single Particle Reconstruction”.)

Produce 2-D images on micrograph.
Use low-dose electron microscope.

Particle selection.
The selected particle may not be centered in the box.

Construct 3-D density map from 2-D projections.

35

Difficulty of Difficulty of cryo cryo EMEM

Orientations of the particles are not known.

No control on orientations, which can be random and uneven.

They must be determined as part of the solution.

Sampling requirement – need to cover as many orientations as
possible need large number of images.

Low-dose electron beam noisy data

A large sample tends to improve the
signal-to-noise ratio.

Microscope defects and defocus lead to
be taken into account.

36

Mathematical formulation ofMathematical formulation of reconstructionreconstruction

min
f , , , ,sh,sv

P(, , , sh, sv)f b
2

f(x,y,z) 3-D density map to be reconstructed

P Projection operator

bT
= [b

1

T ,b
2

T , ,b
m

T] 2-D images from micrographs

= [
1
,

2
, ,

m
]

= [
1
,

2
, ,

m
]

= [
1
,

2
, ,

m
]

Unknown Euler angles

(
i
,

i
,

i
) specifies orientation of ith projection

sh
= [s

1

h, s
2

h, , s
m

h]

sv
= [s

1

v , s
2

v , , s
m

v]

Unknown horizontal and vertical shifts required

to center the 2-D images

37

Difficulty inDifficulty in solving the reconstruction problemsolving the reconstruction problem

Nonlinear, and most likely nonconvex.

Noisy data (e.g., contamination of ice).

May impose constraints (e.g., horizontal and vertical shifts
are usually limited to a few pixels).

f(x,y,z) 3-D density map to be reconstructed

P Projection operator

bT
= [b

1

T ,b
2

T , ,b
m

T] 2-D projections from micrographs

= [
1
,

2
, ,

m
]

= [
1
,

2
, ,

m
]

= [
1
,

2
, ,

m
]

Unknown Euler angles

(
i
,

i
,

i
) specifies orientation of

ith projection

sh
= [s

1

h ,s
2

h , ,s
m

h]

sv
= [s

1

v ,s
2

v , ,s
m

v]

Unknown horizontal and vertical shifts

required to center the 2-D projections

 f , , , ,s
h
,s

v

min P(, , ,sh,sv)f b
2

38

Computational Challenges in the ReconstructionComputational Challenges in the Reconstruction

P : mn2 by n3 ; f : n3 ; b : mn2

To reach atomic resolutions (3Å), millions of images are
needed (R. Henderson).

Large volume of data.

Suppose there are m images
and each image has n2 pixels.
• b is mn2 ; f is n3 ; P is mn2 by n3.

Number of unknowns: 5m+n3 ;
amount of data: n3 + mn2.

n = 64 ; m = 25,000
mn2 = 204,800,000 ; n3 = 262,144

n = 128 ; m = 50,000
mn2 = 1,638,400,000 ; n3 = 2,097,152

 f , , , ,s
h

,s
v

min P(, , ,sh,sv)f b
2

39

Overall challenges Overall challenges ……

Sparse matrices and structured matrices play a very
important role in many large-scale scientific and engineering
simulations.

Robust and efficient algorithms are important.

Accurate solutions are often required.

Many unresolved issues remain.

Scale of the problems leads to many new challenges and
open problems.

Parallel implementations are absolutely necessary; e.g.,
representation and accuracy.

New computer architectures; e.g., multicore.

40

Sparse matrices Sparse matrices ……

What do they look like …

Will look at the pictures of some of them …

41

What do sparseWhat do sparse matrices look likematrices look like

Structural engineering matrix - elemental
connectivity for the stiffness matrix of a
1960’s design for a supersonic transport

(Boeing 2707)
[3,345; 13,047]

Modeling of a destroyer
[2,680; 25,026]

42

What do sparseWhat do sparse matrices look likematrices look like

Western US power network - 5300 bus
[5,300; 21,842]

Finite element analysis of a cylindrical
shell, graded mesh with 1,666 triangles

[5,357; 106,526]

43

What do sparseWhat do sparse matrices look likematrices look like

Australian economic model,
1968-1969 data
[2,529; 90,158]

Chemical engineering plant model - 15
stage column section, all rigorous

[2,021; 7,353]

44

What do sparse matrices look likeWhat do sparse matrices look like

Computer component design - memory circuit
[17,758; 126,150]

Stability analysis of a model
of an airplane in flight

[4,000; 8,784]

45

What do sparseWhat do sparse matrices look likematrices look like

Linear static analysis of a car
body [141,347; 3,740,507]

46

What do sparseWhat do sparse matrices look likematrices look like

Currents and voltages of a
network of resistors
[1,447,360; 5,514,242]

47

Summary Summary ……

Definition of sparse matrices.

Sparse matrices and applications.

48

How do we store sparse vectors and matricesHow do we store sparse vectors and matrices

Sparse vectors
Only store nonzero elements, together with their subscripts.

Store the values of the nonzero elements in a floating-point
array, say, val.

For each nonzero element, also store the corresponding
subscripts in an integer array, say, indx.

It is not necessary to sort the contents of val and indx according
to the subscripts, but we often do anyway.

x

T
= 0 10 0 20 30 0 0 70 0 50

val[] = 10,20,30,70,50()

indx[] = 2,4,5,8,10()

49

How do we store sparse vectors and matricesHow do we store sparse vectors and matrices

Sparse matrices
Stored by rows or columns.

Basic idea:
• Treat each row or column as a

sparse vector.

• Concatenate all floating-point (or
integer) arrays into a single
array.

• Need extra information to mark
the “boundaries” of each row or
column.

13 0 5 0 0

0 0 0 1 9

7 2 0 3 0

0 0 0 0 11

3 0 20 0 0

50

A column storage scheme (also known as compressed column
storage or CSC):

ptr has n+1 elements.
ptr[n+1] is used to mark the end of the list of pointers.

13 0 5 0 0

0 0 0 1 9

7 2 0 3 0

0 0 0 0 11

3 0 20 0 0

How do we store sparse vectors and matricesHow do we store sparse vectors and matrices

indx[] = (1,3,5;3;1,5;2,3;2,4)

values[] = (13,7,3;2;5,20;1,3;9,11)

ptr[] = (1,4,5,7,9,11)

51

Accessing the nonzero elements:

The nonzero elements in column k are stored in
values[s], for s = ptr[k], ptr[k]+1, …, ptr[k+1] 1.

The corresponding row subscripts are stored in
indx[s], for s = ptr[k], ptr[k]+1, …, ptr[k+1] 1.

The number of nonzero elements in column k is given
by ptr[k+1] ptr[k].

How do we store sparse vectors and matricesHow do we store sparse vectors and matrices

13 0 5 0 0

0 0 0 1 9

7 2 0 3 0

0 0 0 0 11

3 0 20 0 0

values[] = (13,7,3;2;5,20;1,3;9,11)

indx[] = (1,3,5;3;1,5;2,3;2,4)

ptr[] = (1,4,5,7,9,11)

52

13 0 5 0 0

0 0 0 1 9

7 2 0 3 0

0 0 0 0 11

3 0 20 0 0

How do we store sparse vectors and matricesHow do we store sparse vectors and matrices

A row storage scheme (also known as compressed row
storage or CRS):

values[] = (13,5;1,9;7,2,3;11;3,20)

indx[] = (1,3;4,5;1,2,4;5;1,3)

ptr[] = (1,3,5,8,9,11)

53

Example: Dot product of dense vectorsExample: Dot product of dense vectors

Given:
Vectors x and y, both of length n.

Compute dot product = xTy.

 = 0

for i = 1, 2, …, n

 = + xiyi

Require 2n operations (n multiplications and n additions).

What if one of the vectors is sparse?

54

Example: Dot product of dense & sparse vectorsExample: Dot product of dense & sparse vectors

Given:
A dense n-vector x.

A sparse n-vector y, with (y) nonzero elements.

Compute dot product = xTy.

A naïve approach is to ignore the zero elements of y and treat y
as a dense vector.
• Require 2n operations and 2n words.

A conceptually more efficient algorithm:

 = 0

for i = 1, 2, …, n

if (yi 0) = + xiyi

55

Example: Dot product of dense & sparse vectorsExample: Dot product of dense & sparse vectors

Compute dot product = xTy.

 = 0

for i = 1, 2, …, n

if (yi 0) then = + xiyi

Appear to need 2 (y) operations and n comparisons.

False …
• Because we don’t store the entire vector y.

• Store only the nonzero elements of y.

56

Example: Dot product of dense & sparse vectorsExample: Dot product of dense & sparse vectors

Compute dot product = xTy.

Suppose that the nonzero elements of y are stored in an array
yval, and their corresponding subscripts in an array yindx.

So, yindx and yval are arrays of length (y).

 = 0

for k = 1, 2, …, (y)

 = + xyindx[k] yval[k]

Require 2 (y) operations, involving only nonzero operands.
• No comparisons needed.

Require n+ (y) floating-point words and (y) integer words.

What if both x and y are sparse?

57

Example: Dot product of sparse vectorsExample: Dot product of sparse vectors

Given:
A sparse n-vector x, with (x) nonzero elements

A sparse n-vector y, with (y) nonzero elements.

Compute dot product = xTy.

Observations:
• The only nonzero terms are those for which both xi and yi are

nonzero.

• Generally the nonzero elements in x and y do not appear in the
same positions; i.e., xi 0 does not imply yi 0, and vice versa.

Seem to suggest that subscript matching is inevitable.

= x

i
y

i
i=1

n

58

Example: Dot product of sparse vectorsExample: Dot product of sparse vectors

Compute dot product = xTy.

Assume that only the nonzero elements of x and y are stored in
xval and yval, respectively, with their corresponding subscripts
in xindx and yindx.

 = 0

for s = 1, 2, …, (x)

for t = 1, 2, …, (y)

 if (xindx[s] = yindx[t]) then = + xval[s] yval[t]

Number of operations 2 min((x), (y)).

Appear to require (x) (y) comparisons.

Require (x)+ (y) floating-point words and (x)+ (y) integer
words.

59

Example: Dot product of sparse vectorsExample: Dot product of sparse vectors

A more efficient way to compute dot product = xTy.

Assume that a temporary array temp of length n is available.

Assume that (x) (y).

for i = 1, 2, …, n

temp[i] = 0

for s = 1, 2, …, (x)

temp[xindx[s]] = xval[s]

 = 0

for t = 1, 2, …, (y)

 = + yval[t] temp[yindx[t]]

60

Example: Dot product of sparse vectorsExample: Dot product of sparse vectors

A more efficient way to compute dot product = xTy.

for i = 1, 2, …, n

temp[i] = 0

for s = 1, 2, …, (x)

temp[xindx[s]] = xval[s]

 = 0

for t = 1, 2, …, (y)

 = + yval[t] temp[yindx[t]]

Number of operations = 2 (y) = 2 min((x), (y)).

No comparisons needed.

Require (x)+ (y)+n floating-point words and (x)+ (y) integer
words.

61

ExercisesExercises

How to compute the product of the following pairs of
objects?

Dense matrix and sparse vector.

Sparse matrix and dense vector.

Sparse matrix and sparse vector.

Note: The algorithms depend on how the matrices are stored.

A more challenging exercises … How to compute the product
of two sparse matrices?

62

Summary Summary ……

Storage schemes for sparse vectors and sparse matrices.

Simple operations on sparse vectors.
Implementations.

Data structures.

63

Solution of sparse triangularSolution of sparse triangular linear systemslinear systems

Let T be an n-by-n sparse lower triangular matrix.

Let b be an n-vector.

Find x so that Tx = b.

The algorithm depends on how the nonzero elements of T
are stored.

64

Solution of sparse triangularSolution of sparse triangular linear systemslinear systems

Expressing the system in a row-wise fashion …

t
11

t
21

t
22

t
n1

t
n2

t
nn

x
1

x
2

x
n

=

b
1

b
2

b
n

t

ii
x

i
= b

i
t

ik
x

k

k=1

i 1

, i = 1,2,...,n inner product of a sparse
vector and a dense vector

65

Solution of sparse triangularSolution of sparse triangular linear systemslinear systems

Assume that the nonzero elements of T are stored by rows
using the arrays (rowptr, colindx, values).

Assume that the nonzero elements within each row are stored
in increasing order of the column subscripts.

Row-wise algorithm:

for i = 1, 2, …, n

rowbeg = rowptr[i]

rowend = rowptr[i+1] 1

for s = rowbeg, rowbeg+1, …, rowend 1

 bi = bi values[s] xcolindx[s]

xi = bi / values[rowend]

66

Solution of sparse triangularSolution of sparse triangular linear systemslinear systems

Expressing the system in a column-wise fashion …

If we use T*i to denote the ith column of T, then

t
11

t
21

t
22

t
n1

t
n2

t
nn

x
1

x
2

x
n

=

b
1

b
2

b
n

x
i
T

*i
= b

i=1

n

67

Solution of sparse triangularSolution of sparse triangular linear systemslinear systems

Assume that the nonzero elements of T are stored by
columns using the arrays (colptr, rowindx, values).

Assume that the nonzero elements within each column are
stored in increasing order of the row subscripts.

Column-wise algorithm:

for j = 1, 2, …, n

colbeg = colptr[j]

colend = colptr[j+1] 1

xj = bj / values[colbeg]

for s = colbeg+1, colbeg+2, …, colend

 browindx[s] = browindx[s] values[s] xj

68

Solution of sparse triangularSolution of sparse triangular linear systemslinear systems

It should be easy to show that the number of operations
required to solve a sparse triangular linear system is
proportional to the number of nonzero elements in T.

We sometimes use T to denote the number of nonzero
elements in T.

We will say that the number of operations is O(T).
• O(f(n)) describes the asymptotic behavior.

• g(n) = O(f(n)) if there are constants c > 0 and n0 > 0, fixed for g and
independent of n, such that 0 g(n) c f(n) for all n n0.

69

Solution of sparse triangularSolution of sparse triangular linear systemslinear systems

Similar algorithms when T is upper triangular.

Exercise: How to compute the solution of a sparse triangular
linear system, for which the right-hand side is also sparse?

70

Solution ofSolution of ““generalgeneral”” sparse sparse linear systemslinear systems

Let A be an n-by-n sparse matrix.

Let b be an n-vector.

Find x so that Ax = b.

A word on “sparsity” …
The sparsity of a vector/matrix often refers to the positions of
the nonzero elements in the vector/matrix.

Also refer to as the structure or sparsity structure.

71

Solution ofSolution of ““generalgeneral”” sparse sparse linear systemslinear systems

Let A be an n-by-n sparse matrix.

Let b be an n-vector.

Find x so that Ax = b.

Two popular classes of methods.
Iterative methods

Direct methods

72

Iterative solution of sparseIterative solution of sparse linear systemslinear systems

Based on the construction of a sequence of approximations
to the solution.

{ x0 , x1 , x2 , … }

x0 is an initial guess.

Many algorithms available for generating the approximations:
Basic methods:
• Jacobi, Gauss-Seidel, successive overrelaxation

Projection methods:
• Steepest descent, minimal residual

Krylov subspace methods:
• Arnoldi’s, generalized minimal residual, conjugate gradient,

conjugate residual, biconjugate gradient, quasi-minimal residual

73

Iterative solution of sparseIterative solution of sparse linear systemslinear systems

Positives:
Relative easy to implement.

Minimal storage requirement.

Negatives:
Convergence is not guaranteed.

Convegence rate may be slow.

Both depends on the spectral radius of the “iteration matrix”.

74

Iterative solution of sparseIterative solution of sparse linear systemslinear systems

Convergence rate:
Find nonsingular matrices P and Q.

Consider the equivalent linear system (PAQ)(Q 1x) = (Pb) .

The goal is to reduce the spectral radius of PAQ.

P and Q are called the left and right “preconditioners”,
respectively.

Preconditioning is a research area of its own.
Many classes of methods are available.
• Polynomial preconditioning.

• Incomplete factorization.

• Approximate inverses.

• Support graphs.

75

Direct solution of sparseDirect solution of sparse linear systemslinear systems

Sparse versions of Gaussian elimination for dense matrices.
Transform the given linear system into triangular linear systems
that are much easier to solve.

Gaussian elimination can be described as a factorization of the
given matrix into a product of a lower triangular matrix and an
upper triangular matrix:

A L U

L is lower triangular and U is upper triangular.

If A = LU, then the given linear system can be written as
A x = LU x = b.

Substituting y = U x, we have L y = b.

76

Direct solution of sparseDirect solution of sparse linear systemslinear systems

So, the original linear system has been transformed into two
triangular linear systems:

L y = b

U x = y

The solution x is therefore obtained after the solution of two
triangular linear systems.

Caveat: Ignore pivoting for stability.

77

Direct solution of sparseDirect solution of sparse linear systemslinear systems

Positives:
Finite termination after a finite number of operations.

Gaussian elimination is known to be backward stable.
• Assuming that pivoting for stability is not needed.

Negatives:
Sparsity issues.

Algorithms tend to be complicated.

Implementations tend to be hard.

78

Other sparse matrix problems Other sparse matrix problems ……

Although we are looking at square linear systems, there are
others, such as overdetermined and underdetermined linear
systems.

For non-square problems, other approaches may be more
appropriate.

e.g., orthogonal decomposition, singular value decomposition.

79

Important assumption Important assumption ……

No-cancellation rule.
Let x and y be two numbers.

We assume that the sum x+y or the difference x y is always
nonzero, regardless of the values of x and y.

Why? How realistic is such an assumption?

80

What are the What are the sparsity sparsity issuesissues

Consider a small example.

A =

5 1 1 1 1

1 4 0 0 0

1 0 3 0 0

1 0 0 2 0

1 0 0 0 1

81

What are the What are the sparsity sparsity issuesissues

Applying Gaussian elimination to A produces the triangular
factorization A = LAUA .

A =

5 1 1 1 1

1 4 0 0 0

1 0 3 0 0

1 0 0 2 0

1 0 0 0 1

L
A

=

1.0000 0 0 0 0

0.2000 1.0000 0 0 0

0.2000 0.0476 1.0000 0 0

0.2000 0.0476 0.0597 1.0000 0

0.2000 0.0476 0.0597 0.0822 1.0000

U
A

=

5.0000 1.0000 1.0000 1.0000 1.0000

0 4.2000 0.2000 0.2000 0.2000

0 0 3.1905 0.1905 0.1905

0 0 0 2.1791 0.1791

0 0 0 0 1.1644

82

What are the What are the sparsity sparsity issuesissues

Performing Gaussian elimination on a sparse matrix can
destroy some of the zero elements.

Now consider another small example.

B =

1 0 0 0 1

0 2 0 0 1

0 0 3 0 1

0 0 0 4 1

1 1 1 1 5

83

What are the What are the sparsity sparsity issuesissues

Applying Gaussian elimination to B produces the triangular
factorization B = LBUB .

L
B

=

1.0000 0 0 0 0

0 1.0000 0 0 0

0 0 1.0000 0 0

0 0 0 1.0000 0

1.0000 0.5000 0.3333 0.2500 1.0000

U
B

=

1.0000 0 0 0 1.0000

0 2.0000 0 0 1.0000

0 0 3.0000 0 1.0000

0 0 0 4.0000 1.0000

0 0 0 0 7.0833

B =

1 0 0 0 1

0 2 0 0 1

0 0 3 0 1

0 0 0 4 1

1 1 1 1 5

84

What are the What are the sparsity sparsity issuesissues

Let’s look at A and B again.

What is the difference between A and B?
B can be obtained from A by reversing the order of the rows
and columns!

B = PAPT

A =

5 1 1 1 1

1 4 0 0 0

1 0 3 0 0

1 0 0 2 0

1 0 0 0 1

B =

1 0 0 0 1

0 2 0 0 1

0 0 3 0 1

0 0 0 4 1

1 1 1 1 5

P =

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

85

What are the What are the sparsity sparsity issuesissues

The order in which Gaussian elimination is applied can
influence the number of nonzero elements in the factors.

A =

5 1 1 1 1

1 4 0 0 0

1 0 3 0 0

1 0 0 2 0

1 0 0 0 1

L
A

=

1.0000 0 0 0 0

0.2000 1.0000 0 0 0

0.2000 0.0476 1.0000 0 0

0.2000 0.0476 0.0597 1.0000 0

0.2000 0.0476 0.0597 0.0822 1.0000

U
A

=

5.0000 1.0000 1.0000 1.0000 1.0000

0 4.2000 0.2000 0.2000 0.2000

0 0 3.1905 0.1905 0.1905

0 0 0 2.1791 0.1791

0 0 0 0 1.1644

L
B

=

1.0000 0 0 0 0

0 1.0000 0 0 0

0 0 1.0000 0 0

0 0 0 1.0000 0

1.0000 0.5000 0.3333 0.2500 1.0000

U
B

=

1.0000 0 0 0 1.0000

0 2.0000 0 0 1.0000

0 0 3.0000 0 1.0000

0 0 0 4.0000 1.0000

0 0 0 0 7.0833

B =

1 0 0 0 1

0 2 0 0 1

0 0 3 0 1

0 0 0 4 1

1 1 1 1 5

86

SparseSparse matrix factorizationsmatrix factorizations

Observations:

Performing Gaussian elimination on a sparse matrix can destroy
some of the zero elements.

The order in which Gaussian elimination is applied can
influence the number of nonzero elements in the factors.

87

SparseSparse matrix factorizationsmatrix factorizations

Sparse Gaussian elimination is all about managing “sparsity”:
Finding ways to reduce the number of zero elements that get
turned into nonzero during Gaussian elimination.
• Combinatorial algorithms.

Discovering the sparsity and constructing data structures to
store as few zero elements as possible.
• Computer science.

Operating on as few zero elements as possible.
• Numerical algorithms.

Analyzing and understanding the complexity.
• Computer science.

Efficient implementation.
• Computer architecture.

88

Direct solution of sparse linear systemsDirect solution of sparse linear systems

Consider the solution of the linear system Ax = b .

Once a triangular factorization of A has been computed using
Gaussian elimination, the solution to Ax = b can be obtained
by solving two sparse triangular systems, which we have
looked at already.

So, we will focus on the triangular factorization of a sparse
matrix.

We will first look at the case when A is symmetric and positive
definite.

Then we will consider the case when A is a general sparse
matrix.

89

Aside Aside ……

Let’s first look at dense Gaussian elimination more closely.

Different placements of i, j, and k give different algorithms
for performing Gaussian elimination.

Total of 6 variants.

for __________

for __________

for __________

a
ij

a
ij

a
ik
a

kj

90

Aside Aside …… Dense Gaussian elimination Dense Gaussian elimination

kji version :

for k = 1,2, ,n

for i = k + 1,k + 2, ,n

a
ik

a
ik

/ a
kk

for j = k + 1,k + 2, ,n

for i = k + 1,k + 2, ,n

a
ij

a
ij

a
ik
a

kj

kij version :

for k = 1,2, ,n

for i = k + 1,k + 2, ,n

a
ik

a
ik

/ a
kk

for i = k + 1,k + 2, ,n

for j = k + 1,k + 2, ,n

a
ij

a
ij

a
ik
a

kj

Right-looking formulations

91

Aside Aside …… Dense Gaussian elimination Dense Gaussian elimination

jki version :

for j = 1,2, ,n

for k = 1,2, , j 1

for i = k + 1,k + 2, ,n

a
ij

a
ij

a
ik
a

kj

for i = j + 1, j + 2, ,n

a
ij

= a
ij

/ a
jj

jik version :

for j = 1,2, ,n

for i = 1,2, , j

for k = 1,2, ,i 1

a
ij

a
ij

a
ik
a

kj

for i = j + 1, j + 2, ,n

for k = 1, j 1

a
ij

a
ij

a
ik
a

kj

a
ij

= a
ij

/ a
jj

Left-looking formulations

92

Aside Aside …… Dense Gaussian elimination Dense Gaussian elimination

ikj version :

for i = 1,2, ,n

for k = 1,2, ,i 1

a
ik

= a
ik

/ a
kk

for j = k + 1,k + 2, ,n

a
ij

a
ij

a
ik
a

kj

ijk version :

for i = 2,3, ,n

for j = 2,3, ,i

a
i,j 1

= a
i,j 1

/ a
j 1,j 1

for k = 1,2, , j 1

a
ij

a
ij

a
ik
a

kj

for j = i + 1,i + 2, ,n

for k = 1,2, ,i 1

a
ij

a
ij

a
ik
a

kj

Top-down (or up-looking) formulation

93

Aside Aside …… Dense Gaussian elimination Dense Gaussian elimination

All 6 variants compute the same factorization (in theory).

But they access the elements of the matrix differently.
Some are more efficient than the others.

We have the same 6 variants for the sparse case.
Some are more natural than the others.

Some are easier to implement than the others.

Some are more efficient than the others.

Some can exploit sparsity easier than the others.

94

Sparse symmetric positive definite matricesSparse symmetric positive definite matrices

A : n by n sparse symmetric positive definite (SPD) matrix.

Cholesky factorization of A:

A = LLT

L : lower triangular with positive diagonal elements.

Can compare sparsity of L+LT with that of A:

As we have seen from earlier examples, some zero elements in
A will become nonzero in L+LT.

That is, in general L+LT A .

Nonzero elements in L+LT that are zero in A are referred to as
fill elements.

95

Fill in sparse Fill in sparse Cholesky Cholesky factorizationfactorization

An example based on a 9-point
stencil on a regular mesh.

Only the lower triangular part
of A/L is shown.

Blue dots are nonzero elements
in A.

Red dots are zero elements in
A that turn into nonzero during
Cholesky factorization. They
are fill elements.

96

Computing sparse Computing sparse Cholesky Cholesky factorizationfactorization

Organize/manage computation to

Reduce the amount of fill.

Discover fill.

Exploit sparsity in numerical factorization.

Achieve high performance.

97

Summary Summary ……

Sparse triangular solutions.

Introduction to solution of sparse linear systems using
Gaussian elimination.

Variants of Gaussian elimination.

Issue of fill.

98

Understanding Understanding sparsity sparsity of of Cholesky Cholesky factorsfactors

Fact: Cholesky factorization of a symmetric positive definite
matrix is numerical stable without pivoting.

It implies that one can study the process of Cholesky
factorization, and in particular the structure of Cholesky
factor, without considering the actual numerical values of
the nonzero elements.

99

Understanding Understanding sparsity sparsity of of Cholesky Cholesky factorsfactors

This means that it is possible to determine the structure of
the Cholesky factor without actually computing it.

For example, using the positions of nonzero elements in a given
matrix A, one can simulate the Cholesky factorization process
and determine where the nonzero elements will be in the
Cholesky factor.

This is a naïve approach; it requires as many operations as the
numerical factorization.

100

Understanding Understanding sparsity sparsity of of Cholesky Cholesky factorsfactors

Computing the sparsity structure of the Cholesky
factorization is called “symbolic factorization”.

Why is symbolic factorization a good idea?
Permit an efficient data structure to be set up to store the
nonzero elements of L before computing them.

Reduce the amount of data structure manipulation during
numerical factorization.
• Most of the operations during numerical factorization are then

floating-point operations.

Help design of efficient numerical factorization.

101

Analyzing Analyzing sparsity sparsity of of Cholesky Cholesky factorfactor

Lemma [Parter (‘61)]

Let i > j. Then Lij 0 if and only if at least one of the following
conditions holds:

1) Aij 0

2) For some k < j, Lik 0 and Ljk 0.

Proof is straightforward.
Consider the left-looking
formulation of Gaussian
elimination.

A

ij
A

ij
A

ik
A

kj

k

i

j

j

k

102

Modeling sparse Modeling sparse Cholesky Cholesky factorizationfactorization

Since sparse Cholesky factorization is stable without
pivoting, we look for a simple way to view the elimination
process without any consideration of the numerical values.

In particular, we are interested in manipulating and
analyzing the sparsity structure of the matrix.

We use a graph-theoretic approach.

Let A be an n by n sparse SPD matrix.

Let L denote the Cholesky of A.
That is, A = LLT.

103

Modeling sparse Modeling sparse Cholesky Cholesky factorizationfactorization

The graph-theoretic approach is concerned with the
connection between the rows and columns in the matrix A.

We use an undirected graph G = (X,E) to describe the
sparsity structure of A.

X = { x1, x2, …, xn } is a set of n vertices.

Vertex xi is associated with row and column i of A.

E be a set of edges; each edge joins a pair of distinct vertices.

There is an edge {xi,xj} E if and only if Aij is nonzero.

We do not allow {xi,xi}; that is, we do not describe the
diagonal.

104

x7

x6 x5

x4

x3x2

x1

Example illustrating the graph modelExample illustrating the graph model

The graph shows the structure of the matrix (or the
relationship between the rows and columns without the
numeric information).

105

A game on graphsA game on graphs

The graph representation can be used to study the
factorization process and analyze how fill arises.

Rules of one step of the game [Rose (‘72)]:
Pick a vertex v in the graph G.

Remove v and the edges that are incident on v.

Add edges to G to make the vertices adjacent to v into a clique
(a complete subgraph).

106

A game on graphsA game on graphs

Rules of one step of the game:
Pick a vertex v in the graph G.

Remove v and the edges that are incident on v.

Add edges to G to make the vertices adjacent to v into a clique
(a complete subgraph).

These rules correspond to the operations involved in one
step of Cholesky factorization.

Consider the previous example.

107

x7

x6 x5

x4

x3x2

x1

Example illustrating the graph modelExample illustrating the graph model

Start of Cholesky factorization …

108

Example illustrating the graph modelExample illustrating the graph model

Facts:

Suppose column 1 of A has m off-diagonal nonzero elements

Then the elimination of row 1 and column 1 results in a rank-1
update, which contains an m by m dense submatrix.

The m off-diagonal nonzero elements correspond to the m
vertices that are adjacent to x1 in G.

According to the rules, after x1 (and the incidence edges onto
x1) are removed from G, edges are added to the graph so that
the m adjacent vertices are pairwise connected.
• The m adjacent vertices form a clique.

109

x7

x6 x5

x4

x3x2

Example illustrating the graph modelExample illustrating the graph model

After step 1 of Cholesky factorization …

110

Example illustrating the graph modelExample illustrating the graph model

After step 2 of Cholesky factorization …

x7

x6 x5

x4

x3

111

x7

x6 x5

x4

Example illustrating the graph modelExample illustrating the graph model

After step 3 of Cholesky factorization …

112

x7

x6 x5

Example illustrating the graph modelExample illustrating the graph model

After step 4 of Cholesky factorization …

113

x7

x6

Example illustrating the graph modelExample illustrating the graph model

After step 5 of Cholesky factorization …

114

x7

Example illustrating the graph modelExample illustrating the graph model

After step 6 of Cholesky factorization …

115

Example illustrating the graph modelExample illustrating the graph model

In matrix terminology, we have a sequence of elimination
steps.

L+LT is sometimes referred to as the filled matrix.

The sparsity structure of L+LT is given by:

116

Example illustrating the graph modelExample illustrating the graph model

In graph-theoretic terminology, we have a sequence of
elimination graphs, each represents the sparsity structure of
the Schur complement.

x7

x6 x5

x4

x3x2

x1 x7

x6 x5

x4

x3x2

x7

x6 x5

x4

x3

x7

x6 x5

x4x7

x6 x5

x7

x6

x7

117

Filled matrix and filled graphFilled matrix and filled graph

If we “merge” all the elimination graphs together, we obtain
the filled graph, which gives the structure of the filled
matrix.

x7

x6 x5

x4

x3x2

x1

118

x7

x6 x5

x4

x3x2

x1

Filled graphFilled graph

The filled graph is a very special graph.

A lot is known about its properties.
The filled graph depends on the original
graph and the order in which the
vertices are eliminated.

The filled graph is a chordal graph
(also known as a triangulated graph).

There is a way (which may not be
unique) to eliminate the vertices
in the filled graph so that no additional
edges are added; e.g., the sequence
that was used to generate the filled graph.

[Rose (‘72); Golumbic (‘80): “Algorithmic Graph Theory and
Perfect Graphs”].

119

Perfect eliminationPerfect elimination

If no new edges are added to the elimination graphs when
the vertices are eliminated, then the order in which the
vertices are eliminated is called a perfect elimination
sequence (or perfect elimination order).

It is generally very hard to determine if a given graph has a
perfect elimination sequences.

120

ExampleExample

x1

121

ExampleExample

xn

122

ParterParter’’s s lemmalemma

Lemma [Parter, ‘61]

Let i > j. Then Lij 0 if and only if at least one of the following
conditions holds:

1) Aij 0

2) For some k < j, Lik 0 and Ljk 0.

Same lemma, but in graph-theoretic terms …

Let G = (X,E) be the graph of a SPD matrix A. Denote the filled
graph of A by G+ = (X+,E+). Then {xi,xj} E+ if and only if at
least one of the following conditions holds:

1) {xi,xj} E

2) {xi,xk} E+ and {xk, xj} E+ for k < min{i,j}.

123

Modeling eliminationModeling elimination

The elimination graphs show the dynamic changes due to the
deletion and addition of edges.

It may not be practical or efficient to use from an
implementation point of view.

Why?

Are there alternative ways to study fill that are more
amendable to efficient implementations?

124

Fill path theoremFill path theorem

Fill Path Theorem:
Let G = (X,E) be the graph of a SPD matrix A. Denote the
corresponding filled graph by G+ = (X+,E+). Then {xi,xj} E+ if
and only if there is a path (xi,xp1

,xp2
,…,xps

,xj) in G such that pk <
min {i,j}, for 1 k s.

x7

x6 x5

x4

x3x2

x1

125

Fill path theoremFill path theorem

Fill Path Theorem:
Let G = (X,E) be the graph of a SPD matrix A. Denote the
corresponding filled graph by G+ = (X+,E+). Then {xi,xj} E+ if
and only if there is a path (xi,xp1

,xp2
,…,xps

,xj) in G such that pk <
min {i,j}, for 1 k s.

Proof is by induction.
“ ”

Assume that there is a path (xi,xp1
,xp2

,…,xps
,xj) in G such that pk <

min {i,j}, for 1 k s.

If s = 0, then the path is (xi,xj). By Parter’s lemma, {xi,xj} E+.

If s = 1, then the path is (xi,xp1
,xj). By the time the elimination

reaches xp1
, the fill edge {xi,xj} will be created in G+.

126

Fill pathFill path theoremtheorem

Proof (continued) …
Now consider the path (xi,xp1

,xp2
,…,xps

,xj).

Pick ph = max { p1,p2,…,ps }.

The path is now broken up into two:

(xi,xp1
,xp2

,…,xph
)

(xph
,xph+1

,…,xps
,xj)

By induction, the two (shorter) paths correspond, respectively, to
two fill edge in G+: {xi,xph

}, {xph
,xj}, with ph < min {i, j}. By

Parter’s lemma, this gives the fill edge {xi,xj} in G+.

“ ”
Left as exercise.

127

Fill path theoremFill path theorem

The path (xi,xp1
,xp2

,…,xps
,xj) is often referred to as a fill

path.
xi is said to be reachable from xj through vertices with smaller
labelling.

The importance of the fill path theorem is that it allows the
fill edges to be identified from the original graph.

There is no need to generate the elimination graphs explicitly.

Consequently, there is no need to worry about removing and
adding edges.
• Good from the storage point of view.

BUT … paths have to be followed (i.e., traversed) to discover
the fill edges.
• Bad in terms of execution time.

128

Fill pathsFill paths

Remedy:
A fill path is a path (xi,xp1

,xp2
,…,xps

,xj) in G such that, for 1 k
 s, pk < min {i,j}.

All we need is the existence of such a path. We actually do not
need to know the actual “intermediate” vertices along the
path.

Let’s coalesce the “intermediate” vertices into a
“supervertex”, say, xps

. So, the fill path is now represented by
(xi,xps

,xj).

The graph is now “compressed” and becomes smaller (in
general).

129

Compressing fill pathsCompressing fill paths

x7

x6 x5

x4

x3x2

x1 x7

x6 x5

x4

x3x2

x1

130

Compressing fill pathsCompressing fill paths

x7

x6 x5

x4

x3x2

x1 x7

x6 x5

x4

x3

x1

131

Compressing fill pathsCompressing fill paths

x7

x6 x5

x4

x7

x6 x5

x7

x6

132

Notion of quotient graphsNotion of quotient graphs

Remedy:
The graph is now “compressed” and becomes smaller (in
general).

Each “compressed” graph is referred to as a quotient
elimination graph [George & Liu (‘79)].

The quotient elimination graphs carries the same information as
the elimination graphs.

133

QuotientQuotient elimination graphselimination graphs

Elimination graphs versus quotient elimination graphs:
The most important difference is that the length of each fill
path in a quotient elimination graph is never more than 2.

Another important observation is that the maximum number of
edges one will see in a quotient elimination graph is never more
than the number of edges in the original graph.
• Each quotient elimination graph can be store in the space provided

for the original graph [George & Liu (‘79)].

• The use of quotient graphs avoids the unpredictability of the
number of edges in an elimination graph.

It also avoids the need to traverse long fill paths in the fill path
theorem.

Exercise: Graph model for Gaussian elimination of sparse
nonsymmetric matrices?

134

Summary Summary ……

Analysis of sparsity structure in Cholesky factorization.

Graph models.
Elimination graphs.

Reachability.

Quotient elimination graphs.

135

SymbolicSymbolic factorizationfactorization

Given a SPD matrix A. Denote its Cholesky factor by L.

The structure of L depends solely on the structure of A.
Because the factorization is numerical stable without pivoting.

In theory, the structure of L can be computed from the
structure of A.

Simulating numerical factorization is not efficient, since the
number of operations required is the same as that in numerical
factorization.

136

Discovering Discovering sparsitysparsity

Consider the right-looking formulation of
Cholesky factorization.

Column j1 of L modifies columns j3 and k of
A.
Column j2 of L modifies columns j4 and k of
A.
Column j3 of L modifies column k of A.
Column j4 of L modifies column k of A.
Column j5 of L modifies column k of A.

So, to determine the structure of column k
of L, it looks like the structure of columns
j1, j2, j3, j4, and j5 of L are needed.

j1

j2

j3
j4

j5
k

137

Discovering Discovering sparsitysparsity

Observation: When column j1/j2 of L
modifies column j3/j4 of A, column j3/j4 of
A inherits the sparsity structure of column
j1/j2 of L.

When we compute the structure of column
k of L, it is redundant to consider columns
j1 and j2 of L, since any nonzero positions
in those two columns will also appear in
columns j3 and j4 of L, respectively.

j1

j2

j3
j4

j5
k

138

Discovering Discovering sparsitysparsity

That is, for the purpose of determining the sparsity structure
of column k of L, it is sufficient to consider the sparsity
structure of columns j3, j4, and j5 of L, in addition to column
k of A.

Note that the first off-diagonal nonzero
elements in columns j3, j4, and j5 of L are
in row k.

This is not by accident!

j1

j2

j3
j4

j5
k

139

Discovering Discovering sparsitysparsity

If M is a matrix, then let Struct(M) denote the sparsity
structure of M.

That is, Struct(M) = {(i,j) : Mij 0}.

Also, if L is the Cholesky factor of an n by n SPD matrix A,

then for each column of L, define First(j) as followed.
If column j of L has more than one nonzero element, then
First(j) is the row subscript of the first off-diagonal nonzero
element in that column; i.e., First(j) = min { i > j : Lij 0 }.

Otherwise, First(j) = n+1.

140

Theorem [Sherman (‘75)]:

Let A be a SPD matrix and L be its Cholesky factor. The
structure of column k of L is given by

Struct L
*k() = Struct A

*k() Struct L
* j()

j such that

First(j)=k

1,2, ,k 1{ }

Structural resultStructural result

141

This theorem provides a constructive and efficient way to
compute the structure of L*k without computing the entries.

The number of operations required is much less than the
number of operations in numerical factorization.

The process of determining the structure of L is called
symbolic factorization.

Knowing the structure of L in advance allows a compact and
efficient data structure to be set up for storing the nonzero
entries prior to numerical factorization.

Struct L
*k() = Struct A

*k() Struct L
* j()

j such that

First(j)=k

1,2, ,k 1{ }

Symbolic factorizationSymbolic factorization

142

x2x1

x3

x4

x5

x6

x7

Elimination treeElimination tree

Let A be an n by n SPD matrix and L be its Cholesky factor.

The values of First(j), 1 j n, can be used to construct a
special graph: T(A) = (X,F).

X = { x1, x2, …, xn }, where xi corresponds to the ith row/column
of the matrix A.

Let i < j. Then {xi,xj} F if and only if j = First(i) and j n+1.

143

Elimination treeElimination tree

144

Elimination treeElimination tree

T(A) …
It is an acyclic graph (i.e., a tree).
• There are n vertices and at most n 1 edges.

When will T(A) have less than n 1 edges?

T(A) is called the elimination tree of A.
• An important and powerful tool [Schreiber (‘82); Liu (‘86)].

There is a sense of direction.
• xn is often referred to as a root of T(A).

How many roots can T(A) have?

• Recall that {xi,xFirst(i)} is an edge in T(A); xi is called a child of xFirst(i)

and xFirst(i) is called the parent of xi.

145

Elimination treeElimination tree

T(A), together with Struct(A), can be used to characterize
the column structure and row structure of L.

Ancestors and descendants:
Let xr be a root of T(A). Suppose that there is a path between
xj and xr in T(A). If xi (i > j) is on the path from xj to xr, then xi

is an ancestor of xj, and xj is a descendant of xi.

146

Column structureColumn structure

Lemma:

Suppose that Lij 0, with i > j. Then xi is a ancestor of xj, and
xj is a descendant of xi in T(A).

The converse does not hold.

x2x1

x3

x4

x5

x6

x7

147

Row structureRow structure

Theorem [Liu (‘86)]:

Let T(A) be the elimination tree of A and L be the Cholesky
factor. Let i > j. Then Lij 0 if and only if xj is an ancestor of
some vertex xk in T(A) such that Aik 0.

j1
j8

j2 j3 j4 j5 j6 j7 j8 i

j7

j5

j3

j4

j2

j1

i

j6

148

Row Row subtreessubtrees

The nonzero elements in row i of the lower triangular part of
A define a subtree of T(A).

Called the ith row subtree [Liu (‘86)].

The “leaves” of the subtree correspond to some of the off-
diagonal nonzero elements in row i of the lower triangular
part of A.

The root of the row subtree correspond to the diagonal
element.

All vertices of the row subtree correspond to nonzero
elements in row i of L.

149

Elimination treeElimination tree

The elimination tree is a powerful tool in sparse Cholesky
factorization.

There is one technical challenge that has not been discussed.
What is it?

150

Computing the elimination treeComputing the elimination tree

The elimination tree T(A) is defined in terms of the structure
of L.

How useful is T(A)?

However, T(A) can be computed using only the structure of
A.

The algorithm has complexity “almost linear” in the number
of nonzero elements in A.

O(A (A ,n)), where (A ,n) is the inverse of Ackermann’s
function.
• For most m and n, (m,n) < 4.

151

Computing the elimination treeComputing the elimination tree

The elimination tree of a 1 by 1 matrix is trivial.

Suppose that the elimination tree T(B) of an (n 1) by (n 1)
matrix B is known.

T(B) has n 1 vertices: x1 , x2 , …, xn 1.

We want to construct the elimination of an n by n matrix A:

How do we add xn to T(B) to produce T(A)?

A =
B u

u
T

152

Computing the elimination treeComputing the elimination tree

• How do we add xn to T(B) to produce T(A)?
• The definition of the nth row subtree is the key.

A =
B u

u
T

T(B)

uT

xn

153

Computing the elimination treeComputing the elimination tree

To obtain T(A) from T(B), paths in T(B) have to be traversed.
Number of edges traversed is at least O(|Ln*|).

Overall complexity is at least O(L).
Not desirable.

To speed up the algorithm, for each vertex, keep track of
the root the subtree to which the vertex belongs.

154

Computing the elimination treeComputing the elimination tree

To speed up the algorithm, for each vertex, keep track of
the root the current subtree to which the vertex belongs.

This is Tarjan’s disjoint set union operations [Tarjan (‘75)].
• Can be implemented in O(A (A ,n)) time.

This requires a temporary array of size n (in addition to the
array for storing the elimination tree - i.e., “First” values).

The complexity is realizable.

155

Summary Summary ……

Elimination tree.
What it is.

Why it is important.

How it is computed.

Symbolic factorization.
What it means.

Why it is important.

How the structure of column i of L depends on every column j
of L, where xj is a child of xi in the elimination tree.

156

Symbolic factorizationSymbolic factorization

Output from symbolic factorization.
The sparsity structure of L.

As we discussed previously, the nonzero elements of L can be
using a compressed column storage scheme:

values: values of nonzero elements of L, arranged column by
column.

rowindx: corresponding row subscripts.

colptr: pointers to beginning of compressed columns.

This requires O(n+|L|) integer locations and O(|L|) floating-
point locations.

Can do better!

157

Postordering Postordering elimination treeelimination tree

Given a SPD matrix A and its elimination tree T(A).

The labeling of vertices in T(A) depends on A (i.e., the
sparsity structure of A).

A postordering of T(A) is a change of the labeling of the
vertices so that vertices in each subtree are labeled
consecutively before the root of the subtree is labeled.

A postordering of T(A) corresponds to a symmetric
permutation P of the rows and columns of A.

158

Postordering Postordering elimination treeelimination tree

A postordering of T(A) corresponds to a symmetric
permutation P of the rows and columns of A.

Theorem [Liu (‘86)]:
The Cholesky factors of A and PAPT have identical number of
nonzero elements.

That is, a postordering of T(A) gives an isomorphic ordering.

Many advantages for having a postordering of T(A).

Exercise: How to compute a postordering?

159

Postordered Postordered elimination treeelimination tree

160

Simple observations on the elimination tree Simple observations on the elimination tree ……

If xi has more than one child …

i
xi

161

Simple observations on the elimination tree Simple observations on the elimination tree ……

If xi has exactly one child …

xi

xj i

j

162

Elimination treeElimination tree

Columns associated with some
“chains” have identical structure,
but columns associated with other
“chains” do not have identical
structure.

163

Effect of fillEffect of fill

Consider the right-looking formulation of Cholesky
factorization.

Once a column is eliminated, it is used to update columns to
its right, causing fill to occur.

As the elimination proceeds, the effect of fill “propagates”
from left to right.

Consequently, the structure of L tends to be “richer”
towards the last column.

164

Dense blocks in sparse Dense blocks in sparse Cholesky Cholesky factorfactor

It is often the case that consecutive columns in L share
essentially identical sparsity pattern.

Such a group of columns is referred to as a supernode.
A supernode in L is a group of consecutive columns {j, j+1, ..., j
+t 1} such that
• columns j to j+t 1 have a dense diagonal block, and

• columns j to j+t 1 have identical sparsity structure below row j+t

1.

A postordering of the elimination tree will give the longest
possible sets of consecutively labeled columns.

165

Dense blocks in sparse Dense blocks in sparse Cholesky Cholesky factorfactor

166

Supernodes Supernodes in sparse in sparse Cholesky Cholesky factorfactor

Fundamental supernodes [Liu, Ng, Peyton (‘93)]:
A fundamental supernode is a set of consecutive columns {j, j+
1, ..., j+t 1} such that xj+s is the only child of xj+s+1 in the
elimination tree, for 0 s t 2.

That is, the columns in a fundamental supernode must form
a simple chain in the elimination tree.

167

Fundamental Fundamental supernodessupernodes

Theorem [Liu, Ng, Peyton (‘93)]:

Column j is the first column in a fundamental supernode if and
only if xj has two or more children in the elimination tree, or xj

is a leaf vertex of some row subtree of the elimination tree.

168

Supernodes Supernodes in sparse in sparse Cholesky Cholesky factorfactor

Supernodes provide a natural way to partition the columns of
L.

Fundamental supernodes are for convenience.

An important application of
supernodes

Representation of the sparsity
structure of L.

169

Data structure for sparse Data structure for sparse Cholesky Cholesky factorfactor

Exploiting supernodes in the representation of the sparsity
structure of L.

Need only one set of row indices for all columns in a supernode.
• That is, row indices of the nonzero elements in the first column of

each supernode.

A typical data structure …
values: values of nonzero elements of L, arranged column by
column.

colptr: pointers to beginning of compressed columns.

lindx: row indices of nonzero elements in the first column of
each supernode.

xlindx: pointers to beginning of row indices for each supernode
(or column).

170

Data structure for sparse Data structure for sparse Cholesky Cholesky factorfactor

L - Cholesky factor.

 - a rectangular matrix containing just the first column of
each supernode.

values: |L|

colptr: n

lindx: | |

xlindx: number of columns in (or n).

Important observation: | | << |L|.

171

Summary Summary ……

Postordering of elimination tree.
What it is.

Supernodes.
What they are.

Impact of postordering.

Compact representation of the sparsity structure of L.

172

Effect of orderingEffect of ordering

Fact: Different arrangements (or orderings) of the rows and
columns of a SPD matrix will result in different sparsity
structure in the Cholesky factor.

173

Effect of orderingEffect of ordering

A more precise description:
The amount of fill depends on the “structure” of A.

Can change the structure by permuting the rows and columns of
A.

The ordering problem: Find “good” permutations to reduce
fill in the Cholesky factor of A.

174

The ordering problemThe ordering problem

In graph-theoretic terminology: Find a labelling of the
vertices so that the elimination of the vertices according to
the labelling will reduce the number of fill edges in the filled
graph of A.

A labelling of the vertices corresponds to a symmetric
permutation of A.

The ordering problem:
Combinatorial in nature (n! choices).

NP-complete [Yannakakis (‘81)].

Rely heavily on heuristic algorithms.

175

The fill path theoremThe fill path theorem

Fill Path Theorem:

Let G = (X,E) be the graph of a SPD matrix A. Denote the
corresponding filled graph by G+ = (X+,E+). Then {xi,xj} E+ if
and only if there is a path (xi,xp1

,xp2
,…,xps

,xj) in G such that pk <
min {i,j}, for 1 k s.

The “fill path theorem” provides a heuristic way of labeling
the vertices in the graph of A to reduce fill:

Label the vertices so that all paths joining any two vertices do
not satisfy the fill path theorem.

176

Graph separators and fillGraph separators and fill

Given a graph G.

Find a set of vertices S such that the removal of S, together
with all incident edges, partitions G into 2 or more pieces
(say, 2).

S is called a separator.

Label the vertices in the two pieces first, followed by those
of S.

177

Separators and fillSeparators and fill

178

Separators and fillSeparators and fill

179

Nested dissectionNested dissection

If the heuristic is applied recursively to the graph, one
obtains the so-called nested dissection ordering.

[George (‘73)].

A digestion …
Remember AMLS?

Nested dissection order is ideal for the AMLS algorithm.

180

The nested dissection orderingThe nested dissection ordering

Nested dissection ordering on a
7 by 7 grid, with blue dots
representing the original
nonzero elements and red dots
representing the fill elements.

181

The nested dissection orderingsThe nested dissection orderings

Nested dissection is a top-down algorithm.
Labeling the last set of columns first.

Generation of the separator requires a global view of the graph.

General graphs:
Needs heuristic algorithms to find separators and generate
nested dissection orderings [George & Liu (‘78)].

Quality of orderings depends on choice of separators.
• New implementations of nested dissection are based on more

sophisticated graph partitioning techniques.
[Pothen, Simon, Wang (‘92); Hendrickson, Leland (‘93); Hendrickson,
Rothberg (‘96); Gupta, Karypis, Kumar (‘96,‘97); Ashcraft, Liu
(‘96,‘97); …]

182

Complexity of nested dissection orderingsComplexity of nested dissection orderings

Consider a nested dissection ordering for a k2 by k2 matrix
defined on a k by k finite element and finite difference
grids.

The number of operations required
to apply Gaussian elimination to the
permuted matrix is O(k3).

The number of nonzero elements
in the corresponding Cholesky factor
is O(k2 log k).

[George (‘73)].

183

A digression A digression ……

A convenient way to solve the linear system associated with
the k by k grid is to use a band solver.

The grid points are labeled row by row.

1 2 k

k+1 k+2

k

184

A digression A digression ……

For each column, one step of dense Cholesky factorization
has to be applied to a k by k submatrix.

The number of operations required is O(k2) per column.

Over the k2 columns, the total
number of operations required
is O(k4).

The number of elements that have
to be stored is O(k3).

So, more sophisticated approach
is needed to generate better
labelling.

185

Complexity of nested dissection orderingsComplexity of nested dissection orderings

Consider a nested dissection ordering for a k2 by k2 matrix
defined on a k by k finite element and finite difference
grids.

The number of operations required
to apply Gaussian elimination to the
permuted matrix is O(k3).

The number of nonzero elements
in the corresponding Cholesky factor
is O(k2 log k).

Will prove this …

186

Complexity of nested dissection orderingsComplexity of nested dissection orderings

Proving the complexity of nested dissection on k by k
meshes.

For convenience, assume that the mesh is surrounded by a
separator (to get a simple recurrence equation).
Counting only nonzero elements.
• Similar approach for counting operations.

Let Fill(k) denote the number of
nonzero elements in the Cholesky
factor of the permuted matrix
associated with a k by k mesh
surrounded by a separator.
Let (k) be the number of
nonzero associated with a
separator of size k.

187

Complexity of nested dissection orderingsComplexity of nested dissection orderings

Calculating fill …

Fill k() = 4 Fill k 2() + 2 k 2() + (k)

k 2() = 2k + 2 k 2() + i

i=1

k/2

= 13k
2 8 + O(k)

(k) = 4k + i

i=1

k

= 9k
2 2 + O(k)

Fill k() = 4 Fill k 2() + 31k2 4 + O(k)

188

Complexity of nested dissection orderingsComplexity of nested dissection orderings

Calculating fill - excluding lower order terms …

Fill k() = 4 Fill k 2() + 31 4()k2

= 4 4 Fill k 22() + 31 4() k 2()
2

+ 31 4()k2

= 42 Fill k 22() + 4 31 4() k 2()
2

+ 31 4()k2

= 42 4 Fill k 23() + 31 4() k 22()
2

+ 4 31 4() k 2()
2

+ 31 4()k2

= 43 Fill k 23() + 42 31 4() k 22()
2

+ 4 31 4() k 2()
2

+ 31 4()k2

= 4i 31 4() k 2i()
2

i=0

log
2

k

= 31 4()k2

i=0

log
2

k

= 31 4()k2 log
2
k

189

Lower bound complexityLower bound complexity

For matrices defined on k by k finite element and finite
difference meshes:

Number of nonzero elements in the Cholesky factor O(k2 log
k)

Number of operations required to compute the Cholesky factor
 O(k3)

• Will prove this …

Hoffman, Martin, Rose (‘73); George (‘73).

These are lower bounds and independent of how the
matrices are permuted (or the meshes are labelled).

Conclusion: Nested dissection orderings on k by k meshes
are optimal asymptotically.

190

Lower bound complexityLower bound complexity

Proving the lower bound on operations …
Consider eliminating the mesh points
in some order.

Consider the moment when an entire
horizontal or vertical mesh line is
eliminated.

Suppose it is a vertical mesh line.

Each horizontal mesh line (perhaps
with the exception of one) has at least
one mesh point that has not been
eliminated.
• There is a fill path from this mesh point

to another uneliminated mesh point
on another horizontal mesh line.

191

Lower bound complexityLower bound complexity

Proving the lower bound on operations …
Each horizontal mesh line (perhaps with
the exception of one) has at least one mesh
point that has not been eliminated.
• There is a fill path from this mesh point to at

least one uneliminated mesh point on each of
the remaining horizontal mesh lines.

• There are at least O(k) such mesh points.

• This gives a dense submatrix that needs to be factored.

• The size of the dense submatrix is at k by k.

• The number of operations required to factor this submatrix is k3.

So, the number of operations required to compute the Cholesky
factor is bounded below by O(k3).

192

Optimality of nested dissection orderingsOptimality of nested dissection orderings

Nested dissection orderings for matrices defined on k by k
finite element and finite difference grids are optimal
(asymptotically).

Fill = O(k2 log k)

Operations = O(k3)

[Hoffman, Martin, Rose (‘73); George (‘73)].

For a planar graph with n vertices:
 separators that have O(n1/2) vertices [Lipton, Tarjan (‘79)].

 generalized nested dissection orderings that produce O(n log
n) fill and require O(n3/2) operations [Lipton, Rose, Tarjan
(‘79)].

193

Being greedy Being greedy ……

Instead of a top-down approach, one can take a bottom-up
view.

Start with the graph of the matrix, vertices are eliminated one
by one so that a specific metric is minimized.

This gives a greedy local heuristic scheme for labeling the
vertices.

It does not guarantee a global minimum, but often works
extremely well, particularly for general sparse matrices.

What metric(s)?

194

Deg = 4

Def = 3

Notion of degree and deficiencyNotion of degree and deficiency

Degree of vertex v is the number of
vertices adjacent to v.

no. of nonzero entries in column/row
v of the submatrix remaining to be
factored.

The number of edges to be added to
the graph when vertex v is eliminated
is the deficiency of vertex v.

no. of nonzero entries to be added to
lower triangular part of the submatrix
remaining to be factored.

195

Degree and deficiencyDegree and deficiency

196

The minimum degree algorithmThe minimum degree algorithm

Use degree as the metric [Tinney, Walker (‘67); Rose (‘72)].
At each step eliminate the vertex with the minimum degree;
break ties arbitrary.

This minimizes the number of nonzero entries in the rank-1
update of sparse symmetric Gaussian elimination.

Facts:
Simple heuristic.

Very effective in reducing fill.

Hard to implement efficiently, but …

Little is known about its complexity.

197

The minimum degree algorithmThe minimum degree algorithm

Hard to implement because of dynamic changes in G, but …

Efficient implementations do exist, requiring O(|E|) space.
Based on quotient elimination graphs.
• [George & Liu (‘80)]

• [Eisenstat (early ‘80)]

• [Liu (‘85)]

• [Amestoy, Davis, Duff (‘94)]

198

An extremeAn extreme exampleexample

Little is known about its complexity, but …

For k by k torus graphs (lower bound on fill = O(k2 log k)):

Good news:
 min deg orderings with O(k2 log k) fill.

Bad news:
 min deg orderings with O(k2log34) fill [Berman, Schnitger

(‘90)].

199

An extreme example ofAn extreme example of minimum degreeminimum degree

Notation and convention:
A vertex in the current elimination graph is denoted by either a
circle or a black dot.

 A vertex to be eliminated next is denoted by a black dot.

All vertices on the boundary of a polygon are in the current
elimination graph and are pairwise connected.
• That is, the vertices on the boundary of a polygon form a clique.

200

An extreme example - initializationAn extreme example - initialization

Each vertex in the initial
configuration has degree 8.

Remember that the graph is a
torus.

Will eliminate all independent
vertices.

Number of vertices to be
eliminated = k2/4.

201

An extreme example - initializationAn extreme example - initialization

Two classes of vertices:
a) between 2 polygons: degree =

12.

b) between 4 polygons: degree =
20.

Will eliminate all independent
vertices in class (a).

Number of vertices to be
eliminated = k2/16.

202

An extreme example - initializationAn extreme example - initialization

We will call the resulting graph
the brick graph.

Let p be the number of bricks.

Number of vertices in the brick
graph = 5p = k2, for some
constant .

203

An extreme example - initializationAn extreme example - initialization

Three classes of vertices:
a) between 2 “horizontal” bricks:

degree = 20.

b) between 2 “vertical” bricks:
degree = 20.

c) between 3 bricks: degree = 27.

Will eliminate independent
vertices in class (a).

Two bricks are merged into a
larger brick.

204

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

Four classes of vertices:
a) between 2 “vertical” bricks (a

small brick on top of a large
brick): degree = 26.

b) between 2 “horizontal” bricks:
degree = 28.

c) between 2 large bricks: degree =
36.

d) between 3 bricks: degree = 41.

Will eliminate independent
vertices in class (a).

205

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

Eliminate independent vertices in
class (a).

i.e., those between 2 “vertical”
bricks (a small brick on top of a
large brick).

Note that the set of 3 vertices
shared by the small and large
bricks are indistinguishable from
each other.

A small brick and a large brick are
merged into a single brick
(referred to as a T-brick).

206

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

Two classes of vertices:
a) between 2 T-bricks: degree = 42.

b) between 3 T-bricks: degree = 57.

Will eliminate independent
vertices in class (a).

207

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

Eliminate independent vertices in
class (a).

i.e., those between 2 T-bricks.

These independent vertices are
selected from those that are
shared by 2 vertical T-bricks, with
one on top of the other.

Two T-bricks are merged to form a
new double-T-brick.

208

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

Four classes of vertices:
a) between a T-brick and a double-

T-brick in the horizontal
direction: degree = 54.

b) between a T-brick and a double-
T-brick in the vertical direction:
degree = 58.

c) between 2 double-T-bricks:
degree = 74.

d) between a T-brick and 2 double-
T-bricks: degree = 85.

Will eliminate independent
vertices in class (a).

209

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

Eliminate independent vertices in
class (a).

i.e., those shared by a T-brick and
a double-T-brick in the horizontal
direction: degree = 54.

Note that the set of 7 vertices
shared by the T-brick and the
double-T-brick are
indistinguishable from each other.

One T-brick and one double-T-
brick are merged to form a brick
with an odd shape.

210

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

At this point, we obtain a mesh
shown on the right.

The mesh is isomorphic to the one
obtained after the initialization.

Vertices that were shared by 2
bricks now become “supernodes”,
each of which contains 7 vertices
that are indistinguishable from
each other.

Vertices that were shared by 3
bricks are “supernodes”, each of
which contains 1 vertex.

211

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

212

Proceeding with the minimum degree algorithmProceeding with the minimum degree algorithm

The same strategies can be
applied to the mesh on the right,
although the degrees will be
different and the number of
vertices eliminated in each phase
will be different.

So, the algorithm goes through a
number of cycles.

Each cycle transforms a mesh into
an isomorphic mesh.

213

Complexity analysisComplexity analysis

First note that a total of 9 bricks in the top mesh are merged
to form a new brick in the bottom mesh.

At the end of each cycle, the number of bricks in the mesh
will be reduced by a factor of 9.

There will be approximately log9 p cycles.

214

Complexity analysisComplexity analysis

Consider the beginning of cycle i.

We want to measure the size of a brick in terms of the initial
brick graph.

Each vertex shared by 2 bricks is a “supernode” containing i

vertices from the initial brick graph.

0 = 1.

Each vertex shared by 3 bricks is a “supernode” containing
exactly 1 vertex from the initial brick.

Each boundary segment of a brick is constructed from 4
boundary segments of some bricks in cycle i 1.

So, i+1 = 4 i + 3 = 2 4i+1 1.

215

1

2
12 4

i()
2 p

9
i i

12 4
i()

2 p

9
i

Complexity analysisComplexity analysis

Changes in cycle i:
Number of bricks = p/9i.

Number of vertices associated with each brick = 6 i+6 = 12 4i.

Total number of edges i in the elimination graph at the
beginning of step i:

216

Complexity analysisComplexity analysis

Total number of edges in the filled graph is bounded below
by:

where is some constant.

Easy to show that (plog3 4).

Since p = 0k
2, for some constant 0, (k2 log3 4).

12 4i()

2 p

9i
i=0

log
9

p

217

The minimum deficiency algorithmThe minimum deficiency algorithm

Use deficiency as the metric [Tinney, Walker (‘67)].
At each step eliminate the vertex with the minimum deficiency;
break ties arbitrary.

This minimizes the number of nonzero entries introduced in the
rank-1 update of sparse symmetric Gaussian elimination.

It is different from the minimum degree algorithm.
• The deficiency could be zero even though the degree might be

nonzero.

218

The minimum deficiency algorithmThe minimum deficiency algorithm

Extremely expensive to implement, but produce significantly
better orderings than the minimum degree algorithm
[Rothberg (‘96); Ng, Raghavan (‘97)].

9% less fill.

21% fewer operations in Gaussian elimination.

250 times more expensive to compute.

219

Cost of the minimum deficiency algorithmCost of the minimum deficiency algorithm

Why is the minimum deficiency
algorithm more expensive than the
minimum degree algorithm?

Eliminating vertex v in the
minimum degree algorithm:

Neighbors of v are affected.

Degrees of these neighbors may
need to be updated.

220

Cost of the minimum deficiency algorithmCost of the minimum deficiency algorithm

Eliminating vertex v in the
minimum deficiency algorithm:

Neighbors of v are affected.

Deficiencies of these neighbors may
need to be updated.

Neighbors of neighbors of v may
also be affected.

Deficiencies of these neighbors of
neighbors may also need to be
updated.

221

Cost of the minimum deficiency algorithmCost of the minimum deficiency algorithm

Computing the deficiency of a vertex is a nontrivial task.

Let S be the set of vertices that are adjacent to v.

Suppose that d is the degree of vertex v; d=|S|.

Let c be the number of edges currently connecting vertices
in S.

The deficiency of v is d(d 1)/2 c.

Neighbors of neighbors of v have to be
examined to determine c.

222

Alternatives to minimum deficiency algorithmAlternatives to minimum deficiency algorithm

A minimum deficiency ordering is expensive to compute.
More vertices need deficiency update at each step.

More edges need to be visited in computing deficiency.

Are there other alternatives (based on greedy heuristics)
that are as good as, or better than, minimum degree?

223

Alternatives to minimum deficiency algorithmAlternatives to minimum deficiency algorithm

Two possibilities:
Cheap approximations to deficiency?

Computing approximate deficiency of fewer vertices?

Some ideas proposed in [Ng, Raghavan (‘97)], [Rothberg,
Eisenstat (‘97)].

224

Open problemsOpen problems

Hybrid orderings:
Combine top-down and bottom-up approaches?

Bottom-up approaches (i.e., local greedy heuristics):
Other metrics?

Effect of tie breaking?
• Look-ahead strategies?

Complexity of algorithms?

Minimizing operations in sparse symmetric Gaussian
elimination?

Equivalent to minimizing fill?

225

Summary Summary ……

The ordering problem.

Nested dissection.

Local greedy heuristics.
Minimum degree

Minimum deficiency

Effect of tie-breaking

226

Numerical sparse Numerical sparse Cholesky Cholesky factorizationfactorization

Numerical Cholesky factorization is generally the most time
consuming phase in the solution process.

Assume that symbolic factorization has been performed to
determine the sparsity structure of the Cholesky factor.

Then, conceptually, computing the Cholesky factorization of
a sparse matrix is not much different from the dense case.

Just need to avoid operation on zero elements.

Efficient implementations are hard though.

227

Issues in numerical factorizationIssues in numerical factorization

Issues:
Compact data structure
• indirect addressing may be needed to access nonzero elements.

Memory hierarchy and data locality
• cache versus main memory

Pipelined arithmetic units and vector hardware.
• dense versus sparse operations

Multiprocessing capability.

228

Review - dense left-looking Review - dense left-looking CholeskyCholesky

Left-looking dense Cholesky

for j = 1, 2, …, n

/* column modifications - cmod(j,k) */

for k = 1, 2, …, j 1

 for i = j, j+1, …, n

 Aij Aij Lik Ljk

/* column scaling - cdiv(j) */

Ljj (Ajj)
1/2

for i = j+1, j+2, …, n

 Lij Aij ⁄ Lij

229

Review - dense left-looking Review - dense left-looking CholeskyCholesky

Dense column-column Cholesky factorization

column-column algorithm

for j = 1, 2, …, n

for k = 1, 2, …, j 1

 cmod(j,k)

cdiv(j)

cmod(target,source)
target, source := column

Disadvantages:
Little reuse of data in fast memory.

230

Review - dense left-looking block Review - dense left-looking block CholeskyCholesky

Dense panel-panel Cholesky

panel-panel algorithm

for jp = 1, 2, …, npanels

for kp = 1, 2, …, jp 1

 cmod(jp,kp)

cdiv(jp)

cmod(target,source):
target, source := block of columns

Advantages:
Good reuse of data in fast memory (BLAS-3, LAPACK)

231

Left-looking sparse block Left-looking sparse block CholeskyCholesky

Sparse panel-panel Cholesky

panel-panel algorithm

for jp = 1, 2, …, npanels

for each panel kp such that Ljp,kp 0

 cmod(jp,kp)

cdiv(jp)

Selecting panels in the sparse case - desirable features:
allow dense matrix kernels

reduce indirect addressing

do not allow zeros in the data structure for L

232

Impact of Impact of supernodes supernodes on factorizationon factorization

Let K be a supernode and
consider j K.

Column j is modified by
either all columns of K or
no columns of K.

233

Impact of Impact of supernodes supernodes on factorizationon factorization

Supernodes provide a natural way to partition the columns of
L.

Column j is modified by either all columns of a supernode or no
columns of a supernode.

Columns within each supernode can be treated as a single
unit.

sparsity structure - one set of row indices for all columns in a
supernode

updates to column j from the columns in a supernode can be
accumulated before applying them to column j.

234

Left-looking column-column formulationLeft-looking column-column formulation

Sparse column-column Cholesky

column-column algorithm

for j = 1, 2, …, n

for each k such that Ljk 0

 cmod(j,k)

cdiv(j)

cmod(target,source):
target := column

source := column

235

Left-looking column-column formulationLeft-looking column-column formulation

Popular approach:
Waterloo SPARSPAK, Yale YSMP

Advantages:
easy to implement

low work space requirement

Disadvantages:
indirect addressing

little reuse of data in fast memory

236

Left-looking block-column formulationLeft-looking block-column formulation

Sparse supernode-column Cholesky

supernode-column algorithm

for j = 1, 2, …, n

for each supernode K such that LjK 0

 cmod(j,K)

cmod(j,J), where j J

cdiv(j)

cmod(target,source):
target := column

source := supernode

237

Left-looking block-column formulationLeft-looking block-column formulation

Previous work
[Ashcraft et al (1987), Simon et al (1989)]

Advantages:
Enable dense vector operations to reduce indexing overhead
• When all columns of a supernode update column k, the update can

be computed as a dense matrix-vector product (level-2 BLAS).
Can use loop unrolling to reduce memory traffic.

No indirect indexing is needed in computing the update.

Low work space requirement
• Level-2 BLAS : Need a vector to hold a matrix-vector update.

Disadvantages:
little reuse of data in fast memory

238

Left-lookingLeft-looking block-block formulationblock-block formulation

Sparse supernode-supernode Cholesky

supernode-supernode algorithm

for J = 1, 2, …, nsupernodes

for each supernode K such that LJK 0

 cmod(J,K)

cdiv(J)

cmod(target,source):
target := subset of columns within supernode

source := supernode

cdiv(source):
source := supernode

239

Left-looking block-block formulationLeft-looking block-block formulation

Previous work
[Ashcraft et al (‘87); Duff & Reid (‘83)]

[Ng & Peyton (1993); Rothberg & Gupta (1993)]

Advantages:
cmod’s can be implemented as dense matrix-matrix
multiplications to reduce indexing overhead
• If a supernode updates several columns of another supernode, the

update can be computed as a dense matrix-matrix product (level-3
BLAS).

use loop unrolling to reduce memory traffic

organize computation to reuse data in fast memory

Further reduce indirect indexing and memory traffic.

cdiv’s can be implemented using dense block Cholesky
factorization.

240

Left-looking block-block formulationLeft-looking block-block formulation

Disadvantages:
increased work space requirement
• Level-3 BLAS : Need a matrix to hold a matrix-matrix update.

Modest amount of storage in most cases.

241

Left-looking block-block formulationLeft-looking block-block formulation

Sparse supernode-supernode Cholesky

supernode-supernode algorithm

for J = 1, 2, …, nsupernodes

for each supernode K such that LJK 0

 cmod(J,K)

cdiv(J)

For large supernode K, subdivide K into blocks, such that
each block fits into fast memory.

Organize computation in terms of blocks within supernodes.

242

Issue in left-looking formulationIssue in left-looking formulation

For simplicity, let’s look at sparse column-column Cholesky
again:

column-column algorithm

for j = 1, 2, …, n

for each k such that Ljk 0

 cmod(j,k)

cdiv(j)

Exercise: There is one technical difficulty that has not been
resolved.

What is it?

How to resolve it?

243

Determining row structure inDetermining row structure in a column approacha column approach

col-col algorithm

for j = 1, 2, …, n

for each k such that Ljk 0

 cmod(j,k)

cdiv(j)

The data structure is column-oriented.
We store the nonzero elements of L by columns.

So is the sparsity structure; i.e., we store the row indices by
columns.
• We know the sparsity structure by columns.

• We do not know the sparsity structure by rows.

But we need the sparsity structure of each row.

244

Determining row structure inDetermining row structure in a column approacha column approach

Solutions:
Store the column subscripts by rows as well as the row
subscripts by columns.
• Not a good idea.

Use the fact that the columns subscripts of the nonzero
elements in a row is a row subtree in the elimination tree.
• Need to know how to traverse the elimination tree.

Implementation can be a bit complicated, but doable.

Dynamically create the sparsity structures of the rows during
numerical factorization.

245

Determining row structure inDetermining row structure in a column approacha column approach

Creating the row structures …
For each row, maintain a link-list (which is initially empty).

Suppose we have just computed column i of L.
• Suppose that the first off-diagonal nonzero element in column i of

L is in row j1.
So, column j1 of A is the next column to be modified by column i of L.

• Insert i into a link-list for row j1.

j1

i

i

j1

246

Determining row structure inDetermining row structure in a column approacha column approach

Creating the row structures …
Suppose we are ready to compute column j1 of L.
• We first remove a column (say, i) from the link-list of row j1.

Column i of L will modify column j1 of A.

• Suppose that the nonzero element right below row j1 in column i of
L is in row j2.

Meaning that column i of L will modify column j2 of A next.

• Insert i into the link-list for row j2.

j1

i

j2

i

j1

j2

247

Right-looking formulationRight-looking formulation

Right-looking Cholesky

dense panel-panel algorithm

for jp = 1, 2, …, npanels

cdiv(jp)

for kp = jp+1, jp+2, …, npanels

 cmod(kp,jp)

Just like the left-looking formulations,
different definitions of panels give
different variants of dense
right-looking algorithms.

248

Sparse right-looking Sparse right-looking CholeskyCholesky

Sparse versions are similarly defined.

Straightforward implementation is inefficient in the sparse
case …

indirect addressing may require expensive row subscript
searching and matching.

Multifrontal method ([Duff & Reid 83], …)
can be viewed as an efficient implementation of the right-
looking algorithm

249

Multifrontal Multifrontal approachapproach

Multifrontal method ([Duff & Reid 83], …)
Update to future columns of A is not applied immediately to the
active submatrix, but is saved for later use.

At a later stage of the factorization, update is then retrieved
and applied to the active submatrix.

A column modification arrives at its target via a sequence of
update matrices.

Computation entirely involves dense matrices.

Natural incorporation of supernodes ---
• Uses same kernel routines as left-looking supernode-supernode

Cholesky.

250

Suppose we have just computed
column i of L.

We compute the update matrix for
future columns of A.
• This will be a dense rank-5 update (in

this example).

Instead of applying the update
immediately to columns j1, j2, …,
suppose we save the update
somewhere (to be determined).

i

j1

j2

Multifrontal Multifrontal approachapproach

251

Suppose we get to column j1.
We first retrieve the rank-5 update
due to column i of L from somewhere,
and apply the update to column j1 of
A.

Apply all other updates to column j1 of
A in a similar fashion.

Compute column j1 of L.

Note that all computation can be done
in a dense matrix, whose order is the
same as the number of nonzero
elements in column j1 of L.
• The dense matrix is called a frontal

matrix.

i

j1

j2

Multifrontal Multifrontal approachapproach

252

Multifrontal Multifrontal approachapproach

After column j1 of L has been
computed …

Now we repeat the same process; i.e.,
we compute the update matrix (due to
column j1) for future columns of A and
save the update somewhere (for
column j2 of A in this example).

Note that the update matrix due to
column j1 of L will have incorporated
the update matrix due to column i of
L. There is no need to keep the
update
matrix due to column i of L.

i

j1

j2

253

Managing update matrices in Managing update matrices in multifrontalmultifrontal

How to manage the update
matrices?

Very difficult in general …

Suppose the elimination tree is
postordered.

The vertices in each subtree are
labeled consecutively before the
root of the subtree is labeled.

By the time we compute column i
of L, all the columns associated
with the subtree rooted at xi must
have been computed.

254

Managing update matrices in Managing update matrices in multifrontalmultifrontal

When the elimination tree is
postordered …

The necessary update matrices
required by column i of A come
from the children of xi.
• This suggests that a “first-in first-

out” data structure (i.e., a stack)
for storing the update matrices.

Using a stack, the update matrices
required by column i of A are
always at the top of stack.

255

Multifrontal Multifrontal approachapproach

Advantages:
Good for vectorization

Reduced indirect addressing

Best for locality of memory references

Disadvantages:
Complicated and can require substantial storage for stack of
update matrices
• Issue: How to organize the computation to reduce the size of the

stack?

Data movements

256

Left-looking versus Left-looking versus multifronalmultifronal

Left-looking and multifrontal perform exactly the same
computation, but in different order.

Supernodal versions can be implemented using exactly the same
dense matrix kernels.

Multifrontal needs to save and manage the updates.
Can organize the computation so that updates can be managed
by a stack.

 extra working storage.

 extra data movement.

Multifrontal has better data locality.

Multifrontal is more appropriate for out-of-core
implementation.

257

General frameworkGeneral framework

Let A be a given sparse SPD matrix.

General framework :
Ordering :
• Find P so PAPT has a sparse Cholesky factor LP.

Symbolic factorization :
• Determine the structure of LP.

• Set up efficient data structure to store LP.

Numerical factorization :
• Compute LP.

Triangular solution :
• Solve Lpu = Pb and LP

Tv = u.

• Set x = PTv.

258

Sparse SPD solversSparse SPD solvers

Different choices of ordering, symbolic factorization, and
numerical factorization algorithms result in different solvers.

Not all ordering/symbolic factorization/numerical
factorization algorithms are equal.

Different algorithms for the same step may have different
complexities and may produce significantly different output.

259

Summary Summary ……

Numerical factorization of sparse SPD matrices.

Implementation of left-looking algorithm.

Implementation of multifrontal algorithm.

260

Numerical comparisonsNumerical comparisons

What to compare?
Orderings :
• profile-reduction orderings

• minimum degree orderings

Numerical factorizations :
• left-looking column-column

• left-looking supernode-supernode

• right-looking multifrontal

261

matrix n |A|/2

BCSSTK13 2,003 42,943

BCSSTK14 1,806 32,630

BCSSTK15 3,948 60,882

BCSSTK16 4,884 147,631

BCSSTK17 10,974 219,812

BCSSTK18 11,948 80,519

BCSSTK19 817 3,835

BCSSTK23 3,134 24,156

BCSSTK24 3,562 81,736

BCSSTK25 15,439 133,840

BCSSTK26 1,922 16,129

BCSSTK28 4,410 111,717

BCSSTK29 13,992 316,740

BCSSTK33 8,738 300,321

Profile versus minimum degreeProfile versus minimum degree

Consider two sets of matrices:
Finite element grids (50 50 to 120 120).

A set of structural analysis matrices from the Harwell-Boeing
Collection.

262

Profile versus minimum degreeProfile versus minimum degree

2

2.5

3

3.5

4

4.5

5

5.5

6

40 50 60 70 80 90 100 110 120 130

k

ra
ti

o
s
 (

re
la

ti
v
e
 t

o
 m

d
e
g

)

natural/fill natural/ops

263

Profile versus minimum degreeProfile versus minimum degree

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

matrices

ra
ti

o
s
 (

re
la

ti
v
e
 t

o
 m

d
e
g

)

rcm/fill rcm/ops

264

Performance of numerical factorizationsPerformance of numerical factorizations

What machines?
IBM RS/6000 model 530.

Test problems?
Harwell-Boeing matrices.

Each matrix was ordered using an implementation of minimum
degree with multiple eliminations.

Factorization times reported in CPU seconds.

Numerical factorization?
left-looking column-column

left-looking supernode-supernode

right-looking multifrontal

265

Test matrices for numerical factorizationsTest matrices for numerical factorizations

problem n |A| |LP| flops col-col sup-sup sup-mf

BCSSTK13 2,003 83,883 271,671 58,550,598 7.33 3.04 3.10

BCSSTK14 1,806 63,454 112,267 9,793,431 1.32 0.61 0.65

BCSSTK15 3,948 117,816 651,222 165,035,094 20.40 8.08 8.32

BCSSTK16 4,884 290,378 741,178 149,100,948 18.61 7.47 7.52

BCSSTK18 11,948 149,090 662,725 140,907,823 17.86 8.07 8.47

BCSSTK23 3,134 45,178 420,311 119,155,247 14.71 6.00 6.26

BCSSTK24 3,562 159,910 278,922 32,429,194 4.28 1.72 1.74

NASA1824 1,824 39,208 73,699 5,160,949 0.74 0.36 0.36

NASA2910 2,910 174,296 204,403 21,068,943 2.81 1.23 1.25

NASA4704 4,704 104,756 281,472 35,003,786 4.56 1.94 1.96

266

Summary Summary ……

Compare “banded” ordering and minimum degree ordering.

Demonstrated performance of general purpose sparse SPD
solvers.

267

Outstanding issuesOutstanding issues

Relaxing symbolic factorization?
Supernodal amalgamation to enhance performance of matrix-
matrix multiplication kernels, at the expense of storing and
operating on some zeros?

2-D partitions (block-columns and block-rows)?

Combining left-looking and multifrontal?

Effective parallel implementations of ordering, symbolic
factorization, and numerical factorization?

