Biaccessbility	
Dimension	
CUHK-2023	
What We Sduty Bine Dimension Hubbard Tree	On Biaccessibility Dimension of Quadratic Julia Sets
Growth Number $r_{ heta}$	
$\partial \mathcal{M} \xrightarrow{h_T} \mathbb{R}$	Jun LUO, SYSU, Guangzhou
Tuning Lemma	
$\mathcal{M} \xrightarrow{h_T} \mathbb{R}$	Joint work with TAN, YANG, YAO arxiv: 2301.12610
	FGRT 2023-Dec, CUHK

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} i$

Tuning Lemm

```
\mathcal{M} \xrightarrow{h_T} \mathbb{I}
```

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1=\{z\in\mathbb{C}:|z|=1\}$$
 in the complex plane $\mathbb{C}.$

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on $\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$ $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 $\mathcal T$ is a dendrite and $\{ au^{-1}(u): u\in\mathcal T\}$ a Good decomposition

food means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$ uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

Then $g(\mathcal{T}_0) \subset \mathcal{T}_0$. Call (\mathcal{T}_0, g) the dynamic core of (\mathcal{T}, g) .

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

```
\mathcal{M} \xrightarrow{h_T} \mathbb{I}
```

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on $\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi}$; $\mathbf{h}(\sigma_d) = \log d$.

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 $\mathcal T$ is a dendrite and $\{ au^{-1}(u): u\in \mathcal T\}$ a Good decomposition

food means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$ uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

 $\Gamma \mathrm{hen} \ g(\mathcal{T}_0) \subset \mathcal{T}_0. \qquad \mathsf{Call} \ (\mathcal{T}_0,g) \ \mathsf{the} \ \mathsf{dynamic \ core} \ \mathsf{of} \ (\mathcal{T},g).$

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

```
\mathcal{M} \xrightarrow{h_T} \mathbb{I}
```

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 $|\mathcal{T}|$ is a dendrite and $\{ au^{-1}(u): u \in \mathcal{T}\}$ a Good decomposition

food means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$ uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

Then $g(\mathcal{T}_0)\subset \mathcal{T}_0$. Call (\mathcal{T}_0,g) the dynamic core of (\mathcal{T},g) .

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemm

```
\mathcal{M} \xrightarrow{h_T} \mathbb{I}
```

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

- Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that
 - ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
 ight\}$ a Good decomposition

ood means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$ uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_e

 $\partial \mathcal{M} \xrightarrow{h_T} i$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
ight\}$ a Good decomposition

Good means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$ uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

$$\label{eq:characteristic} \begin{split} & \Gamma \mathrm{hen} \ g(\mathcal{T}_0) \subset \mathcal{T}_0. \end{split} \qquad \mathsf{Call} \ (\mathcal{T}_0,g) \ \mathsf{the} \ \mathsf{dynamic \ core} \ \mathsf{of} \ (\mathcal{T},g). \end{split}$$

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_e

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
ight\}$ a Good decomposition

Good means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$ uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

$$\label{eq:characteristic} \begin{split} & \Gamma \mathrm{hen} \ g(\mathcal{T}_0) \subset \mathcal{T}_0. \end{split} \qquad \mathsf{Call} \ (\mathcal{T}_0,g) \ \mathsf{the} \ \mathsf{dynamic \ core} \ \mathsf{of} \ (\mathcal{T},g). \end{split}$$

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
ight\}$ a Good decomposition

Good means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$

uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

Then $g(\mathcal{T}_0) \subset \mathcal{T}_0$. Call (\mathcal{T}_0, g) the dynamic core of (\mathcal{T}, g) .

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} i$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
ight\}$ a Good decomposition

Good means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$

uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

Then $g(\mathcal{T}_0) \subset \mathcal{T}_0$. Call (\mathcal{T}_0, g) the dynamic core of (\mathcal{T}, g) .

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} i$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
ight\}$ a Good decomposition

Good means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$

uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

en $g(\mathcal{T}_0) \subset \mathcal{T}_0$. Call (\mathcal{T}_0, g) the dynamic core of (\mathcal{T}, g)

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} i$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
ight\}$ a Good decomposition

Good means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$

uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

Then $g(\mathcal{T}_0) \subset \mathcal{T}_0$. Call (\mathcal{T}_0, g) the dynamic core of (\mathcal{T}, g) .

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_f

 $\partial \mathcal{M} \xrightarrow{h_T} i$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Dynamical Systems We Consider

• Unit Circle
$$\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$
 in the complex plane \mathbb{C} .

• Doubling Map
$$\sigma_d(w) = w^d (d \ge 2)$$
; focusing on $d = 2$.

• Haar Measure on
$$\mathbb{S}^1 = \frac{\text{linear measure}(\cdot)}{2\pi};$$
 $\mathbf{h}(\sigma_d) = \log d.$

• Semi-conjugations $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$ such that

 ${\mathcal T}$ is a dendrite and $\left\{ au^{-1}(u): u \in {\mathcal T}
ight\}$ a Good decomposition

Good means two properties:

(a) Convex Hulls of $\tau^{-1}(u_i)(u_1 \neq u_2)$ are disjoint.

(b) For all but one $u \in \mathcal{T}$ we have $\#g^{-1}(u) = d$

uncritical case

Let u_0 denote the only point with $\#g^{-1}(g(u_0)) = 1$ and

 $\mathcal{T}_0 \subset \mathcal{T}$ the smallest sub-continuum $\supset \{g^n(u_0) : n \ge 0\}.$

Then $g(\mathcal{T}_0) \subset \mathcal{T}_0$. Call (\mathcal{T}_0, g) the dynamic core of (\mathcal{T}, g) .

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number re

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

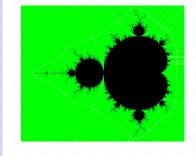
Tuning Lemm

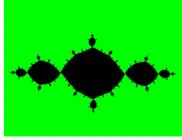
Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

k a parameter $c \in \mathcal{M}$, Mandelbrot set, we obtain $f_c(z) = z^2 + c$ and a semi-conjugation $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau = \tau_c} (\mathcal{T}(f_c), \tilde{f}_c)$





A D > A B > A B > A B >

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number re

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

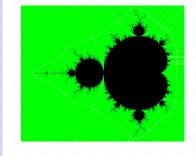
Tuning Lemma

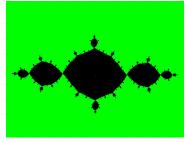
Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

Pick a parameter $c \in \mathcal{M}$, Mandelbrot set, we obtain $f_c(z) = z^2 + c$ and a semi-conjugation $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau = \tau_c} (\mathcal{T}(f_c), \tilde{f_c})$





A D > A B > A B > A B >

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number re

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

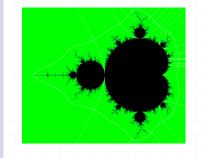
Tuning Lemm

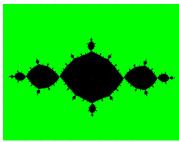
Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

Pick a parameter $c \in \mathcal{M}$, Mandelbrot set, we obtain $f_c(z) = z^2 + c$ and a semi-conjugation $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau = \tau_c} (\mathcal{T}(f_c), \tilde{f}_c)$





(日)

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_A

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemma

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

 A dendrite factor of (J, f) is a system (T, g) with T a dendrite and the semi-conjugation π : J → T a monotone map.

• $(\mathcal{T}(f), \tilde{f})$ is **maximal** in the sense that every other dendrite factor of (J, f) is also a dendrite factor of $(\mathcal{T}(f), \tilde{f})$.

Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and

 $\mathcal{T}_0(f)\subset \mathcal{T}(f)$ the smallest sub-continuum containing $\mathbf{Orb}(u_0)$.

Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $\left(\mathcal{T}_0(f), \tilde{f}\right)$ is the dynamic core of (J, f)

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_A

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d\geq 2.$ If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

 A dendrite factor of (J, f) is a system (T, g) with T a dendrite and the semi-conjugation π : J → T a monotone map.

• $(\mathcal{T}(f), \tilde{f})$ is maximal in the sense that every other dendrite factor of (J, f) is also a dendrite factor of $(\mathcal{T}(f), \tilde{f})$.

Assume that 0 is the only critical point of f (unicrtical). Let $u_0 = \pi(0)$ and

 $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing $\mathbf{Orb}(u_0)$.

Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $\left(\mathcal{T}_0(f), \tilde{f}\right)$ is the dynamic core of (J, f)

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_A

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

 A dendrite factor of (J, f) is a system (T, g) with T a dendrite and the semi-conjugation π : J → T a monotone map.

• $(\mathcal{T}(f), \tilde{f})$ is maximal in the sense that every other dendrite factor of (J, f) is also a dendrite factor of $(\mathcal{T}(f), \tilde{f})$.

Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing $\mathbf{Orb}(u_0)$. Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is the dynamic core of (J, f).

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_A

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

 A dendrite factor of (J, f) is a system (T, g) with T a dendrite and the semi-conjugation π : J → T a monotone map.

• $(\mathcal{T}(f), \tilde{f})$ is maximal in the sense that every other dendrite factor of (J, f) is also a dendrite factor of $(\mathcal{T}(f), \tilde{f})$.

Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and

 $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing $\mathbf{Orb}(u_0)$.

Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is the dynamic core of (J, f)

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_A

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

 A dendrite factor of (J, f) is a system (T, g) with T a dendrite and the semi-conjugation π : J → T a monotone map.

• $(\mathcal{T}(f), \tilde{f})$ is maximal in the sense that every other dendrite factor of (J, f) is also a dendrite factor of $(\mathcal{T}(f), \tilde{f})$.

Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and

 $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing $\mathbf{Orb}(u_0)$.

Then $\widetilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $\left(\mathcal{T}_0(f), \widetilde{f}\right)$ is the dynamic core of (J, f)

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_A

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

 A dendrite factor of (J, f) is a system (T, g) with T a dendrite and the semi-conjugation π : J → T a monotone map.

• $(\mathcal{T}(f), \tilde{f})$ is maximal in the sense that every other dendrite factor of (J, f) is also a dendrite factor of $(\mathcal{T}(f), \tilde{f})$.

소리가 사람가 사람가 사람이 물

Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing $\mathbf{Orb}(u_0)$. Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $\left(\mathcal{T}_0(f), \tilde{f}\right)$ is the dynamic core of (J, f).

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_A

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Identification of $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}, g)$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

 A dendrite factor of (J, f) is a system (T, g) with T a dendrite and the semi-conjugation π : J → T a monotone map.

• $(\mathcal{T}(f), \tilde{f})$ is maximal in the sense that every other dendrite factor of (J, f) is also a dendrite factor of $(\mathcal{T}(f), \tilde{f})$.

Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing $\mathbf{Orb}(u_0)$. Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is the dynamic core of (J, f).

Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.

Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$. Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and

Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$. Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing **Orb**(u_0).

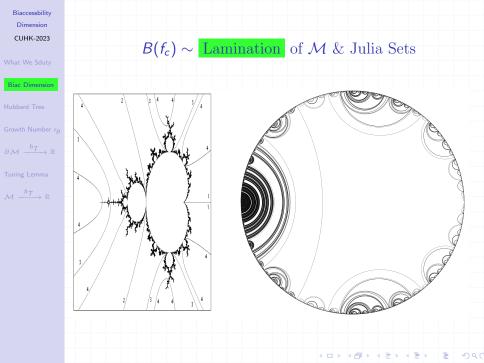
Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$. Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing **Orb**(u_0). Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is called dynamic core of (J, f).

Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$. Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing **Orb**(u_0). Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is called dynamic core of (J, f). <u>How</u> to define $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}(f), \tilde{f})$ by using $J \xrightarrow{\pi} \mathcal{T}(f)$ \equiv Explain

Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$. Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing **Orb**(u_0). Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is called dynamic core of (J, f). <u>How</u> to define $\left| (\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}(f), \tilde{f}) \right|$ by using $J \xrightarrow{\pi} \mathcal{T}(f)$ \equiv Explain <u>Note</u> that $\xrightarrow{A(f)=\tau^{-1}(\mathcal{T}_0(f))} \sigma_d(A(f)) \subset A(f)$ and $\dim_H A(f) = \frac{ent(\sigma_d|_{A(f)})}{\log d}$ See Proposition III.1 of [Furstenberg 1967]

Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$. Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing **Orb**(u_0). Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is called dynamic core of (J, f). <u>How</u> to define $(\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}(f), \tilde{f})$ by using $J \xrightarrow{\pi} \mathcal{T}(f)$ \equiv Explain <u>Note</u> that $\xrightarrow{A(f)=\tau^{-1}(\mathcal{T}_0(f))} \sigma_d(A(f)) \subset A(f)$ and $\dim_H A(f) = \frac{ent(\sigma_d|_{A(f)})}{\log d}$ See Proposition III.1 of [Furstenberg 1967] $B(f) = \{ all \ w \in A(f) \text{ with } \# \tau^{-1}(\tau(w)) > 1 \} | \dots | I_F \# \tau(f) = 1 | details omitted$ Let

Biaccessbility Dimension CUHK-2023 $B(f) \subset A(f) \subset \mathbb{S}^1$ and dim_H(\star) What We Sduty Theorem (L-Tan-Yang-Yao(2023)) Given a polynomial f of degree $d \ge 2$. If the Julia set J is connected then (J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$. Assume that 0 is the only critical point of f (unicritical). Let $u_0 = \pi(0)$ and $\mathcal{T}_0(f) \subset \mathcal{T}(f)$ the smallest sub-continuum containing **Orb**(u_0). Then $\tilde{f}(\mathcal{T}_0(f)) \subset \mathcal{T}_0(f)$ and $(\mathcal{T}_0(f), \tilde{f})$ is called <u>dynamic core</u> of (J, f). <u>How</u> to define $\left| (\mathbb{S}^1, \sigma_d) \xrightarrow{\tau} (\mathcal{T}(f), \tilde{f}) \right|$ by using $J \xrightarrow{\pi} \mathcal{T}(f)$ \equiv Explain <u>Note</u> that $\xrightarrow{A(f)=\tau^{-1}(\mathcal{T}_0(f))} \sigma_d(A(f)) \subset A(f)$ and $\dim_H A(f) = \frac{ent(\sigma_d|_{A(f)})}{\log d}$ See Proposition III.1 of [Furstenberg 1967] $B(f) = \left\{ \mathsf{all} \ w \in A(f) \ \mathsf{with} \ \# au^{-1}(au(w)) > 1
ight\} \left| \dots \left| \ \Pr \# au(f) = 1
ight| \ \mathsf{details omitted}
ight|$ Let dim_H $B(f_c)$ the bi-accessibility dimension of $f_c(z) = z^2 + c$. Call



What We Sduty

Biac Dimension

Hubbard Tree

Growth Number rA

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{R}$

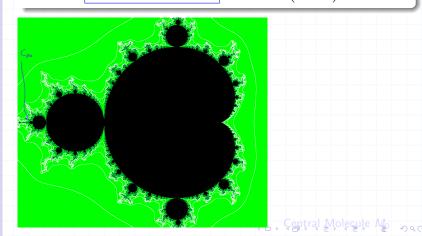
Tuning Lemma

$B(f_c) \subset A(f_c) \subset \mathbb{S}^1$ with $c \in M_0$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree $d\geq 2.$ If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.



What We Sduty

Biac Dimension

Hubbard Tree

Growth Number rA

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{R}$

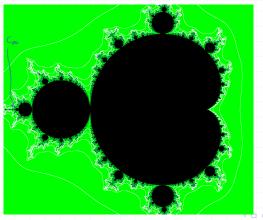
Tuning Lemma

$B(f_c) \subset A(f_c) \subset \mathbb{S}^1$ with $c \in M_0$

Theorem (L-Tan-Yang-Yao(2023))

Given a polynomial f of degree d \geq 2. If the Julia set J is connected then

(J, f) has a maximal dendrite factor, denoted by $(\mathcal{T}(f), \tilde{f})$.



Central Molecule M_0

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r₆

 $\partial \mathcal{M} \xrightarrow{h_T} i$

Tuning Lemm

$$\mathcal{M} \xrightarrow{h_T} \mathbb{I}$$

Complex Polynomials and Julia Sets

1 The filled Julia set K of a polynomial f, of degree $d \ge 2$, consists of

all points $z \in \mathbb{C}$ such that $Orb(x) = \{f^n(z) : n \ge 0\}$ is bounded.

 ∂K is the Julia set and $U_{\infty} = \mathbb{C} \setminus K$ the unbounded Fatou component.

2 Let $\sigma_d(w) = w^d$ and $\mathbb{D}^* = \{z : |z| > 1\}$. There is a unique conformal

map ψ fixing ∞ and semi-conjugating (\mathbb{D}^*,σ_d) with (U_∞,f)

③ f is PCF(post critically finite) if each critical point has a finite orbit.

If f is PCF then K and J are both connected and locally connected.

Thus (J, f) is a factor of (\mathbb{S}^1, σ_d) , since ψ^{-1} may be continuously

extended over $\mathbb{S}^1 = \partial \mathbb{D}^*$ by Caratheodory's Continuity Theorem.

5 Even when J is NOT locally connected, (J, f) has a maximal factor

such that the underlying space is a Peano continuum and the

semi-conjugation is a monotone map

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Complex Polynomials and Julia Sets

1 The filled Julia set K of a polynomial f, of degree $d \ge 2$, consists of

all points $z \in \mathbb{C}$ such that $Orb(x) = \{f^n(z) : n \ge 0\}$ is bounded.

 $J = \partial K$ is the Julia set and $U_{\infty} = \mathbb{C} \setminus K$ the unbounded Fatou component.

2 Let $\sigma_d(w) = w^d$ and $\mathbb{D}^* = \{z : |z| > 1\}$. There is a unique conformal

map ψ fixing ∞ and semi-conjugating (\mathbb{D}^*,σ_d) with (U_∞,f)

③ f is PCF(post critically finite) if each critical point has a finite orbit.

If f is PCF then K and J are both connected and locally connected.

Thus (J, f) is a factor of (\mathbb{S}^1, σ_d) , since ψ^{-1} may be continuously

extended over $\mathbb{S}^1 = \partial \mathbb{D}^*$ by Caratheodory's Continuity Theorem.

5 Even when J is NOT locally connected, (J, f) has a maximal factor

such that the underlying space is a Peano continuum and the

semi-conjugation is a monotone map

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Complex Polynomials and Julia Sets

1) The filled Julia set K of a polynomial f, of degree $d \ge 2$, consists of

all points $z \in \mathbb{C}$ such that $Orb(x) = \{f^n(z) : n \ge 0\}$ is bounded.

 $J = \partial K$ is the Julia set and $U_{\infty} = \mathbb{C} \setminus K$ the unbounded Fatou component.

2 Let σ_d(w) = w^d and D^{*} = {z : |z| > 1}. There is a unique conformal map ψ fixing ∞ and semi-conjugating (D^{*}, σ_d) with (U_∞, f).

(3) f is PCF(post critically finite) if each critical point has a finite orbit.

4 If f is PCF then K and J are both connected and locally connected.

Thus (J, f) is a factor of (\mathbb{S}^1, σ_d) , since ψ^{-1} may be continuously

extended over $\mathbb{S}^1 = \partial \mathbb{D}^*$ by Caratheodory's Continuity Theorem.

5 Even when J is NOT locally connected, (J, f) has a maximal factor

such that the underlying space is a Peano continuum and the

semi-conjugation is a monotone map.

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{F}$

Complex Polynomials and Julia Sets

1) The filled Julia set K of a polynomial f, of degree $d \ge 2$, consists of

all points $z \in \mathbb{C}$ such that $Orb(x) = \{f^n(z) : n \ge 0\}$ is bounded.

 $J = \partial K$ is the Julia set and $U_{\infty} = \mathbb{C} \setminus K$ the unbounded Fatou component.

2 Let σ_d(w) = w^d and D^{*} = {z : |z| > 1}. There is a unique conformal map ψ fixing ∞ and semi-conjugating (D^{*}, σ_d) with (U_∞, f).

3 f is PCF_(post critically finite) if each critical point has a finite orbit.

④ If f is PCF then K and J are both connected and locally connected.

Thus (J,f) is a factor of (\mathbb{S}^1,σ_d) , since ψ^{-1} may be continuously

extended over $\mathbb{S}^1 = \partial \mathbb{D}^*$ by Caratheodory's Continuity Theorem.

5 Even when J is NOT locally connected, (J, f) has a maximal factor

such that the underlying space is a Peano continuum and the

semi-conjugation is a monotone map

What We Sduty

Biac Dimension

Hubbard Tree

- Growth Number r_{θ}
- $\partial \mathcal{M} \xrightarrow{h_T} \mathcal{I}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Complex Polynomials and Julia Sets

1) The filled Julia set K of a polynomial f, of degree $d \ge 2$, consists of

all points $z \in \mathbb{C}$ such that $Orb(x) = \{f^n(z) : n \ge 0\}$ is bounded.

 $J = \partial K$ is the Julia set and $U_{\infty} = \mathbb{C} \setminus K$ the unbounded Fatou component.

2 Let σ_d(w) = w^d and D^{*} = {z : |z| > 1}. There is a unique conformal map ψ fixing ∞ and semi-conjugating (D^{*}, σ_d) with (U_∞, f).

 \bigcirc f is PCF(post critically finite) if each critical point has a finite orbit.

4 If f is PCF then K and J are both connected and locally connected.

Thus (J, f) is a factor of (\mathbb{S}^1, σ_d) , since ψ^{-1} may be continuously

extended over $\mathbb{S}^1 = \partial \mathbb{D}^*$ by Caratheodory's Continuity Theorem.

Even when J is NOT locally connected , (J, f) has a maximal factor

uch that the underlying space is a Peano continuum and the

semi-conjugation is a monotone map.

What We Sduty

Biac Dimension

Hubbard Tree

- Growth Number r_{θ}
- $\partial \mathcal{M} \xrightarrow{h_T} 1$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Complex Polynomials and Julia Sets

1 The filled Julia set K of a polynomial f, of degree $d \ge 2$, consists of

all points $z \in \mathbb{C}$ such that $Orb(x) = \{f^n(z) : n \ge 0\}$ is bounded.

 $J = \partial K$ is the Julia set and $U_{\infty} = \mathbb{C} \setminus K$ the unbounded Fatou component.

2 Let σ_d(w) = w^d and D^{*} = {z : |z| > 1}. There is a unique conformal map ψ fixing ∞ and semi-conjugating (D^{*}, σ_d) with (U_∞, f).

 \bigcirc f is PCF(post critically finite) if each critical point has a finite orbit.

4 If f is PCF then K and J are both connected and locally connected.

Thus (J, f) is a factor of (\mathbb{S}^1, σ_d) , since ψ^{-1} may be continuously

extended over $\mathbb{S}^1 = \partial \mathbb{D}^*$ by Caratheodory's Continuity Theorem.

Seven when J is NOT locally connected, (J, f) has a maximal factor such that the underlying space is a Peano continuum and the

semi-conjugation is a monotone map.

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemma

PCF Polynomials and Hubbard Trees

Theorem (Bielefeld-Fisher-Hubbard(1992))

If f is PCF then there is a tree $\mathcal{H}(f) \subset K$ (Hubbard tree) that is invariant under f and contains all the critical points of f.

The topological entropy of $(\mathcal{H}(f), f)$ is the classical core entropy of f.

J is locally connected whenever K is.

When J is NOT locally connected, the Hubbard tree may not exits.

3 Dynamical core $(\mathcal{T}_0(f), \tilde{f})$ is well-defined whenever J is connected.

Theorem (L-Tan-Yang-Yao(2023))

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemma

PCF Polynomials and Hubbard Trees

Theorem (Bielefeld-Fisher-Hubbard(1992))

If f is PCF then there is a tree $\mathcal{H}(f) \subset K$ (Hubbard tree) that is invariant under f and contains all the critical points of f.

1 The topological entropy of $(\mathcal{H}(f), f)$ is the classical core entropy of f.

J is locally connected whenever K is.

When J is NOT locally connected, the Hubbard tree may not exits.

3 Dynamical core $(\mathcal{T}_0(f), \tilde{f})$ is well-defined whenever J is connected.

Theorem (L-Tan-Yang-Yao(2023))

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number re

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemm

PCF Polynomials and Hubbard Trees

Theorem (Bielefeld-Fisher-Hubbard(1992))

If f is PCF then there is a tree $\mathcal{H}(f) \subset K$ (Hubbard tree) that is invariant under f and contains all the critical points of f.

1 The topological entropy of $(\mathcal{H}(f), f)$ is the classical core entropy of f.

 \bigcirc J is locally connected whenever K is.

When J is NOT locally connected, the Hubbard tree may not exits. S Dynamical core $(\mathcal{T}_0(f), \tilde{f})$ is well-defined whenever J is connected.

Theorem (L-Tan-Yang-Yao(2023))

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number re

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemm

PCF Polynomials and Hubbard Trees

Theorem (Bielefeld-Fisher-Hubbard(1992))

If f is PCF then there is a tree $\mathcal{H}(f) \subset K$ (Hubbard tree) that is invariant under f and contains all the critical points of f.

1 The topological entropy of $(\mathcal{H}(f), f)$ is the classical core entropy of f.

 \bigcirc J is locally connected whenever K is.

When J is NOT locally connected, the Hubbard tree may not exits.

3 Dynamical core $(\mathcal{T}_0(f), \tilde{f})$ is well-defined whenever J is connected.

I heorem (L-Tan-Yang-Yao(2023))

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number re

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemma

PCF Polynomials and Hubbard Trees

Theorem (Bielefeld-Fisher-Hubbard(1992))

If f is PCF then there is a tree $\mathcal{H}(f) \subset K$ (Hubbard tree) that is invariant under f and contains all the critical points of f.

1 The topological entropy of $(\mathcal{H}(f), f)$ is the classical core entropy of f.

 \bigcirc J is locally connected whenever K is.

When J is NOT locally connected, the Hubbard tree may not exits. S Dynamical core $(\mathcal{T}_0(f), \tilde{f})$ is well-defined whenever J is connected.

I heorem (L-Tan-Yang-Yao(2023))

What We Sduty

Biac Dimension

Hubbard Tree

Growth Number r₆

 $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{I}$

Tuning Lemma

PCF Polynomials and Hubbard Trees

Theorem (Bielefeld-Fisher-Hubbard(1992))

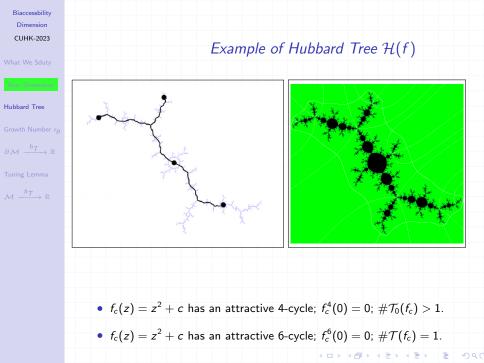
If f is PCF then there is a tree $\mathcal{H}(f) \subset K$ (Hubbard tree) that is invariant under f and contains all the critical points of f.

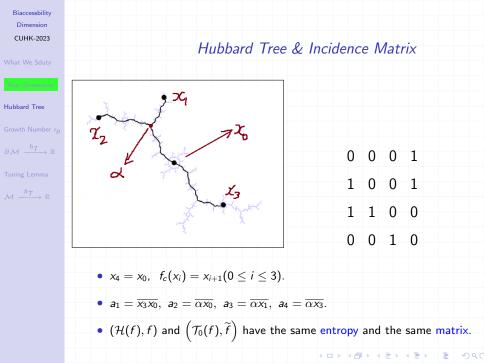
1 The topological entropy of $(\mathcal{H}(f), f)$ is the classical core entropy of f.

 \bigcirc J is locally connected whenever K is.

When J is NOT locally connected, the Hubbard tree may not exits. S Dynamical core $(\mathcal{T}_0(f), \tilde{f})$ is well-defined whenever J is connected.

Theorem (L-Tan-Yang-Yao(2023))





Biaccessbility Dimension CUHK-2023 *Growth Number* r_{θ} *for* $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$ • Given $\theta \in \mathbb{T}$, the segment from $\exp\left(2\pi \mathbf{i}\cdot \frac{\theta}{2}\right)$ to $\exp\left(2\pi \mathbf{i}\cdot \frac{\theta+1}{2}\right)$ is called a critical portrait, denoted by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$. Growth Number r_{θ} • Let $x_j(\theta) = \exp\left(\pi \mathbf{i} \cdot 2^j \theta\right)$ for $j \ge 1$. • A pair (i, j) with $1 \le i \le j$ is labelled separated provided that $x_i(\theta)$ • The wedge associated to θ , denoted by \mathcal{W}_{θ} , consists of all the • Every non-separated pair (i, j) in \mathcal{W}_{θ} have a unique outward edge $(i,j) \rightarrow (1,j+1)$ and the backward edge $(i,j) \rightarrow (1,j+1)$

Biaccessbility Dimension CUHK-2023 *Growth Number* r_{θ} *for* $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$ • Given $\theta \in \mathbb{T}$, the segment from $\exp\left(2\pi \mathbf{i}\cdot \frac{\theta}{2}\right)$ to $\exp\left(2\pi \mathbf{i}\cdot \frac{\theta+1}{2}\right)$ is called a critical portrait, denoted by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$. Growth Number r_{θ} • Let $x_j(\theta) = \exp\left(\pi \mathbf{i} \cdot 2^j \theta\right)$ for $j \ge 1$. • A pair (i, j) with $1 \le i \le j$ is labelled separated provided that $x_i(\theta)$ • The wedge associated to θ , denoted by \mathcal{W}_{θ} , consists of all the • Every non-separated pair (i, j) in \mathcal{W}_{θ} have a unique outward edge

 $(i,j) \rightarrow (1,j+1)$ and the backward edge $(i,j) \rightarrow (1,j+1)$

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

Growth Number r_{θ} *for* $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$ • Given $\theta \in \mathbb{T}$, the segment from $\exp\left(2\pi \mathbf{i} \cdot \frac{\theta}{2}\right)$ to $\exp\left(2\pi \mathbf{i} \cdot \frac{\theta+1}{2}\right)$ is called a critical portrait, denoted by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$. • Let $x_j(\theta) = \exp\left(\pi \mathbf{i} \cdot 2^j \theta\right)$ for $j \ge 1$. • A pair (i, j) with $1 \le i < j$ is labelled separated provided that $x_i(\theta)$ and $x_i(\theta)$ are separated in $\overline{\mathbb{D}}$ by the critical portrait $\{\frac{\theta}{2}, \frac{\theta+1}{2}\}$; otherwise, it is labelled non-separated. • The wedge associated to θ , denoted by \mathcal{W}_{θ} , consists of all the • Every non-separated pair (i, j) in \mathcal{W}_{θ} have a unique outward edge $(i,j) \to (1,j+1) \text{ and the backward edge } (i,j) \xrightarrow{\rightarrow} (1,j+1) \xrightarrow{} \mathbb{E} \to \mathbb{E}$

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

Growth Number r_{θ} *for* $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$ • Given $\theta \in \mathbb{T}$, the segment from $\exp\left(2\pi \mathbf{i} \cdot \frac{\theta}{2}\right)$ to $\exp\left(2\pi \mathbf{i} \cdot \frac{\theta+1}{2}\right)$ is called a critical portrait, denoted by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$. • Let $x_j(\theta) = \exp\left(\pi \mathbf{i} \cdot 2^j \theta\right)$ for $j \ge 1$. • A pair (i, j) with $1 \le i < j$ is labelled separated provided that $x_i(\theta)$ and $x_i(\theta)$ are separated in $\overline{\mathbb{D}}$ by the critical portrait $\{\frac{\theta}{2}, \frac{\theta+1}{2}\}$; otherwise, it is labelled non-separated . • The wedge associated to θ , denoted by \mathcal{W}_{θ} , consists of all the labelled pairs (i, j). Every pair (i, j) is called a vertex of \mathcal{W}_{θ} . • Every non-separated pair (i, j) in \mathcal{W}_{θ} have a unique outward edge

separated pair (i,j) has two outward edges: the forward edge

 $(i,j) \rightarrow (1,j+1)$ and the backward edge $(i,j) \rightarrow (1,j+1)$

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

Growth Number r_{θ} *for* $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$ • Given $\theta \in \mathbb{T}$, the segment from $\exp\left(2\pi \mathbf{i} \cdot \frac{\theta}{2}\right)$ to $\exp\left(2\pi \mathbf{i} \cdot \frac{\theta+1}{2}\right)$ is called a critical portrait, denoted by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$. • Let $x_j(\theta) = \exp\left(\pi \mathbf{i} \cdot 2^j \theta\right)$ for $j \ge 1$. • A pair (i, j) with $1 \le i < j$ is labelled separated provided that $x_i(\theta)$ and $x_i(\theta)$ are separated in $\overline{\mathbb{D}}$ by the critical portrait $\{\frac{\theta}{2}, \frac{\theta+1}{2}\}$; otherwise, it is labelled non-separated . • The wedge associated to θ , denoted by \mathcal{W}_{θ} , consists of all the labelled pairs (i, j). Every pair (i, j) is called a vertex of \mathcal{W}_{θ} . • Every non-separated pair (i, j) in \mathcal{W}_{θ} have a unique outward edge

(i,j)
ightarrow (i+1,j+1), called an upward edge; on the other hand, every

separated pair (i, j) has two outward edges: the forward edge

(i,j)
ightarrow (1,j+1) and the backward edge (i,j)
ightarrow (1,i+1).

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

Let
$$x_j(\theta) = \exp\left(\pi \mathbf{i} \cdot 2^j \theta\right)$$
 for $j \ge 1$.

• A pair (i, j) is labelled separated provided that $x_i(\theta)$ and $x_j(\theta)$ are separated by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$; otherwise, it is labelled non-separated.

• Let Γ_{θ} be the infinite directed graph associated to \mathcal{W}_{θ} , whose edges

• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$. Thus, $C(\Gamma_{\theta}, n) \le 2\eta$, $\frac{\eta(n+1)}{2}$ for all $n \ge 1$.

Then $C(\Gamma_{\theta}, n) \leq 2^n \cdot \frac{n(n+1)}{2}$ for all $n \geq 1$ [Tiozzo-2016 Proposition 6.2].

• Call $r_{\theta} = \limsup \sqrt[n]{C(\Gamma_{\theta}, n)}$ the growth rate of θ .

• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T}$

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

Let
$$x_j(heta) = \exp\left(\pi \mathbf{i} \cdot 2^j heta
ight)$$
 for $j \geq 1$.

• A pair (i, j) is labelled separated provided that $x_i(\theta)$ and $x_j(\theta)$ are separated by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$; otherwise, it is labelled non-separated.

 Let Γ_θ be the infinite directed graph associated to W_θ, whose edges are just all those outward edges.

• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$

Then $C(\Gamma_{\theta}, n) \leq 2^n \cdot \frac{n(n+1)}{2}$ for all $n \geq 1$ [Tiozzo-2016 Proposition 6.2].

• Call $r_{\theta} = \limsup \sqrt[n]{C(\Gamma_{\theta}, n)}$ the growth rate of θ .

• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemma

 $\mathcal{M} \xrightarrow{h_T}$

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

Let
$$x_j(heta) = \exp\left(\pi \mathbf{i}\cdot 2^j heta
ight)$$
 for $j\geq 1.$

• A pair (i, j) is labelled separated provided that $x_i(\theta)$ and $x_j(\theta)$ are separated by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$; otherwise, it is labelled non-separated.

 Let Γ_θ be the infinite directed graph associated to W_θ, whose edges are just all those outward edges.

• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$

Then $C(\Gamma_{\theta}, n) \leq 2^n \cdot \frac{n(n+1)}{2}$ for all $n \geq 1$ [Tiozzo-2016 Proposition 6.2].

• Call $r_{\theta} = \limsup \sqrt[n]{C(\Gamma_{\theta}, n)}$ the growth rate of θ .

• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T} \mathcal{M}$

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

• Let
$$x_j(heta) = \exp\left(\pi \mathbf{i} \cdot 2^j heta
ight)$$
 for $j \geq 1$.

• A pair (i, j) is labelled separated provided that $x_i(\theta)$ and $x_j(\theta)$ are separated by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$; otherwise, it is labelled non-separated.

 Let Γ_θ be the infinite directed graph associated to W_θ, whose edges are just all those outward edges.

• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$. Then $C(\Gamma_{\theta}, n) \le 2^n \cdot \frac{n(n+1)}{2}$ for all $n \ge 1$ [Tiozzo-2016 Proposition 6.2].

 $1 \text{ for all } n \geq 1 \text{ [Notice of the position of 2]}$

• Call $r_{\theta} = \limsup \sqrt[n]{C(\Gamma_{\theta}, n)}$ the growth rate of θ .

• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemma

 $\mathcal{M} \xrightarrow{h_T}$

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

Let
$$x_j(heta) = \exp\left(\pi \mathbf{i}\cdot 2^j heta
ight)$$
 for $j\geq 1.$

• A pair (i, j) is labelled separated provided that $x_i(\theta)$ and $x_j(\theta)$ are separated by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$; otherwise, it is labelled non-separated.

 Let Γ_θ be the infinite directed graph associated to W_θ, whose edges are just all those outward edges.

• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$. Then $C(\Gamma_{\theta}, n) \le 2^n \cdot \frac{n(n+1)}{2}$ for all $n \ge 1$ [Tiozzo-2016 Proposition 6.2].

• Call $r_{\theta} = \limsup_{n \to \infty} \sqrt[n]{C(\Gamma_{\theta}, n)}$ the growth rate of θ .

• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

 $\mathcal{M} \xrightarrow{h_T}$

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

Let
$$x_j(heta) = \exp\left(\pi \mathbf{i} \cdot 2^j heta
ight)$$
 for $j \geq 1$.

• A pair (i, j) is labelled separated provided that $x_i(\theta)$ and $x_j(\theta)$ are separated by $\left\{\frac{\theta}{2}, \frac{\theta+1}{2}\right\}$; otherwise, it is labelled non-separated.

 Let Γ_θ be the infinite directed graph associated to W_θ, whose edges are just all those outward edges.

• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$. Then $C(\Gamma_{\theta}, n) \le 2^n \cdot \frac{n(n+1)}{2}$ for all $n \ge 1$ [Tiozzo-2016 Proposition 6.2].

• Call
$$r_{\theta} = \limsup_{n \to \infty} \sqrt[n]{C(\Gamma_{\theta}, n)}$$
 the growth rate of θ .

• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function.

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

• Let
$$x_j(heta) = \exp\left(\pi \mathbf{i} \cdot 2^j heta
ight)$$
 for $j \geq 1$.

Let Γ_θ be the infinite directed graph associated to W_θ, whose edges are just all those outward edges.

• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$. Then $C(\Gamma_{\theta}, n) \le 2^n \cdot \frac{n(n+1)}{2}$ for all $n \ge 1$ Tiozzo(2016).

• Call $r_{\theta} = \limsup_{n \to \infty} \sqrt[n]{C(\Gamma_{\theta}, n)}$ the growth rate of θ .

• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function .

Theorem (Tiozzo(2016))

Thurston's entropy function $h_T : \mathbb{T} \cong \mathbb{S}^1 \to [0, \log 2]$ is continuous

What We Sdut

Biac Dimension

Hubbard Tree

Growth Number r_{θ}

 $\partial \mathcal{M} \xrightarrow{h_T}$

Tuning Lemm

Growth Number r_{θ} for $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$

• Let
$$x_j(heta) = \exp\left(\pi \mathbf{i} \cdot 2^j heta
ight)$$
 for $j \geq 1$.

Let Γ_θ be the infinite directed graph associated to W_θ, whose edges are just all those outward edges.

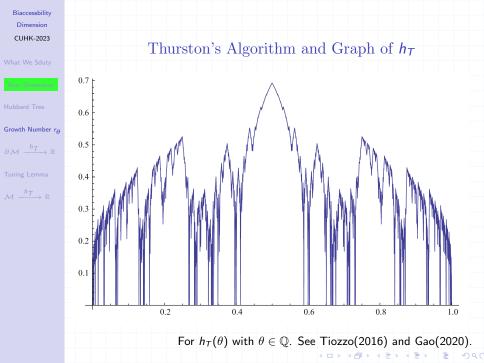
• Let $C(\Gamma_{\theta}, n)$ be the number of closed paths in Γ_{θ} with length $n \ge 1$. Then $C(\Gamma_{\theta}, n) \le 2^n \cdot \frac{n(n+1)}{2}$ for all $n \ge 1$ Tiozzo(2016).

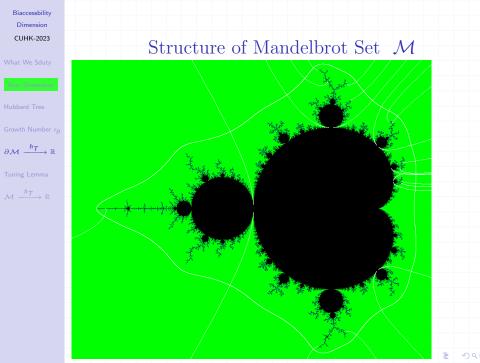
• Call $r_{\theta} = \limsup_{n \to \infty} \sqrt[n]{C(\Gamma_{\theta}, n)}$ the growth rate of θ .

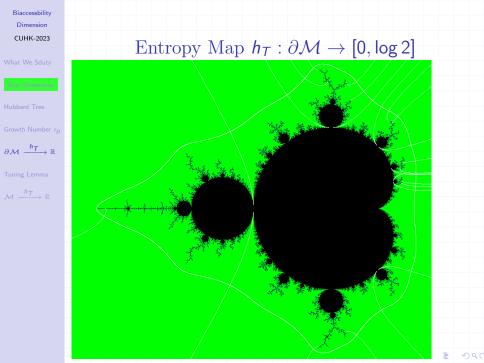
• Call $h_T(\theta) = \log r_{\theta}$ Thurston's entropy function

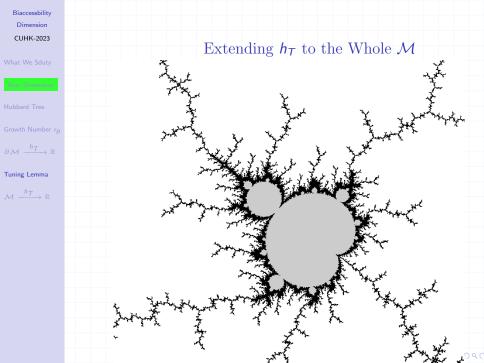
Theorem (Tiozzo(2016))

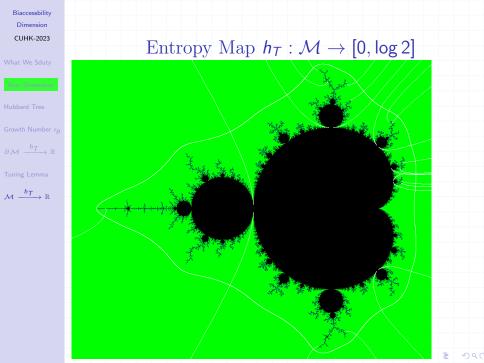
Thurston's entropy function $h_T : \mathbb{T} \cong \mathbb{S}^1 \to [0, \log 2]$ is continuous.

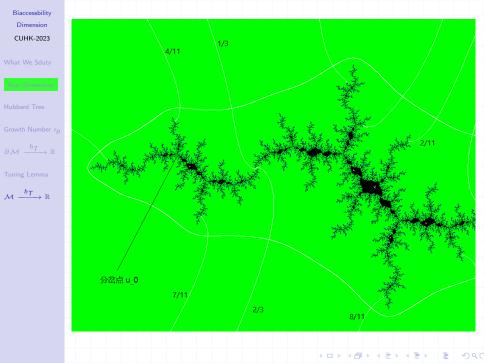












Biaccessbility Dimension CUHK-2023											
What We Sduty											
Biac Dimension Hubbard Tree											
Growth Number r_{θ} $\partial \mathcal{M} \xrightarrow{h_T} \mathbb{R}$		谢	谢	大	家	. !					
Tuning Lemma $\mathcal{M} \xrightarrow{h_{\mathcal{T}}} \mathbb{R}$		Th	ank	Yo	u /	41					
					< □ >	• 🗗	▶ ∢ 3	≣ ►	< E	•	У q