Dimensions of Non-autonomous self-affine sets

Jun Jie Miao Joint work with Yifei Gu

East China Normal University

Fractal Geometry & Related Topics The Chinese University of Hong Kong

Moran sets

Compact $J \subset \mathbb{R}^d$ with $\operatorname{int}(J) \neq \emptyset$. Integer sequence $\{n_k > 0\}_{k=1}^{\infty}$. $\Sigma^k = \{u_1 u_2 \cdots u_k : 1 \le u_j \le n_j, j \le k\}, \qquad \Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k$ $(c_{k,1}, c_{k,2}, \cdots, c_{k,n_k})$ satisfies $\Sigma_{j=1}^{n_k} (c_{k,j})^d \le 1$ for each $k \in \mathbb{N}$. The collection $\mathcal{F} = \{J_{\mathbf{u}} : \mathbf{u} \in \Sigma^*\}$ satisfies MSC:

For each u ∈ Σ*, J_u is geometrically similar to J.
 For all k ∈ N and u ∈ Σ^{k-1}, J_{ui} ⊂ J_u, int(J_{ui}) ∩ int(J_{ui'}) = Ø for i ≠ i', and, for all 1 ≤ i ≤ n_k, |J_{ui}| = c_{k,i},

The non-empty compact set

$$E = E(\mathcal{F}) = \bigcap_{k=1}^{\infty} \bigcup_{\mathbf{u} \in \Sigma^k} J_{\mathbf{u}}$$

is called a *Moran set* determined by \mathcal{F} .

For all $k'>k\geq 0,$ let $d_{k,k'}$ be the unique real solution of the equation $\Delta_{k,k'}(d)=1,$ where

$$\Delta_{k,k'}(d) = \prod_{i=k+1}^{k'} \left(\sum_{j=1}^{n_i} (c_{i,j})^d \right).$$
(1)

Let d_* , d^* and d^{**} be the real numbers given respectively by

$$d_* = \liminf_{m \to \infty} d_{0,m}, \quad d^* = \limsup_{m \to \infty} d_{0,m}, \quad d^{**} = \lim_{m \to \infty} \left(\sup_k d_{k,k+m} \right).$$

Theorem (Feng, Hua, Li, Rao, Wen, Wu, Xi): Given $\inf\{c_{i,j}\} > 0$.

 $\dim_H E = d_*, \quad \dim_P E = \overline{\dim}_B E = d^*, \quad \dim_A E = d^{**}.$

An iterated function system (IFS) is a finite family of contractions $S_1, \ldots, S_N : \mathbb{R}^d \to \mathbb{R}^d$ with $N \ge 2$. It is well-known that there is a non-empty compact set $E \subseteq \mathbb{R}^d$ such that

$$E = \bigcup_{i=1}^{N} S_i(E), \tag{2}$$

called the *attractor*.

If the IFS consists of affine contractions $S_i: \mathbb{R}^d \to \mathbb{R}^d$

$$S_i(x) = T_i(x) + a_i, \qquad i = 1, 2, \dots, N,$$
(3)

where $a_i \in \mathbb{R}^d$ is a translation vector and T_i is a non-singular linear mapping, we call the attractor E self-affine set.

For $0 \leq s \leq d$, the singular value function of T is defined by

$$\phi^{s}(T) = \alpha_{1}(T)\alpha_{2}(T)\dots\alpha_{m-1}(T)\alpha_{m}^{s-m+1}(T),$$
(4)

where m is the integer such that $m - 1 < s \le m$.

Let $d(T_1, \ldots, T_M)$ be the unique solution to

$$\lim_{k \to \infty} \left(\sum_{\mathbf{i} \in \mathcal{I}^k} \phi^s(T_{\mathbf{i}}) \right)^{\frac{1}{k}} = 1,$$

which is often called affine dimension or Falconer dimension.

Theorem (Falconer, Solomyak): Given $||T_i|| < \frac{1}{2}$ for i = 1, 2, ..., M, it turns out that

$$\dim_{\mathrm{H}} F = \dim_{\mathrm{B}} F = \min\{d, d(T_1, \dots, T_M)\},$$
(5)

for almost all $\mathbf{a} = (a_1, \ldots, a_M) \in \mathbb{R}^{Md}$.

Theorem (Jordan, Pollicott and Simon): Given $||T_i|| < 1$ for i = 1, 2, ..., M, it turns out that

 $\dim_{\mathrm{H}} F(\omega) = \dim_{\mathrm{B}} F(\omega) = \min\{d, d(T_1, \dots, T_M)\}, \quad (6)$

for almost all random perturbation ω .

Let $\{\Xi_k\}_{k\geq 1}$ be a sequence of collections of contractive mappings, that is

$$\Xi_k = \{S_{k,1}, S_{k,2}, \dots, S_{k,n_k}\},\tag{7}$$

where each $S_{k,j}$ satisfies that $|S_{k,j}(x) - S_{k,j}(y)| \le c_{k,j}|x-y|$ for some $0 < c_{k,j} < 1$.

We say the collection $\mathcal{J} = \{J_{\mathbf{u}} : \mathbf{u} \in \Sigma^*\}$ of closed subsets of J fulfils the *Non-autonomous Moran structure* if it satisfies the following conditions:

- (1). For all integers k > 0 and all $\mathbf{u} \in \Sigma^{k-1}$, the elements $J_{\mathbf{u}1}, J_{\mathbf{u}2}, \cdots, J_{\mathbf{u}n_k}$ of \mathcal{J} are the subsets of $J_{\mathbf{u}}$. We write $J_{\emptyset} = J$ for the empty word \emptyset .
- (2). For each $\mathbf{u} = u_1 \dots u_k \in \Sigma^*$, there exists an transformation $\Psi_{\mathbf{u}} : \mathbb{R}^d \to \mathbb{R}^d$ such that

$$J_{\mathbf{u}} = \Psi_{\mathbf{u}}(J) = \Psi_{u_1} \circ \ldots \circ \Psi_{u_j} \ldots \circ \Psi_{u_k}(J),$$

where
$$\Psi_{u_j}(x) = S_{j,u_j}x + \omega_{u_1...u_j}$$
, for some $\omega_{u_1...u_j} \in \mathbb{R}^d$, and $S_{j,u_j} \in \Xi_j$, $j = 1, 2, ..., k$.

(3). The maximum of the diameters of $J_{\mathbf{u}}$ tends to 0 as $|\mathbf{u}|$ tends to ∞ , that is,

$$\lim_{k \to \infty} \max_{\mathbf{u} \in \Sigma^k} |J_{\mathbf{u}}| = 0.$$

The non-empty compact set

$$E = E(\mathcal{J}) = \bigcap_{k=1}^{\infty} \bigcup_{\mathbf{u} \in \Sigma^k} J_{\mathbf{u}}$$
(8)

is called a *non-autonomous attractor* determined by \mathcal{J} . For all $\mathbf{u} \in \Sigma^k$, the elements $J_{\mathbf{u}}$ are called *kth-level basic sets* of E. If the non-autonomous attractor E satisfies that for all $k \in \mathbb{N}$ and $\mathbf{u} \in \Sigma^{k-1}$.

$$\operatorname{int}(J_{\mathbf{u}i}) \cap \operatorname{int}(J_{\mathbf{u}i'}) = \emptyset \quad \text{ for } i \neq i' \in \{1, 2, \dots, n_k\},$$

we say E satisfies open set condition (OSC).

Let $\{\Xi_k\}_{k\geq 1}$ be a sequence of collections of contractive matrices, that is

$$\Xi_k = \{T_{k,1}, T_{k,2}, \dots, T_{k,n_k}\},\tag{9}$$

where $T_{k,j}$ are $d \times d$ matrices with $||T_{k,j}|| < 1$ for $j = 1, 2, ..., n_k$. We call the non-autonomous attractor E the *non-autonomous*

affine set or self-affine Moran set determined by \mathcal{J} .

For all $\mathbf{u} \in \Sigma^k$, the elements $J_{\mathbf{u}}$ are called *kth-level basic sets* of *E*.

we always assume that

$$0 < \alpha_{-} \le \alpha_{+} < 1. \tag{10}$$

For each s>0 and $0<\epsilon<1,$ let m be the integer such that $m-1< s\leq m$ and define

$$\Sigma^*(s,\epsilon) = \{ \mathbf{u} = u_1 \dots u_k \in \Sigma^* : \epsilon < \alpha_m(T_{\mathbf{u}^-}), \text{ and } \alpha_m(T_{\mathbf{u}}) \le \epsilon \}.$$

We define

$$s^* = \inf \left\{ s : \limsup_{\epsilon \to 0} \sum_{\mathbf{u} \in \Sigma^*(s,\epsilon)} \phi^s(T_{\mathbf{u}}) < \infty \right\}.$$
(11)

Theorem: Let E be the self-affine Moran set given by (8). Then $\overline{\dim}_{B}E \leq \min\{s^*, d\}.$

Theorem: Let E be the self-affine Moran set given by (8) and satisfying OPC. Suppose that there exists c > 0 such that

$$\mathcal{L}^{d-1}\{\operatorname{proj}_{\Theta}(J \cap \Psi_{\mathbf{u}}^{-1}(E))\} \ge c,$$

for all (d-1)-dimensional subspaces Θ and all $\mathbf{u} \in \Sigma^*$. Then

$$\overline{\dim}_{\mathrm{B}}E = s^*.$$

Hausdorff dimension

For each integer k > 0, let

$$\mathcal{M}^{s}_{(k)}(G) = \inf \left\{ \sum_{\mathbf{u}} \phi^{s}(T_{\mathbf{u}}) : G \subset \bigcup_{\mathbf{u}} \mathcal{C}_{\mathbf{u}}, |\mathbf{u}| \ge k \right\}.$$
$$\mathcal{M}^{s}(G) = \lim_{k \to \infty} \mathcal{M}^{s}_{(k)}(G), \qquad (12)$$

for all $G \subset \Sigma^{\infty}$.

We define

$$s_A = \inf\{s : \mathcal{M}^s(\Sigma^\infty) = 0\} = \sup\{s : \mathcal{M}^s(\Sigma^\infty) = \infty\}.$$
 (13)

Theorem: Let E be the self-affine Moran set given by (8). Then

 $\dim_{\mathrm{H}} E \leq \min\{s_A, d\}.$

Let \mathcal{D} be a bounded region in \mathbb{R}^d . For each $\mathbf{u} \in \Sigma^*$, let $\omega_{\mathbf{u}} \in \mathcal{D}$ be a random vector distributed according to some Borel probability measure $P_{\rm m}$ that is absolutely continuous with respect to d-dimensional Lebesgue measure. We assume that the $\omega_{\mathbf{u}}$ are independent identically distributed random vectors. We let P denote the product probability measure $\mathbf{P} = \prod_{\mathbf{u} \in \Sigma^*} P_{\mathbf{u}}$ on the family $\omega = \{\omega_{\mathbf{u}} : \mathbf{u} \in \Sigma^*\}$. In this context, for each $\mathbf{u} = u_1 \dots u_k \in \Sigma^*$, we assume that the translation of Ψ_{u_i} is an element of ω , that is,

$$\Psi_{u_j}(x) = T_{j,u_j}x + \omega_{u_1\dots u_j}, \qquad \omega_{u_1\dots u_j} \in \omega = \{\omega_{\mathbf{u}} : \mathbf{u} \in \Sigma^*\},\$$

for j = 1, 2, ..., k.

Theorem: Let E^{ω} be the self-affine Moran set with random translation. Then for P-almost all ω ,

 $\dim_{\mathrm{H}} E^{\omega} = \min\{s_A, d\}$

Theorem: The two critical values satisfy that

$$s_A \leq s^*$$

where the inequality may hold strictly.

Theorem: Suppose that $\Xi_k = \{T_1, T_2, \dots, T_M\}$ for all k > 0. Then $s_A = s^* = d(T_1, \dots, T_M).$

Thank you !