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Uniform domains
▶ Given a diffusion process on a space X and a domain U ⊂ X ,

does the reflected diffusion on U inherit properties from
diffusion on the X?

▶ (Martio, Sarvas ‘79) A connected, non-empty, proper open set
U ⊊ X is said to be a A-uniform domain(A ≥ 1) if for every
pair of points x , y ∈ U, there exists a curve γ in U from x to
y such that its diameter diam(γ) ≤ Ad(x , y), and

dist (z ,Uc) ≥ A−1min (d(x , z), d(y , z)) for all z ∈ γ.
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Why study uniform domains?

▶ There is a one-to-one correspondence between a class of
uniform domains and Gromov-hyperbolic spaces (Bonk,
Heinonen, Koskela ‘01)

▶ (Rajala ‘21) Uniform domains are abundant in the sense that
every bounded domain can be approximated by a uniform
domain.

▶ Given a complete, doubling metric space (X , d) that is
bi-Lipschitz equivalent to a length space, a bounded domain Ω
and ϵ > 0, there exist uniform domains Ωo and Ωi such that

Ωi ⊂ Ω ⊂ Ω0, Ωo ⊂ [Ω]ϵ, (Ωi )
c ⊂ [Ωc ]ϵ.

▶ Uniform domains can have fractal boundaries and are far from
smooth in general.
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Koch snowflake is a uniform domain

Image: Wikipedia
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Reflected diffusions on Rn

▶ (Skorohod ‘62) For a smooth domain U in Rn, the reflected
Brownian motion on U is the solution to the stochastic
differential equation

Y (t) = Y (0) + B(t) +

ˆ t

0
n⃗(Y (s)) dLs ,

where B(t) is the standard Brownian motion on Rn, Ls is the
‘boundary local time’ of the process Y (s) and n⃗(x) is the
inward pointing unit normal vector at x ∈ ∂U.

▶ (Fukushima ‘67) The Dirichlet form approach involves the
bilinear form

EU(f , f ) :=
1

2

ˆ
U
|∇f |2 (x) dx ,

for all f ∈ W 1,2(U). This defines a Markov process on U∗

where U∗ is an abtract closure of U (Martin-Kuramochi
compactification).
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Symmetric Markov process

▶ (X , d) complete, locally compact metric space equipped with
a Radon measure m.

▶ Let (Bt)t≥0 be a m-symmetric Markov process. That is the
Markov semigroup (Pt)t≥0

Pt f (x) := Ex f (Bt) = E[f (Bt)|B0 = x ],

satisfies

⟨Pt f , g⟩ = ⟨f ,Ptg⟩, for all f , g ∈ L2(X ,m)

▶ Example: Brownian motion on Rn is symmetric with respect
to the Lebesgue measure

6 / 24



Dirichlet form associated with a symmetric diffusion

▶ The corresponding Dirichlet form (E ,F) is defined by

E(f , f ) = lim
t↓0

1

t
⟨f , (I − Pt)f ⟩, for all f ∈ F ,

where

F =

{
f ∈ L2(X ,m) : lim

t↓0

1

t
⟨f , (I − Pt)f ⟩ < ∞

}
▶ For the standard Brownian motion on Rn (m =Lebesgue)

E(f , f ) = 1

2

ˆ
Rn

|∇f |2 dm, F = W 1,2(Rn).
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Dirichet form

▶ Let (E ,F) be a Dirichlet form on L2(X ,m).

▶ F is a dense linear subspace of L2(X ,m).

▶ E : F × F → R is a non-negative definite, symmetric, and
bilinear.

▶ (E ,F) is closed (F is a Hilbert space under the inner product
E1 := E + ⟨·, ·⟩L2(X ,m)).

▶ (E ,F) is Markovian:

f + ∧ 1 ∈ F and E(f + ∧ 1, f + ∧ 1) ≤ E(f , f ) for any f ∈ F .
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Dirichlet forms: regularity, strong-locality

▶ (E ,F) is called regular if F ∩ Cc(X ) is dense both in (F , E1)
and in (Cc(X ), ∥ · ∥sup).

▶ (E ,F) is called strongly local if E(f , g) = 0 for any f , g ∈ F
with suppm[f − a1X ] ∩ suppm[g ] = ∅ for some a ∈ R.

▶ MMD space is a metric measure space (X , d ,m) with a
strongly local, regular, Dirichlet form (E ,F) on L2(X ,m).
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Fukushima’s theorem ‘71

Every regular Dirichlet form has an associated symmetric Markov
process.

If the Dirichlet form is strongly local the Markov process has
continuous sample paths (a diffusion process).
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Energy measure corresponding to a Dirichlet form

▶ The energy measure Γ(f , f ) of f ∈ F ∩ L∞(X ,m)

ˆ
X
g dΓ(f , f ) = E(f , fg)− 1

2
E(f 2, g) for all g ∈ F ∩ Cc(X ),

and then by
Γ(f , f )(A) := limn→∞ Γ

(
(−n) ∨ (f ∧ n), (−n) ∨ (f ∧ n)

)
(A)

for each Borel subset A of X for general f ∈ F .

▶ For standard Brownian motion on Rn

Γ(f , f ) =
1

2
|∇f |2 dm ≪ m.

▶ Warning: Γ(f , f ) ⊥ m is possible.
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Local Dirichlet space on an open set U

Floc(U) :=

{
f

∣∣∣∣∣
f is an m-equivalence class of functions on U such
that f 1V = f #1V m-a.e. for some f # ∈ F for
each relatively compact open subset V of U

}

The energy measure of a function f ∈ Floc(U) is defined as
ΓU(f , f )(A) = Γ(f #, f #)(A), for all A ⊂ V , with V , f # as above.
We define

F(U) := {f ∈ Floc(U) :

ˆ
U
f 2 dm +

ˆ
U
ΓU(f , f ) < ∞},

and the bilinear form (EU ,F(U)) as

EU(f , f ) =
ˆ
U
ΓU(f , f ), for all f ∈ F(U).

Warning: (EU ,F(U)) need not be a Dirichlet form on L2(U,m|U).
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Sub-Gaussian heat kernel estimates

We say that (X , d ,m, E ,F) satisfies the sub-Gaussian heat kernel
estimates HKE(β), if there exist C1, c1, c2, c3, δ ∈ (0,∞) and a
heat kernel {pt}t>0 such that for any t > 0, such that

Pt f (x) =

ˆ
X
pt(x , y)f (y)m(dy) for all f ∈ L2(X ,m),

and

pt(x , y) ≤
C1

m
(
B(x , t1/β)

) exp(−c1

(
c2
d(x , y)β

t

)1/(β−1)
)

pt(x , y) ≥
c3

m
(
B(x , t1/β)

)1d(x ,y)≤δt1/β for m-a.e. x , y ∈ X .

Hino ‘05 showed that β ≥ 2.
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Examples of sub-Gaussian heat kernel estimates

▶ Sub-Gaussian estimate HKE(β)implies that Ex [τB(x ,r)] ≍ rβ.

▶ (Aronson ‘68) Gaussian estimates for uniformly elliptic
operators on Rn.

▶ (Li-Yau ‘86) Riemannain manifolds with non-negative Ricci
curvature satisfies Gaussian bounds HKE(2).

▶ (Barlow, Perkins ‘88) Brownian motion on the Sierpiński
gasket satisfies HKE(log2 5).

▶ (Barlow, Bass ‘99) Brownian motion on the Sierpiński carpet
satisfies HKE(β), where β > 2.

▶ Many other examples due to Barlow, Fitzsimmons, Hambly,
Kumagai, Kigami, Lindstörm, ...
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Heat kernel estimate for reflected diffusion

Theorem (M‘23+)

Let (X , d ,m, E ,F) be a MMD space satisfying sub-Gaussian heat
kernel estimate HKE(β), where m is a doubling measure and
β ≥ 2.

1. Then for any uniform domain U ⊂ X, (EU ,F(U)) is a
strongly local regular Dirichlet form on L2(U,m).

2. The MMD space (U, d ,m, EU ,F(U)) also satisfies
sub-Gaussian heat kernel bounds HKE(β).
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Extension theorem

Theorem (M. ‘23+)

Let (X , d ,m, E ,F) be a MMD space that satisfies sub-Gaussian
heat kernel bounds HKE(β), where m is a doubling measure. For
any uniform domain U, there exists a bounded linear extension
operator E : F(U) → F such that E (f )|U = f for all f ∈ F(U).

Furthermore, there exist C ,K ∈ (1,∞), c ∈ (0, 1) such that for all
x ∈ U, and f ∈ F(U), we have

Γ(E (f ),E (f ))(B(x , r)) ≤ CΓU(f , f )(BU(x ,Kr)), 0 < r < c diam(U);ˆ
B(x ,r)

|E (f )|2 dm ≤ C

ˆ
BU(x ,Kr)

f 2 dm for all r > 0;

E(E (f ),E (f )) ≤ C

(
EU(f , f ) +

1

diam(U)β

ˆ
U
f 2 dm

)
;

ˆ
X
|Ef |2 dm ≤ C

ˆ
X
f 2 dm,

where BU(x , r) := U ∩ B(x , r).
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Previous results

Theorem (Jones ‘81 Acta Math.)

For any uniform domain U in Rn, k ∈ N, p ∈ [1,∞], there exists a
bounded linear extension map E : W k,p(U) → W k,p(Rn).

Extension theorem on Lipschitz domains is due to Calderón ‘69 and
Stein ‘70. Similar extension result was obtained by Garofalo-Nhieu
‘98 for Carnot-Carathéodory spaces and by Björn-Shanmugalingam
‘07 for Sobolev space based on upper gradient N1,p.

Theorem (Gyrya, Saloff-Coste ‘11 Astérisque)

Let (X , d ,m, E ,F) be a MMD space satisfying HKE(2). Then for
any uniform domain U ⊂ X, (EU ,F(U)) is a strongly local regular
Dirichlet form on L2(U,m). The MMD space
(U, d ,m|U , EU ,F(U)) also satisfies Gaussian heat kernel bounds
HKE(2).
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A difference between β = 2 and β > 2

Theorem (Kajino, M.‘20 Ann. Prob.)

Let (X , d ,m) be a metric measure space with a m-symmetric
diffusion that satisfies sub-Gaussian heat kernel bound HKE(β) and
such that d is bi-Lipschitz equivalent to a geodesic metric. Then

1. (Singularity) If β > 2, then Γ(f , f ) ⊥ m for all f ∈ F .

2. (Absolute continuity) If β = 2, then Γ(f , f ) ≪ m for all
f ∈ F .

The singularity of energy measure was conjecture by M. Barlow ‘03.
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Remarks on the proof of extension theorem

▶ The construction of the extension operator is similar to the
work of Jones using a partition of unity with ‘low energy
functions’ and a quasi-conformal type reflection of Whitney
covers.

▶ The proof of Jones and other earlier works rely on point-wise
upper bounds on the gradient of the extended function to
obtain upper bound on the Sobolev norm.

▶ Since the energy measure may be singular to the symmetric
measure, we can not rely on point-wise bounds on gradient.

▶ How to estimate
´
Rn |∇f |2 dm without estimating the

distributional gradient |∇f | for f ∈ W 1,2(Rn)?

▶ Korevaar-Schoen theorem ‘93: For all f ∈ W 1,2(Rn)

ˆ
Rn

|∇f |2 dm ≍ lim inf
r↓0

ˆ
Rn

 
B(x ,r)

|f (x)− f (y)|2

r2
m(dy)m(dx).
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Remarks on the proof of extension theorem

▶ Theorem (Grigor’yan, Hu and Lau ‘03) Let (X , d ,m, E ,F)
satisfy the sub-Gaussian heat kernel estimate HKE(β). A
function f ∈ L2(X ,m) belong to F if and only

lim inf
r↓0

ˆ
X

 
B(x ,r)

|f (x)− f (y)|2

rβ
m(dy)m(dx) < ∞.

Furthermore, for all f ∈ F

E(f , f ) ≍ lim inf
r↓0

ˆ
X

 
B(x ,r)

|f (x)− f (y)|2

rβ
m(dy)m(dx).

▶ Our proof that the extended function E (f ) ∈ F relies on the
above condition.

▶ We prove a version of the above estimate for energy measure.
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Proving heat kernel estimates using extension theorem

▶ Barlow, Bass, Kumagai ‘06, Grigor’yan, Hu, Lau ‘15: Given a
MMD space (X , d ,m, E ,F) the sub-Gaussian heat kernel
estimate HKE(β) is equivalent to the doubling property of m,
Poincaré inequality PI(β) and cutoff energy inequality CS(β).

▶ Message: The extension theorem implies that functional
inequalities are inherited by the domain from the ambient
space.

▶ For an MMD space (X , d ,m, E ,F) the Poincaré inequality
PI(β) is as follows: there exist C ,A1,A2 ∈ (1,∞) such that
for all x ∈ X , 0 < r < diam(X , d)/A2, f ∈ F , we have

inf
α∈R

ˆ
B(x ,r)

|f − α|2 dm ≤ Crβ
ˆ
B(x ,A1r)

dΓ(f , f ).
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PI(β) is as follows: there exist C ,A1,A2 ∈ (1,∞) such that
for all x ∈ X , 0 < r < diam(X , d)/A2, f ∈ F , we have

inf
α∈R

ˆ
B(x ,r)

|f − α|2 dm ≤ Crβ
ˆ
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Poincaré inequality for reflected diffusion

We will see how to prove Poincaré inequality for the MMD space
(U, d ,m|U , EU ,F(U)) corresponding to the reflected diffusion
using that for the ambient diffusion (X , d ,m, E ,F).

For any
f ∈ F(U), x ∈ U, 0 < r < diam(U, d)/A2

inf
α∈R

ˆ
U∩B(x ,r)

|f − α|2 dm ≤ inf
α∈R

ˆ
B(x ,r)

|E (f )− α|2 dm

≲ rβ
ˆ
B(x ,A1r)

dΓ(E (f ),E (f ))

≲ rβ
ˆ
U∩B(x ,KA1r)

dΓU(f , f ).
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Poincaré inequality for reflected diffusion

We will see how to prove Poincaré inequality for the MMD space
(U, d ,m|U , EU ,F(U)) corresponding to the reflected diffusion
using that for the ambient diffusion (X , d ,m, E ,F). For any
f ∈ F(U), x ∈ U, 0 < r < diam(U, d)/A2

inf
α∈R

ˆ
U∩B(x ,r)

|f − α|2 dm ≤ inf
α∈R

ˆ
B(x ,r)

|E (f )− α|2 dm

≲ rβ
ˆ
B(x ,A1r)

dΓ(E (f ),E (f ))

≲ rβ
ˆ
U∩B(x ,KA1r)

dΓU(f , f ).

22 / 24



A conjecture of Grigor’yan, Hu, Lau ‘14

▶ It is also possible to prove the Poincaré inequality without the
use of extension map using the approach of Gyrya and
Saloff-Coste. However I do not know how to prove the cutoff
energy inequality without using the extension theorem.

▶ GHL conjecture: Given a MMD space (X , d ,m, E ,F) the
sub-Gaussian heat kernel estimate HKE(β) is equivalent to
the doubling property of m, Poincaré inequality PI(β) and the
following capacity upper bound: there exists C ∈ (0,∞) such
that

Cap(B(x , r),B(x , 2r)c) ≤ C
m(B(x , r))

rβ
.

▶ If the above conjecture were true, the proof of heat kernel
bound for uniform domains can be simplified without relying
on the extension theorem and can also be used to handle
inner uniform domains.
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Thank you for your attention

M. Murugan, Heat kernel for reflected diffusion and extension
property on uniform domains, arXiv:2304.03908.
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