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Brief History on Control (Filtering) System Design

• Linear Control/Filter (60’s - 70’s)(PID control, LQR design, LQG
design, Adaptive design, Kalman filter, ...)

• Robust Control/Filter (80’s) (H∞ Control, Small Gain Theorem,...)

• Nonlinear Control/Filter (90’s -) (Non-linear H∞, Sliding mode,
Non-linear adaptive, ...)

• Intelligent Control/Filter (90’s -) (Neural Networks, Fuzzy, Genetic
Algorithm, ...)

• Industry Applications : aerospace, steel, ship, car, chemical plant,
power plant,...

• Design Systems: dynamical systems, singular systems, delay sys-
tems, uncertain systems, stochastic systems, large scale systems,
chaotic systems,...

• Reliable Numerical software development: Simulink, LMI,...
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Current and Future trend

• New problems: fault detection, fault tolerance, missing signals, dis-
turbance, noise in measurement, random impulse, unknown delays,
reliability, ...

• New systems: network control systems, control/filter design in bio-
informatic systems, data-mining in communication systems/business
systems,...

• New challenge: new control concept, new mathematical analysis,
new learning techniques, new robust numerical tools, new powerful
software, new optimization tools, new statistical tools, new cluster-
ing designs,...

Team effort is required from experts of different research areas:

• Control and Automation Engineers,

• Applied Mathematicians,

• Computer Scientists,

• Electronic System Engineers,

• Biologists...



My first Mathematical Control problem:

Output feedback Pole Assignment Problem (1982 -1986)
Given a linear system

{

ẋ = Ax + Bu

y = Cx
(1)

Output feedback design: u = Ky

The problem is to find a suitable feedback gain matrix K, such that
ẋ = (A + BKC)x is stable with specific performance.

That problem is equivalent to find a suitable K such that A + BKC

has a specific set of poles (eigenvalues) with -ve real part.(Eigenvalue
assignment).



Later development:

To develop reliable numerical software for matlab control tool box...
(many papers are published).

Eigenstructure assignment

Robust pole assignmne under perturbation.(1986 - ...)

Approximate pole assignment. (1986 - 2000)

Regional pole assignment for large scale system...

Pole assignment for singular system (E. Chu(1986), L R Fletcher(1988),
D.Chu & D.Ho(2002)...)

{

Eẋ = Ax + Bu

y = Cx
(2)
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Introduction

• Descriptor system is also referred to as singular system, generalized
state-space system, implicit system, semi-state system, algebraic
differential equation system, etc.

• Descriptor system model arises from a convenient and natural mod-
elling process, and has a profound background in engineering prac-
tise, social science, network analysis, etc.

• Descriptor system model can characterize a more general class of
systems than a normal system model. Great efforts were made to
investigate descriptor system theory and applications during the
past thirty years; see [1, 2, 3] and the references therein.

[1] E. Brenan, S. L. Campbell, and L. R. Petzold, “Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations,” SIAM, Philadelphia, 1996.

[2] L. Dai, “Singular Control Systems, ”Springer-Verlag, New York, 1989.

[3] D. W. C. Ho, and Z. Gao, “Bezout identity related to reduced-order observer-

based controllers for singular systems,” Automatica, vol.37, no.10, pp. 1655-1662,

2001.



Background and Preliminaries

To illustrate the observer design approach in the literature. Con-
sider

{

Eẋ = Ax + Bu + d

y = Cx + dn
(3)

where

x ∈ Rn is the descriptor vector,

u ∈ Rm and y ∈ Rp are respectively the control input and measure
output vectors,

d ∈ Rn is disturbance vector; dn ∈ Rp is the measurement noise;

E, A ∈ Rn×n, E may be singular, when E = I, the system degenerates
to a normal system.

B and C are constant real matrices of appropriate dimensions;

Cx + dn 6= 0 is tolerated, otherwise there is a total failure of the
sensor.



It is known that the state of the descriptor system is completely de-
termined for all t >= 0 by x(0−) and u. However, due to the presence
of infinite frequency natural modes, x could display an impulsive be-
havior. In particular, x could have generalized impulses, whenever
u or u̇ are discontinuous. This has the adverse effects of limiting the
class of acceptable input functions and, making the system highly
susceptible to noise.

In the 80s’

Solutions:

(i) use state feedback control to modify the system structure so as
to smooth the state trajectories.

(ii) use state feedback to replace the infinite frequency modes by
finite frequency modes.

(iii) to estimate the states by observer design ...

+ many other objectives...



New estimator Design Objective:

(i) To develop a new descriptor dynamical system

(ii) To find an asymptotic state estimator x̂ such that e = x − x̂ as
small as possible throughout the process, subject to impulse-free,
finite observable, stable....



• The pair (E, A) is regular provided that

det(sE − A) 6≡ 0, s ∈ C, (4)

which ensures the plant Eẋ(t) = Ax(t) is solvable, i.e. this plant
possesses a unique solution for any given consistent initial value.

• The pair (E, A) is internally stable provided that

rank(sE − A) = n, ∀s ∈ C+. (5)

• The pair (E,A) is internally proper (also called impulse-free or
causal) provided that

rank

[

E 0
A E

]

= n + rank(E), (6)

or equivalently
deg[det(sE − A)] = rank(E). (7)

Clearly, the pair (E, A) must be regular if the plant is internally
proper.

madaniel
regular

madaniel
ensures the plant E ˙ x(t) = Ax(t) is solvable,



• The triple (E, A, C) is finite detectable provided that

rank

[

sE − A

C

]

= n, ∀ s ∈ C+. (8)

There exists a matrix K such that (E,A−KC) is internally stable if
and only if the plant (E,A, C) is finite detectable.

• The triple (E, A, C) is impulsive observable provided that

rank





E 0
A E

C 0



 = n + rank(E). (9)

There exists a matrix K such that (E, A−KC) is internally proper if
and only if the plant (E, A, C) is impulsive observable. Furthermore,
there exists a matrix K such that (E,A − KC) is internally proper
and stable if and only if the plant (E, A, C) is impulsive observable
and finite detectable.

• The pair (E, A) is regular, internally proper and stable, if and only
if there exists a matrix X such that

ETX = XTE ≥ 0, ATX + XTA < 0. (10)

madaniel
pair (E,A) is regular, internally proper and stable,

madaniel
ETX = XTE ≥ 0, ATX + XTA < 0.



To illustrate the motivation of our work, let us comment on the PI
observer design approach in the literature.

Let x̂ is the estimated vector,

f̂ is a vector representing the integral of the weighted output esti-
mation error,

L0
P and LP are the proportional gains,

LI is the integral gain.

Let e = z − T1Ex, the estimation error dynamics is governed by
[

ė
˙̂

f

]

=

[

F L0
I

−LIC 0

] [

e

f̂

]

+

[

L0
P + LP

LI(I − CT2)

]

d (11)

where F = T1A − LPC, L0
P = FT2, and the gain matrices

LP , L0
I and LI are selected such that the error dynamics is stable.

Clearly, the noise d in the error equation will be amplified unavoid-
ably if the gains LP and LI are high.

Therefore, the PI observer in (Niemann et al 1995) also cannot ob-
tain satisfactory tracking performance for the plant with measure-
ment noises.



Example: Consider the following descriptor system
{

Eẋ = Ax + Bu

y = Cx + d
(12)

where E =

[

0 1
0 0

]

, A =

[

2 −1
−1 −2

]

, B =

[

1 1
0 1

]

, C =

[

1 0
0 1

]

, u =
[

sin(t)
cos(t)

]

, d =

[

0.5
2

]

.

PI observer

Choose T1 =

[

0 0
0.5 0

]

and T2 =

[

1 0
0 0.5

]

L0
I =

[

1 0
0 1

]

. Design LP =
[

2 0
1 19.5

]

and LI =

[

2 0
0 64

]

such that the poles of the observer are

located inside the set {−4, −16, −1+i, −1−i}. Then we can compute

that L0
P =

[

−2 0
0 −10

]

, F =

[

−2 0
0 −20

]

and T1B =

[

0 0
0.5 0.5

]

.
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Figure 1: State estimation via PI observer

Figure 1 shows this kind PI observer cannot obtain satisfactory
estimation.



• In the work [14], a proportional multiple-integral (PMI) estima-
tor was proposed to simultaneously estimate the descriptor system
state and a class of slow-varying polynomial output disturbances.







Eẋ = Ax + Bu + Bdd

ẋ0 = Cx + d

y0 = x0.

(13)

where x0 =
∫ t

0 y(τ )dτ and Bd ∈ Rn×p is a known input disturbance
matrix (may be a low-rank matrix and may even be zero).

• d(t) ∈ Rp is the measurement output noise and Bdd(t) in the dynamic
equation characterizes the unknown input uncertainty or modelling
error.

[14] Z. Gao, and D. W. C. Ho, “Proportional multiple-integral ob-
server design for descriptor systems with measurement output dis-
turbances,” IEE Proc. - Control Theory Appl., vol.151, no.3, pp.279-
288, 2004.



Let

z =

[

x

x0

]

, Ē =

[

E 0
0 I

]

, Ā =

[

A 0
C 0

]

,

B̄ =

[

B

0

]

, M̄ =

[

Bd

I

]

, C̄0 =
[

0 I
]

,

(14)

then the augmented plant (13) can be rewritten as follows:
{

Ēż = Āz + B̄u + M̄d

y0 = C̄0z.
(15)

d = A0 + A1t + A2t
2 + · · · + Aq−1t

q−1 (16)

where Ai (i = 0, 1, 2, · · · , q−1) are the constant matrices, the values of
which are unknown. Clearly, the qth derivative of this disturbance
is zero, i.e., d(q) = 0, then we can call q as the index of disturbance.
Clearly, the disturbance in the form (16) may be unbounded, which
is more general than the constant disturbance considered in (Koenig
and Mammar 2002).



The observer can be designed as:











































Ē ˙̂z = Āẑ + B̄u + LI(y0 − C̄0ẑ) + M̄f̂q

˙̂
fq = L

q
I(y0 − C̄0ẑ) + f̂q−1

˙̂
fq−1 = L

q−1
I (y0 − C̄0ẑ) + f̂q−2

...
˙̂

f2 = L2
I(y0 − C̄0ẑ) + f̂1

˙̂
f1 = L1

I(y0 − C̄0ẑ).

(17)

Here, ẑ ∈ Rn+p is an estimation of the descriptor state vector z, and
f̂i ∈ Rp (i = 1, 2, . . . , q) is an estimation of the (q − i)th derivative of
the disturbance d(t) in the form (16), LI ∈ R(n+p)×p and Li

I ∈ Rp×p, i =
1, 2, . . . , q are integral gains. Now we have the following statement.

Theorem 1 For the plant (15), there exists an asymptotic descrip-
tor observer in the form (17) if the triple (E, A, C) is finite observ-

able, and rank

[

A Bd

C I

]

= n + p.
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Figure 2: State estimation via new observer with q = 1: ḋ bounded



d =

[

d1

d2

]

=

[

0.5 + 0.2sin(t) + 0.4sin(50t)
0.25t + 2 + sin(2t) + 0.8sin(20t)

]

, (18)
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Figure 3: Disturbance estimation via new observer with q = 1: ḋ bounded

• However, when the output disturbance is a high-frequency signal,
one cannot obtain satisfactory disturbance estimation by using the
PMI technique given in [14].



New Descriptor state/disturbance estimator design

• Let

x̄ =

[

x

d

]

, Ē =

[

E 0
0 0p×p

]

, Ā =

[

A 0
0 −Ip

]

,

B̄ =

[

B

0p×m

]

, N̄ =

[

Bd

Ip

]

, C̄ =
[

C Ip

]

, (19)

and we can construct the following augmented plant
{

Ē ˙̄x = Āx̄ + B̄u + N̄d

y = C̄x̄.
(20)

• The descriptor state x and the disturbance d are both the descriptor
state vectors of the augmented plant. Hence, if an asymptotic state
estimator can be constructed for the augmented plant (20), then
this estimator is a simultaneous state and disturbance estimator for the
original plant (13)



• Now we develop a new descriptor estimator design approach for the
augmented plant (20). Consider the descriptor dynamical system
as follows

Ē ˙̄̂x = Ā ˆ̄x + K̄p(y − C̄ ˆ̄x) + B̄u + N̄ d̂, (21)

where ˆ̄x ∈ Rn+p is an estimation of the descriptor state vector x̄;
d̂ ∈ Rp is an estimation of the disturbance d; K̄p ∈ R(n+p)×p is the gain
matrix to be designed. Now we have the following statement.

• Theorem 2 For the plant (20), there exists an asymptotic estima-
tor in the form of (21) if and only if the pair (E, A − BdC) is
internally proper and stable.

Proof: See Appendix A



Nonlinear descriptor estimator design

• the estimator design issues becomes more difficult and challenging
since the existence and convergence properties have to be consid-
ered simultaneously in the design process.

• In fact, only limited work on nonlinear descriptor system is available
in the literature [15, 16, 17].

• To the best of our knowledge, the study of estimator design for
nonlinear descriptor systems with output disturbances has not been
reported in the literature. The problem remains important and
unsolved, and there is a strong incentive to improve the estimator
design for nonlinear descriptor systems.

[15] S. Kaprielian, and J. Turi, “An observer for a nonlinear de-
scriptor system,” Proc. IEEE Conf. Deci. Control, pp. 975-976, 1992.

[16] G. Lu, D. W. C. Ho, and Y. Zhang, “Observers for a class
of descriptor systems with Lipschitz constraint,” Proc. the American

Control Conf., pp.3474-3479, 2004.

[17] D. N. Shields, “Observer design and detection for nonlinear de-
scriptor systems,” Intern. J. Control, vol.67, no.2, pp.153-168, 1997.

madaniel
the study of estimator design for
nonlinear descriptor systems with output disturbances has not been
reported in the literature.



• When an additional nonlinear term appears, the plant (13) becomes
{

Eẋ = Ax + Bu + Bdd + f (t, x, u)
y = Cx + d,

(22)

where f (t, x, u) ∈ Rn is a real nonlinear vector function.

• Let

f̄ (t, x, u) =

[

f (t, x, u)
0p×n

]

, (23)

and by using Ē, Ā and so on as described by (19), we can construct
the following augmented descriptor nonlinear system:

{

Ē ˙̄x = Āx̄ + B̄u + N̄d + f̄ (t, x, u)
y = C̄x̄.

(24)

madaniel
f(t, x, u)

madaniel
d,



• Consider the descriptor nonlinear dynamical system as follows

Ē ˙̄̂x = (Ā + N̄C̄d − K̄pC̄)ˆ̄x + B̄u + K̄py + f̄ (t, x̂, u), (25)

where ˆ̄x =

[

x̂

d̂

]

∈ Rn+p is the estimation of x̄ =

[

x

d

]

∈ Rn+p, and

K̄p ∈ R(n+p)×p is the estimator gain matrix to be designed. Now we
have the following statement.

• Theorem 3 For the plant (24), there exists an asymptotic descrip-
tor estimator in the form of (25) if
(i) the nonlinear function f (t, x, u) is Lipschitz with a Lipschitz
constant γ, i.e.

‖f (t, x, u)− f (t, x̂, u)‖ ≤ γ‖x− x̂‖, ∀ (t, x, u), (t, x̂, u) ∈ R×Rn ×Rm; (26)

(ii) there exist matrices X̄ and K̄p such that

ĒTX̄ = X̄T Ē ≥ 0, (27)
[

(Ā + N̄C̄d − K̄pC̄)TX̄ + X̄T (Ā + N̄C̄d − K̄pC̄) + γ2I X̄T

X̄ −I

]

< 0. (28)

Proof. See Appendix D.

madaniel
Theorem 3 For the plant (24), there exists an asymptotic descriptor
estimator in the form of (25) if
(i) the nonlinear function f(t, x, u) is Lipschitz with a Lipschitz
constant °, i.e.
kf(t, x, u)−f(t, ˆx, u)k ≤ °kx− ˆxk, ∀ (t, x, u), (t, ˆx, u) ∈ R×Rn ×Rm; (26)
(ii) there exist matrices ¯X
and ¯K
p such that
¯E
T ¯X
= ¯X
T ¯E
≥ 0, (27)
( ¯
¯N
¯C
¯K
¯C
T ¯X
¯X
T
¯A
¯N
¯C
¯K
¯C
°2I ¯X
T
¯X

madaniel
I
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Application to sensor fault diagnosis

• In this section, we will apply the proposed estimator technique to
the sensor fault diagnosis. We will consider the following three
cases.

• In case 1, the input nonlinear term and the sensor fault both exist
in the plant.

• In case 2, the input nonlinear term, the sensor fault and the output
noise appear in the plant at the same time.

• In case 3, the nonlinear term, the unknown input disturbance, the
output noise and the sensor fault appear simultaneously. The sensor
fault signal will be estimated directly in three such cases.



Illustrative examples

• Example 1: Consider the plant in Case 3 with f (t, x, u) = 0, i.e.






Eẋ = Ax + Bu + Bdd

y1 = C1x + d

y2 = C2x + Dd2d + Dsffs,

(29)

where

E =





0 1 0
0 0 1
0 0 0



 , A =





0 −1 1
1 0 −2
1 2 1



 , B =





2
−1
2



 , Bd =





0.5 −1
2.5 −1
0 0



 , C1 =

[

1 0 1
2 1 1

]

,

C2 =
[

1 0 1
]

, Dd2 =
[

1 2
]

, Dsf = 1, d =

[

d1

d2

]

=

[

0.6sin(100t) + 0.4sin(40t)
1 + 0.2sin(6t) + 0.3cos(5t)

]

,

u = 3sin(t), fs =

{

0.3(t − 2) + 4, t ≥ 2,
0, t < 2.

(30)

Note: We now have high-frequency noise d1, slow-varying distur-
bance d2 and unbounded sudden sensor fault fs.
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• Example 2 Consider the plant in Case 2, i.e.
{

Eẋ = Ax + Bu + f (t, x, u)
y = Cx + Ddd + Dsffs,

(32)

where E, A and B are the same as those in Example 1, and

f (t, x, u) =





0
0

0.3358sin(x3)



 , u = 3, d = 0.5tx2x3,

fs =

{

4 + 0.8sin[10(t − 3)] + 0.3sin[40(t − 3)], t ≥ 3,
0, t < 3,

C =

[

1 0 1
2 1 1

]

, Dd =

[

1
2

]

, Dsf =

[

−1
1

]

. (33)

Note: Now output disturbance d is unbounded and the sensor fault
fs possesses high-frequency component.

madaniel
f(t, x, u)

madaniel
Ddd + Dsffs,

madaniel
d = 0.5tx2x3
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Some more new stability results on nonlinear singular systems:

• Generalized Quadratic Stability for Singular systems with nonlinear
perturbation, accepted in IEEE AC Feb 2006, to appear 2007.

• Continuous stabilization controllers for singular bilinear systems:
the state feedback case, Automatica 42, 2006 309-314.

• Both papers are joint work with Guoping Lu of Nantong University

madaniel
more new stability results

madaniel
nonlinear singular systems:
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singular bilinear systems:

madaniel
Singular systems with nonlinear
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Motivation on Robust Stability

• The issue of robust quadratic stability for perturbed system is to
find a tolerable perturbation bound such that

(i) for all admissible parameter perturbations,
(ii) the system is stable and
(iii) the associated Lyapunov function is quadratic and determinis-
tic.

• Robust stability results for both nonsingular and singular systems
are available in the literature.

• Question:
Can we get any robust stability results for continuous-time singular
system with time-varying nonlinear perturbations (CSSP) ?

madaniel
for all admissible parameter perturbations,

madaniel
the system is stable

madaniel
the associated Lyapunov function is quadratic and deterministic.



• In other words, it is known that the generalized quadratic stabil-
ity implies the global asymptotic stability for linear time-invariant
singular systems.

• Does generalized quadratic stability imply the global asymptotic
stability for this time-varying CSSP?

• Similar Results published before ??
A. Rehm and F. Allgǒwer (2000) published a small paper, where
the system matrices are time-invariant and uncertainties are state-
independent. Their approaches cannot apply to those system with
time-varying and state-dependent uncertainties.

madaniel
the generalized quadratic stability

madaniel
implies the global asymptotic stability for linear time-invariant
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singular systems.



Difficulties

• One of the difficulties lies in that the existence and uniqueness of
the solution for nonlinear singular systems is still an open problem
and has not been fully investigated.

• In addition, the standard Lyapunov stability theory cannot be ap-
plied to CSSP directly and the open problems remains to be im-
portant and challenging.

• This open problem is addressed here in this paper,

(i) sufficient condition for the open problem is presented,

(ii)Necessary and sufficient condition is obtained in terms of a con-
vex optimization LMI, under which the maximal perturbation bound
is obtained to ensure generalized quadratic stability for CSSP.

madaniel
open problem

madaniel
standard Lyapunov stability theory cannot be applied

madaniel
to CSSP directly

madaniel
in terms of a convex
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optimization LMI,
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Linear Matrix Inequality (LMI) optimization
For convenience and compactness, let

T (γ, Q, Γ1, Γ2) :=





−Q Γ′
1 Γ′

2

Γ1 I − Q 0
Γ2 0 −γI

,



 (39)

where γ is a scalar, Q, Γ and Γ1 are matrices with appropriate dimen-
sions,
I is identity matrix with an appropriate dimension.
Matrix inequality T (γ, Q, Γ1, Γ2) < 0 is a unified LMI structure.

The dimension of (39) will be different according to the control de-
signs of state feedback, static output feedback and dynamic output
feedback, respectively.

All the following proposed topics can be transformed into an LMI
convex optimization problem and can be solved by efficient interior-
point algorithms

madaniel
proposed topics can be transformed into an LMI
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convex optimization problem
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Consider the following continuous-time singular system with time-
varying nonlinear perturbations (CSSP).

Eẋ = Ax + f (t, x), x(0) = x0, (40)

where x ∈ Rn is the system state, A, E ∈ Rn×n are constant matrices;
E may be singular. Without loss of generality, we shall assume that
0 < rank(E) = r < n; x(0) = x0 is a compatible initial condition; f =
f (t, x) ∈ Rn is vector-valued time-varying nonlinear perturbation with
f (t, 0) = 0 for all t ≥ 0 and satisfies the following Lipschitz condition for
all (t, x), (t, x̃) ∈ R × Rn.

‖f (t, x) − f (t, x̃)‖ ≤ α‖F (x − x̃)‖, (41)

where F is a constant matrix with appropriate dimension, α is a posi-
tive scalar. Consequently, from (41), we have

‖f (t, x)‖ ≤ α‖Fx‖. (42)

For convenience, the above f is called (tolerable) Lipschitz perturba-
tion, or tolerable perturbation in this paper. In the sequel, we always
assume that the perturbation f satisfies condition (41).

Robust Stability has not been fully investigated for the above system.

madaniel
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Definition 1 The system is regular and impulse free.
a) the pair (E,A) is said to be regular if det(sE −A) is not identical

zero.
b) the pair (E, A) is said to be impulse free if deg(det(sE−A)) =rank(E).

Definition 2 System (40) is said to enjoy a Lyapunov-like property
(with degree α) if there exists a matrix P such that ETP = P TE ≥ 0
and

∆ := [Ax + f (t, x)]TPx + xTP T [Ax + f (t, x)] < 0 (43)

for all tolerable perturbations (42) and (t, x) ∈ R × (Rn − {0}).

madaniel
regular and impulse free.
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Lemma 3 If system (40) enjoys a Lyapunov-like property, then
i) the nominal system of (40) (that is, Eẋ = Ax) is regular and

impulse free;
ii) for any given initial condition x(0) and for all tolerable pertur-

bations (42), the solution x = x(t) of system (40) is globally exponen-
tially stable.

Since there exists a matrix P such that (43) holds, then choosing the
Lyapunov function candidate as follows:

V (x) = xTETPx, (46)

the derivative of V along system (40) yields

V̇ (x(t)) = ∆ < 0, ∀(t, x) ∈ R × (Rn − {0}) (47)

under constraint (42). ...
Hence, we can show that the solution of system (40) is globally ex-

ponentially stable.

madaniel
stable.
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globally exponentially
stable.
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Remark

In the above proof, the standard Lyapunov stability theory cannot be
applied directly. The reason is that the standard Lyapunov function is
positive definite while the quadratic Lyapunov function candidate here
is positive semi-definite (not positive definite) for a singular system,
see ETP = P TE ≥ 0

A new definition for CSSP (equivalent to definition 2)

Definition 3 System (40) is said to be generalized quadratically stable
with degree α if it enjoys a Lyapunov-like property.

madaniel
standard Lyapunov stability theory cannot be
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Theorem 1 Singular system (40) with the perturbation f satisfying
the constraint (41) is generalized quadratically stable with degree α

if and only if there exist a positive scalar (= α2) and a matrix P

such that the following convex optimization problem on α2 and P is
solvable.

minimize −α2

subject to ETP = P TE ≥ 0

(

ATP + P TA + α2F TF P T

P −I

)

< 0.

(48)
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a matrix P
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Example 1 Consider the following nonlinear singular system.




1 0 0
0 0 1
0 0 0



 ẋ(t) =





−1 0 −3
3 0 −1
0 −1 1



 x(t) + αf(t, x(t)), (49)

where x(t) =
(

x1(t) x2(t) x3(t)
)T

∈ R3, α is a positive scalar,

f (t, x(t)) =





sin[x1(t) + x2(t)]
sin[x2(t) + x3(t)]
sin[x3(t) + x1(t)]



 .

For f (t, x(t)), we have

‖f (t, x(t))‖2 = α2
{

sin2[x1(t) + x2(t)] + sin2[x2(t) + x3(t)] + sin2[x3(t) + x1(t)]
}

≤ α2
{

[x1(t) + x2(t)]
2 + [x2(t) + x3(t)]

2 + [x3(t) + x1(t)]
2
}

= α2xT (t)Gx(t),
(50)

where G =





2 1 1
1 2 1
1 1 2



. The tolerable perturbation bound α is given by

α = 0.4254. It is worth pointing out that the robust stability issue of

madaniel
tolerable perturbation bound ®



The tolerable perturbation bound α is given by αmax = 0.4254. It
is worth pointing out that the robust stability issue of this example
cannot be implemented by the technique of other work, since the cor-
responding perturbations have to be bounded by modulus matrix with
time-invariant structure.

madaniel
®max = 0.4254.
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Example 3 Consider the numerical examples in (Chen and Han 1994)
and (Yan and Lam 2001).That is, (i) the system (40) with E = F = I2

and A =

(

−3 −2
1 0

)

; (ii) the system (40) with E = F = I5 and

A =













−0.2010 0.7550 0.3510 −0.0750 0.0330
−0.1490 −0.6960 −0.1600 0.1100 −0.0480
0.0810 0.0040 −0.1890 −0.0030 0.0010
−0.1730 0.8020 0.2510 −0.8040 0.0560
0.0920 −0.4670 −0.1270 0.0750 −1.1620













. (51)

For case (i), αmax = 0.5399 > 0.4495 in (Chen and Han 1994) and
0.535 in (Kim 1995)for the same example.

For case (ii), the tolerable bound is αmax = 0.1116 > 0.0929 in (Chen
and Han 1994)

For case (ii), we have that
∑5

i=1 αi max = 0.3432 while
∑5

i=1 αi max = 0.1490
in (Yan and Lam 2001)
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Motivations
Two important approach for the H∞ control:

• The LMI approach: it employs methods of semidefinite program-
ming to compute the desired optimal H∞-controllers.

This is very attractive, because easy-to-use methods for semidefinite
programming are available.

However, the computational complexity of this approach for a con-
trol plant with dimension n is up to O(n6), which is rather high.

madaniel
computational complexity
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up to O(n6),



• The (J, J ′)-lossless factorization approach:

it provides a simple and unified framework of H∞ control problem
from classical network theory point of view.

This approach leads that the optimal controllers for H∞ control
problem can be obtained by solving the asociated Riccati equations,
for which numerically reliable methods have been developed.

However, these related Riccati equations may become very ill-conditioned
when the computed optimal H∞-norm approaches to the exact op-
timal H∞-norm, which leads that these Riccati equations are very
difficult to solve.

Therefore, although every existing approach, including the LMI ap-
proach and the (J, J ′)-lossless factorization approach, has its own ap-
proach of solving the H∞ control problem, many numerical problems
associated with it remain to be studied.

madaniel
related Riccati equations may become very ill-conditioned
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Notation:

• J ∈ Rp×p, J ′ ∈ Rm×m : two given symmetric matrices;

• M ≥ 0 : M is symmetric and positive semi-definite;

• ρ(M, N): the spectral radius of the pencil −sM + N , and ρ(N) :=
ρ(I, N);

• C0,C+: imaginary axis and open right half complex plane, respec-
tively;

• Rp×m(s),RLp×m
∞ (s): set of p×m real rational matrices and set of p×m

proper real rational matrices having no poles on C0, respectively;

• G(s) =

[

−sE + A B

C D

]

means that G(s) has a realization G(s) = D +

C(sE − A)−1B.



Problem Formulation

Definition 1 (i) A matrix Θ(s) ∈ RLp×m
∞ (s) is (J, J ′)-unitary if

ΘT (−s)JΘ(s) = J ′, ∀s ∈ C.

(ii) A matrix Θ(s) ∈ RLp×m
∞ (s) is (J, J ′)-lossless if it is (J, J ′)-unitary

and
ΘT (s̄)JΘ(s) ≤ J ′, ∀s ∈ C0 ∪ C+,

where s̄ is the complex conjugate of s.

Definition 2 G(s) ∈ Rp×m(s) has a (J, J ′)-lossless factorization if it can
be represented as a product

G(s) = Θ(s)Ξ(s),

where Θ(s) ∈ RLp×m
∞ (s) is (J, J ′)-lossless, and Ξ(s) ∈ Rm×m(s) has neither

zeros nor poles in C+.
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The main existing result for the (J, J ′)-lossless factorization of general
proper rational matrices can be summarized as follows:

Assume that G(s) =

[

−sI + A B

C D

]

∈ RLp×m
∞ (s) is left invertible. Here

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. Then there exist an
orthogonal matrix S and a nonsingular matrix T such that

S

[

−sI + A B

C D

]

T =





n − n0∞ n0∞ m

−sEnf + Anf 0 0
⋆ −sE11 + A11 A12

⋆ A21 A22



 }n0∞

}m
,

where Enf is of full column rank, E11 is nonsingular,

rank(−sEnf + Anf) = n − n0∞, ∀s ∈ C0,

rank

[

−sE11 + A11 A12

A21 A22

]

= n0∞ + m, ∀s ∈ C\C0.

madaniel
S
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Partition S and T into

S =





n p

S11 S12

S21 S22

S31 S32



 }n0∞

}m
, T =

[

n − n0∞ n0∞ m

T11 T12 T13

T21 T22 T23

]

}n
}m

.

Further, let the columns of full column rank matrix





r

L1

L2

L3





}n
}n
}m

span

the stable eigenspace of the matrix pencil




−sI + A 0 B

−CTJC −sI − AT −CTJD

DTJC BT DTJD



 ,

and there exists a stable matrix Λ ∈ Rr×r such that




A 0 B

−CTJC −AT −CTJD

DTJC BT DTJD









L1

L2

L3



 =





In 0 0
0 In 0
0 0 0









L1

L2

L3



 Λ.



Theorem 1 (c.f. [1]) Let G(s) =:

[

−sI + A B

C D

]

∈ RLp×m
∞ (s) be stabiliz-

able and detectable. Then G(s) has a (J, J ′)-lossless factorization if
and only if the following conditions hold.

(i) G(s) is left invertible;
(ii) There exists a D0 ∈ Rm×m such that DT

0 S32JST
32D0 = J ′;

(iii) r + n0∞ = n,
[

L1 T12

]

is nonsingular,

X :=
[

L2 0
] [

L1 T12

]−1
≥ 0,

and the algebraic Riccati equation

Y AT + AY + Y CTJCY = 0

has a solution Y ≥ 0 such that A + Y CTJC is stable;
(vi) ρ(XY ) < 1.



Moreover, if the above conditions hold, then a (J, J ′)-lossless fac-
torization is given by the factors Θ(s) and Ξ(s):

Θ(s) =





−sI + Λ 0 Z1

0 −sI + A Z2

CL1 + DL3 C −ST
32



 D0,

Ξ(s) = −(J ′)−1DT
0

×

[

−sI + A + Y CTJC B + Y CTJD

(S31X + S32JC)(I − Y X)−1 S32JD

]

,

where

Z1 = −
[

Ir 0
] [

L1 − Y L2 T12

]−1
(ST

31 + Y CTJST
32),

Z2 = (I − Y X)−1Y (XST
31 + CTJST

32).

Obviously, Theorem 1 excludes all non-proper rational matrices.
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In [2], the (J, J ′)-lossless factorization problem for general rational
matrices has been considered using the descriptor-form representation
approach. The results in [2] are based on:

(i) a realization of G(s) =

[

−sE + A B

C D

]

, which is in standard form, i.e., there do not

exist nonsingular matrices M and N and an integer r > 0 such that M(−sE+A)N =
[

−sÊ + Â 0

0 Ir

]

;

(ii) E2 = E;

(iii) the generalized Lyapunov equation










































AY ET + EY AT + EY CTJCY ET = 0, E is singular,

AT + CTJCY ET − sET is nonsingular for all s ∈ C+,

EY ET ≥ 0,

the null space of Y ET contain the eigenspace of

−sET + AT corresponging to the eigenvalues

on C0 ∪ {∞},

(1)

(vi) existence of matrices Dπ ∈ Rm×m, K ∈ Rm×n and a (J, J ′)-lossless matrix Dc satis-

fying
[

C̃ D
]

= Dc

[

K Dπ

]

, C̃ is known. (2)

madaniel
E2 = E;



However,

• The computation of a realization of G(s) ∈ Rp×m(s), which is in the
standard form and satisfies E2 = E, is very ill-conditioned and can-
not be obtained in a numerically reliable manner. This issue is easy
to understand, for example, let us consider a very simple example.
Let G(s) be of the form

G(s) =









−sE11 + A11 A12 A13 B1

A21 0 0 B2

0 0 A33 B3

C1 C2 C3 D









,

where E11 and A33 are nonsingular.

Then, in order to get a realization of G(s) which is in the stan-
dard form, we have to compute A−1

33 . But, the computation of A−1
33

is numerically unstable and will contain large error if A33 is ill-
conditioned.

madaniel
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• The generalized Lyapunov equation (1) is very difficult to solve,

and

it is not clear under what conditions there exist Dπ, K and a (J, J ′)-
lossless matrix Dc satisfying (2) because of the requirement that Dc

is (J, J ′)-lossless.

Thus, the computation of matrices Dπ ∈ Rm×m, K ∈ Rm×n and a
(J, J ′)-lossless matrix Dc has to be studied further.

Hence, there is still a lack of numerically reliable methods for solving
the (J, J ′)-lossless factorization problem with general rational matrices.

madaniel
is very di±cult to solve,
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New Result

Theorem 2 Given a rational matrix G(s) ∈ Rp×m(s). Let

G(s) =

[

−sE + A B

C 0

]

, E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n (3)

be its minimal realization. There exist non-negative integers n1, n2

and n3 with n1 + n2 + n3 = n, orthogonal matrices P, Q, U ∈ Rn×n, W ∈
Rm×m and V ∈ R(n1+n3)×(n1+n3) with U and V being partitioned as

U =

[

n1 + n2 n3

U11 U12

U21 U22

]

}n1 + n2

}n3
, rank(U11) = n1 + n2,

V =

[

n3 n1

V11 V12

V21 V22

]

}n3

}n1
, rank(V11) = n3

such that







U11 0 U12

0 I 0
U21 0 U22









P 0 0
0 I 0
0 0 P









−sE + A B −sE + A

C 0 C

−sE + A B 0





×





Q 0 0
0 W 0
0 0 Q

















In1+n2 0 0 0 0
0 V11 0 V12 0
0 0 Im 0 0
0 V21 0 V22 0
0 0 0 0 I













=













n1 n2 n3 n3 m − n3 n

−sE11 + A11 −sE12 + A12 A13 0 B12 ⋆

0 −sE22 + A22 A23 0 B22 ⋆

0 A32 A33 B31 0 ⋆

C1 C2 C3 0 0 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆













}n1

}n2

}n3

}p
}n

, (4)

where ⋆ denotes the sub-block which we are not interested in,



and

rank(E11) = n1, rank(E22) = n2, rank(B31) = n3, (5)

rank

[

−sE22 + A22 A23

A32 A33

]

= n2 + n3, ∀s ∈ C. (6)

The computation of the factorization (4) needs only O(n3 + m3) flops.

Assume that G(s) ∈ Rp×m(s) with a minimal realization (3) is left
invertible. Then

max
s∈C

rank





−sE11 + A11 −sE12 + A12 A13 B12

0 −sE22 + A22 A23 B22

C1 C2 C3 0





= (n + m) − n3 = n1 + n2 + n3 + (m − n3),



Therefore, the generalized lower triangular form of the pencil is of
the form

S





−sE11 + A11 −sE12 + A12 A13 B12

0 −sE22 + A22 A23 B22

C1 C2 C3 0



 T =









n1 + n2 − n0∞ n0∞ n3 m − n3

−sEnf + Anf 0 0 0
−sE10 + A10 −sE11 + A11 A12 A13

−sE20 + A20 A21 A22 A23

−sE30 + A30 A31 A32 A33









}n0∞

}n3

}m − n3

, (7)

where S and T are orthogonal, Enf is of full column rank, E11 is nonsin-
gular, and

rank(−sEnf + Anf) = n1 + n2 − n0∞, ∀s ∈ C0,

rank





−sE11 + A11 A12 A13

A21 A22 A23

A31 A32 A33



 = n0∞ + m, ∀s ∈ C\C0.



Partitioning S and T into










































































S =











n1 n2 p
S11 S12 S13
S21 S22 S23
S31 S32 S33
S41 S42 S43











}n0∞

}n3

}m − n3

,

T =











n1 + n2 − n0∞ n0∞ n3 m − n3
T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44











}n1

}n2

}n3

}m − n3

.

(8)

Obviously, the factorization (7) has isolated the zeros of G(s) on C0 and

at infinity to





−sE11 + A11 A12 A13

A21 A22 A23

A31 A32 A33



.



Let the columns of full column rank matrix

[

LT

1 LT

2 LT

3 LT

4 LT

5 LT

6

]T

with L1, L3 ∈ Rn1×r, L2, L4 ∈ Rn2×r, L5 ∈ Rn3×r and L6 ∈ R(m−n3)×r span the stable eigenspace of the pencil

















−sE11 + A11 −sE12 + A12 0 0 A13 B12

0 −sE22 + A22 0 0 A23 B22

−CT

1 JC1 −CT

1 JC2 −(sE11 + A11)
T 0 −CT

1 JC3 0
−CT

2 JC1 −CT

2 JC2 −(sE12 + A12)
T −(sE22 + A22)

T −CT

2 JC3 0
CT

3 JC1 CT

3 JC2 AT

13 AT

23 CT

3 JC3 0
0 0 BT

12 BT

22 0 0

















,

which gives
















A11 A12 0 0 A13 B12

0 A22 0 0 A23 B22

−CT

1 JC1 −CT

1 JC2 −AT

11 0 −CT

1 JC3 0
−CT

2 JC1 −CT

2 JC2 −AT

12 −AT

22 −CT

2 JC3 0
CT

3 JC1 CT

3 JC2 AT

13 AT

23 CT

3 JC3 0
0 0 BT

12 BT

22 0 0

































L1

L2

L3

L4

L5

L6

















=

















E11 E12 0 0 0 0
0 E22 0 0 0 0
0 0 ET

11 0 0 0
0 0 ET

12 ET

22 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































L1

L2

L3

L4

L5

L6

















∆, (9)

where ∆ ∈ Rr×r is stable.



Theorem 3 Given G(s) ∈ Rp×m(s) with a minimal realization (3). Assume that the

factorizations in Theorem 2. have been determined. Then G(s) has a (J, J ′)-lossless

factorization if and only if the following conditions hold:

(a) G(s) is left invertible;

(b) There exists a nonsingular matrix D0 ∈ Rm×m such that

DT
0

[

S33

S43

]

J
[

ST
33 ST

43

]

D0 = J ′. (10)

(c)

r + n0∞ = n1 + n2,

[

L1 T12

L2 T22

]

is nonsingular, (11)

[

E11L1 + E12L2 E11T12 + E12T22

E22L2 E22T22

]T [

L3 0

L4 0

]

≥ 0. (12)

and the algebraic Riccati equation

E11Y11A
T
11 + A11Y11E

T
11 + E11Y11C

T
1 JC1Y11E

T
11 = 0 (13)

has a solution Y11 ≥ 0 such that the pencil −sE11 + A11 + E11Y11C
T
1 JC1 is stable.

(d)

ρ(

[

L1 T12

L2 T22

]

,

[

Y11E
T
11L3 0

0 0

]

) < 1. (14)



Furthermore, in the case that the conditions (a), (b), (c) and (d)
above hold, if we define the following two QR factorizations

Ŵ

[

ST
21

ST
22

]

=

[

0
RŴ

]

, ŴŴT = I, rank(RŴ) = n0∞, (15)























W̃(

[

In1 0 0

0 Ir 0

]







E11Y11E
T
11L3

E11L1 + E12L2

E22L2






) =

[

0

RW̃

]

,

W̃W̃T = I, rank(RW̃) = r,

(16)

and partition

[

W̃ 0
0 I

] [

I 0

0 Ŵ

]





I 0 0
I I 0
0 0 In2



 =:

[

n1 n1 + n2

W11 W12

W21 W22

]

}n1

}n1 + n2
, (17)



then a (J, J ′)-lossless factorization of G(s) is given by the factors
Θ(s) and Ξ(s):

Θ(s) =










−sEΘ + AΘ 0 Z1

0 W11(−sE11 + A11) Z2

C1L1 + C2L2 + C3L5 C1 −

[

S33

S43

]T











D0, (18)

Ξ(s) = −(J ′)−1DT
0

[

sEΞ + AΞ BΞ

CΞ 0

]

W T , (19)



where

−sEΘ + AΘ

=
[

Ir 0
]

Ŵ

[

E11 E12

0 E22

] [

L1 − Y11E
T
11L3

L2

]

(−sI + ∆),

Z1 = −
[

Ir 0
]

Ŵ

(

[

S31 S32

S41 S42

]T

+

[

E11Y11C
T
1

0

]

J

[

S33

S43

]T
)

,

Z2 = −W12

[

S31 S32

S41 S42

]T

+ (W11 −W12

[

In1

0

]

)E11Y11C
T
1 J

[

S33

S43

]T

,

−sEΞ + AΞ =

(





−sE11 + A11 −sE12 + A12 A13

0 −sE22 + A22 A23

0 A32 A33



 +





E11Y11C
T
1 J

0

0





[

C1 C2 C3

]

)

×





L1 − Y11E
T
11L3 T12 0

L2 T22 0

0 0 I



 ,

BΞ =





0 B12

0 B21

B31 0



 ,

CΞ =

[

S31 S32 S33J

S41 S42 S43J

]





L3 0 0

L4 0 0

C1L1 + C2L2 C1T12 + C2T22 C3



 .



Algorithm 1
Input: G(s) ∈ Rp×m(s) with a minimal realization (3).
Output: A (J, J ′)-lossless factorization G(s) = Θ(s)Ξ(s) of G(s), if pos-
sible.

Step 1. Compute the maxs∈C rank

[

−sE + A B

C 0

]

using the generalized

lower triangular form [3] of the pencil
[

−sE + A B

C 0

]

,

if it equals to n + m, continue the process. Otherewise, stop;
Step 2. Compute the factorizations (4), (7) and (9);
Step 3. Solve the algebraic Riccati equation (13);
Step 4. Verify the conditions (10), (11), (12) and (14). If these
conditions hold, continue. Otherwise, stop;
Step 5. Compute QR factorizations (15) and (16) and then do the
partitioning (17).
Step 6. Compute the factors Θ(s) and Ξ(s) by (18) and (19). Output
Θ(s) and Ξ(s) and then stop.



We comment on Algorithm 1 as follows:

• The basis of Algorithm 1 is the factorization (4) whose computation
is numerically backward stable;

• Steps 1, 2, 4 and 5 are all implemented by only orthogonal trans-
formations which are numerically backward stable;

• The algebraic Riccati equation (13) in Step 3 can be solved by
MATLAB code care.m which is known to be numerically reliable;

• J ′ is symmetric, its inverse in Step 6 can be computed by SVDs
or QR factorizations which are numerically reliable. Moreover, its
computation has no effect on Steps 1–5. Here we wish to emphasize
that it is almost impossible to avoid the computation of (J ′)−1 in
(J, J ′)-lossless factorization problem.

Therefore, Algorithm 1 can be implemented in a numerically reliable
manner.

madaniel
orthogonal transformations

madaniel
numerically backward stable;

madaniel
Riccati equation

madaniel
its inverse

madaniel
J′
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QR factorizations
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Conclusions
We have presented necessary and sufficient solvability conditions and

developed a numerical algorithm based on a generalized eigenvalue
approach for the (J, J ′)-lossless factorization of any general rational
matrix G(s) ∈ Rp×m(s).

Our algorithm consists of the

• factorization (4),

• eigen-factorizations(7) and (9) and

• solving the algebraic Riccati equation (13).

Thus, the (J, J ′)-lossless factorization can be computed in a numerically
reliable manner. A numerical example has also been given to illustrate
the proposed algorithm.
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